Mercurial > hg > Members > kono > Proof > galois
changeset 43:831edb0a5296
this pconcat is no good
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 20 Aug 2020 19:20:56 +0900 |
parents | 25273e17a018 |
children | |
files | Symmetric.agda |
diffstat | 1 files changed, 14 insertions(+), 42 deletions(-) [+] |
line wrap: on
line diff
--- a/Symmetric.agda Thu Aug 20 18:32:54 2020 +0900 +++ b/Symmetric.agda Thu Aug 20 19:20:56 2020 +0900 @@ -142,57 +142,29 @@ lem00 : {n m : ℕ } → n ≡ m → n ≤ m lem00 refl = lem0 -open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) - -lem01 : {n m : ℕ } → (x y : Fin n ) → {a : toℕ x < m } {b : toℕ y < m } → x ≡ y → a ≅ b -lem01 zero zero refl = HE.refl -lem01 (suc x) = {!!} pconcat : {n m : ℕ } → Permutation n n → Permutation m m → Permutation (n + m) (n + m) -pconcat {n} {m} p q = permutation p→ p← record { left-inverse-of = piso→ ; right-inverse-of = piso← } where - p→ : Fin (n + m) → Fin (n + m) - p→ x with <-cmp (toℕ x ) n - p→ x | tri< a ¬b ¬c = n→m+n (p ⟨$⟩ˡ (m+n→n x a )) - p→ x | tri≈ ¬a b ¬c = m→m+n (q ⟨$⟩ˡ (m+n→m x (lem00 (sym b)) ) ) - p→ x | tri> ¬a ¬b c = m→m+n (q ⟨$⟩ˡ (m+n→m x (≤to< c) )) +pconcat {0} {m} p q = q +pconcat {suc n} {m} p q = permutation p→ p← record { left-inverse-of = piso→ ; right-inverse-of = piso← } where + p→ : Fin (suc n + m) → Fin (suc n + m) + p→ x = p00 x n {!!} where + p00 : {i : ℕ} (x : Fin i ) ( y : ℕ ) → y < suc n → Fin (suc n + m ) + p00 zero zero y<sn = n→m+n (p ⟨$⟩ˡ (fromℕ≤ {!!} )) + p00 zero (suc y) y<sn = n→m+n (p ⟨$⟩ˡ (fromℕ≤ {!!} )) + p00 (suc x) zero y<sn = m→m+n (q ⟨$⟩ˡ x) + p00 (suc x)(suc y) y<sn = {!!} - p← : Fin (n + m) → Fin (n + m) - p← x with <-cmp (toℕ x ) n - p← x | tri< a ¬b ¬c = n→m+n (p ⟨$⟩ʳ (m+n→n x a )) - p← x | tri≈ ¬a b ¬c = m→m+n (q ⟨$⟩ʳ (m+n→m x (lem00 (sym b)))) - p← x | tri> ¬a ¬b c = m→m+n (q ⟨$⟩ʳ (m+n→m x (≤to< c)) ) - - lem06 : {n m : ℕ } → (eq : n ≡ m ) → (x : Fin n) → toℕ (raise m x) ≡ toℕ x - lem06 refl zero = {!!} - lem06 refl (suc x) = cong (λ k → suc k ) {!!} -- (lem06 refl x) + p← : Fin (suc n + m) → Fin (suc n + m) + p← x = {!!} lem07 : {n m : ℕ } → (eq : n ≡ m ) → (x : Fin n) → toℕ (cast eq x) ≡ toℕ x lem07 refl zero = refl lem07 refl (suc x) = cong (λ k → suc k ) (lem07 refl x) - lem05 : (x : Fin n ) → toℕ (fromℕ≤ (≤-trans (fin<n {_} {x} ) (x≤x+y {n} {m}))) < n - lem05 x = subst ( λ k → k < n ) (sym (toℕ-fromℕ≤ _ )) fin<n + piso← : (x : Fin (suc n + m) ) → p→ ( p← x ) ≡ x + piso← x = {!!} - -- ff = fromℕ≤ (≤-trans (fin<n {_} {Inverse.from p Π.⟨$⟩ m+n→n x a} ) x≤x+y) - piso← : (x : Fin (n + m) ) → p→ ( p← x ) ≡ x - piso← x with <-cmp (toℕ x ) n - piso← x | tri< a ¬b ¬c = begin - p→ (fromℕ≤ (≤-trans (fin<n {_} {p ⟨$⟩ʳ (m+n→n x a)}) x≤x+y)) - ≡⟨ {!!} ⟩ - n→m+n (p ⟨$⟩ˡ (m+n→n (fromℕ≤ (≤-trans (fin<n {_} {Inverse.from p Π.⟨$⟩ m+n→n x a} ) x≤x+y) ) (lem05 _) )) - ≡⟨ {!!} ⟩ - x - ∎ where - open ≡-Reasoning - lem8 : ( x : Fin (n + m)) → ( a : toℕ x < n ) → p→ x ≡ n→m+n (p ⟨$⟩ˡ (m+n→n x a )) - lem8 x a with <-cmp (toℕ x ) n - lem8 x a | tri< a₁ ¬b ¬c = {!!} - lem8 x a | tri≈ ¬a b ¬c = {!!} - lem8 x a | tri> ¬a ¬b c = {!!} - piso← x | tri≈ ¬a b ¬c = {!!} - piso← x | tri> ¬a ¬b c = {!!} - - piso→ : (x : Fin (n + m) ) → p← ( p→ x ) ≡ x + piso→ : (x : Fin (suc n + m) ) → p← ( p→ x ) ≡ x piso→ = {!!}