Mercurial > hg > Members > kono > Proof > galois
changeset 54:8224694a4dda
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 23 Aug 2020 17:22:34 +0900 |
parents | 2283d6f8a2fb |
children | 111c561ae90c |
files | Putil.agda |
diffstat | 1 files changed, 44 insertions(+), 5 deletions(-) [+] |
line wrap: on
line diff
--- a/Putil.agda Sun Aug 23 16:34:19 2020 +0900 +++ b/Putil.agda Sun Aug 23 17:22:34 2020 +0900 @@ -133,17 +133,56 @@ open import logic shrink : {n : ℕ} → (perm : Permutation (suc n) (suc n) ) → perm ⟨$⟩ˡ (fromℕ n) ≡ fromℕ n → Permutation n n -shrink {n} perm p0=0 = permutation p→ p← record { left-inverse-of = piso→ ; right-inverse-of = piso← } where +shrink {n} perm pn=n = permutation p→ p← record { left-inverse-of = piso→ ; right-inverse-of = piso← } where + + sh3 : (x : Fin n) → ¬ ( toℕ (perm ⟨$⟩ˡ (fin+1 x)) ≡ n ) + sh3 x eq = ⊥-elim ( nat-≡< sh31 fin<n ) where + sh31 : toℕ x ≡ n + sh31 = begin + toℕ x + ≡⟨ {!!} ⟩ + toℕ (fin+1 x) + ≡⟨ cong (λ k → toℕ k ) (sym ( inverseʳ perm)) ⟩ + toℕ (perm ⟨$⟩ʳ (perm ⟨$⟩ˡ (fin+1 x))) + ≡⟨ {!!} ⟩ + toℕ (perm ⟨$⟩ʳ fromℕ n) + ≡⟨ cong ( λ k → toℕ (perm ⟨$⟩ʳ k )) (sym pn=n) ⟩ + toℕ (perm ⟨$⟩ʳ (perm ⟨$⟩ˡ (fromℕ n) )) + ≡⟨ cong (λ k → toℕ k ) ( inverseʳ perm ) ⟩ + toℕ (fromℕ n) + ≡⟨ {!!} ⟩ + n + ∎ where + open ≡-Reasoning + + sh4 : (x : Fin n) → ¬ ( toℕ (perm ⟨$⟩ʳ (fin+1 x)) ≡ n ) + sh4 x eq = ⊥-elim ( nat-≡< sh41 fin<n ) where + sh41 : toℕ x ≡ n + sh41 = begin + toℕ x + ≡⟨ {!!} ⟩ + toℕ (fin+1 x) + ≡⟨ cong (λ k → toℕ k ) (sym ( inverseˡ perm)) ⟩ + toℕ (perm ⟨$⟩ˡ (perm ⟨$⟩ʳ (fin+1 x))) + ≡⟨ {!!} ⟩ + toℕ ((perm ⟨$⟩ˡ fromℕ n)) + ≡⟨ cong (λ k → toℕ k) pn=n ⟩ + toℕ (fromℕ n) + ≡⟨ {!!} ⟩ + n + ∎ where + open ≡-Reasoning + shlem→ : (x : Fin n ) → toℕ (perm ⟨$⟩ˡ (fin+1 x)) < n shlem→ x with <-cmp (toℕ (perm ⟨$⟩ˡ (fin+1 x))) n shlem→ x | tri< a ¬b ¬c = a - shlem→ x | tri≈ ¬a b ¬c = {!!} + shlem→ x | tri≈ ¬a b ¬c = ⊥-elim ( sh3 x b ) shlem→ x | tri> ¬a ¬b c = {!!} shlem← : (x : Fin n) → toℕ (perm ⟨$⟩ʳ (fin+1 x)) < n shlem← x with <-cmp (toℕ (perm ⟨$⟩ʳ (fin+1 x))) n shlem← x | tri< a ¬b ¬c = a - shlem← x | tri≈ ¬a b ¬c = {!!} + shlem← x | tri≈ ¬a b ¬c = ⊥-elim ( sh4 x b ) shlem← x | tri> ¬a ¬b c = {!!} p→ : (x : Fin n ) → Fin n @@ -182,7 +221,7 @@ ∎ piso← x | tri< a ¬b ¬c | tri≈ ¬a b ¬c₁ = {!!} piso← x | tri< a ¬b ¬c | tri> ¬a ¬b₁ c = {!!} - piso← x | tri≈ ¬a b ¬c = {!!} + piso← x | tri≈ ¬a b ¬c = ⊥-elim ( sh4 x b ) piso← x | tri> ¬a ¬b c = {!!} piso→ : (x : Fin n ) → p← ( p→ x ) ≡ x @@ -210,7 +249,7 @@ ∎ piso→ x | tri< a ¬b ¬c | tri≈ ¬a b ¬c₁ = {!!} piso→ x | tri< a ¬b ¬c | tri> ¬a ¬b₁ c = {!!} - piso→ x | tri≈ ¬a b ¬c = {!!} + piso→ x | tri≈ ¬a b ¬c = ⊥-elim ( sh3 x b ) piso→ x | tri> ¬a ¬b c = {!!} perm→FL : {n : ℕ } → Permutation n n → FL n