Mercurial > hg > Members > kono > Proof > galois
changeset 204:84795e6638ce
commutativity of Any _ (tl2 L4 L1 L2) and Any _ (tl2 L4 L1 (tl3 a L L2))
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 02 Dec 2020 10:16:24 +0900 |
parents | 0462c99f32cb |
children | 0525f4dabdbc |
files | FLComm.agda |
diffstat | 1 files changed, 22 insertions(+), 10 deletions(-) [+] |
line wrap: on
line diff
--- a/FLComm.agda Tue Dec 01 23:37:29 2020 +0900 +++ b/FLComm.agda Wed Dec 02 10:16:24 2020 +0900 @@ -56,32 +56,44 @@ CommStage→ (suc i) .( [ g , h ] ) (comm {g} {h} p q) = comm2 (CommFListN i) (CommFListN i) (CommStage→ i g p) (CommStage→ i h q) [] where G = perm→FL g H = perm→FL h - comm6 : perm→FL [ FL→perm G , FL→perm H ] ≡ perm→FL [ g , h ] - comm6 = pcong-pF (comm-resp (FL←iso _) (FL←iso _)) + + -- tl3 case commc : (L3 L1 : FList n) → Any (_≡_ (perm→FL [ FL→perm G , FL→perm H ])) L3 → Any (_≡_ (perm→FL [ FL→perm G , FL→perm H ])) (tl3 G L1 L3) commc L3 [] any = any commc L3 (cons a L1 _) any = commc (FLinsert (perm→FL [ FL→perm G , FL→perm a ]) L3) L1 (insAny _ any) + comm6 : perm→FL [ FL→perm G , FL→perm H ] ≡ perm→FL [ g , h ] + comm6 = pcong-pF (comm-resp (FL←iso _) (FL←iso _)) comm3 : (L1 : FList n) → Any (H ≡_) L1 → (L3 : FList n) → Any (_≡_ (perm→FL [ g , h ])) (tl3 G L1 L3) comm3 (H ∷# []) (here refl) L3 = subst (λ k → Any (_≡_ k) (FLinsert (perm→FL [ FL→perm G , FL→perm H ]) L3 ) ) comm6 (x∈FLins ( perm→FL [ FL→perm G , FL→perm H ] ) L3 ) comm3 (cons H L1 x₁) (here refl) L3 = subst (λ k → Any (_≡_ k) (tl3 G L1 (FLinsert (perm→FL [ FL→perm G , FL→perm H ]) L3))) comm6 (commc (FLinsert (perm→FL [ FL→perm G , FL→perm H ]) L3 ) L1 (x∈FLins ( perm→FL [ FL→perm G , FL→perm H ] ) L3)) comm3 (cons a L _) (there b) L3 = comm3 L b (FLinsert (perm→FL [ FL→perm G , FL→perm a ]) L3) + + -- tl2 case comm2 : (L L1 : FList n) → Any (G ≡_) L → Any (H ≡_) L1 → (L3 : FList n) → Any (perm→FL [ g , h ] ≡_) (tl2 L L1 L3) comm2 (cons G L xr) L1 (here refl) b L3 = comm7 L L3 where - comm9 : (L4 L1 L2 : FList n) → (a a₁ : FL n) → Any (_≡_ (perm→FL [ g , h ])) (tl2 L4 L1 L2) → - Any (_≡_ (perm→FL [ g , h ])) (tl2 L4 L1 (FLinsert (perm→FL [ FL→perm a , FL→perm a₁ ]) L2)) comm8 : (L L4 L2 : FList n) → (a : FL n) → Any (_≡_ (perm→FL [ g , h ])) (tl2 L4 L1 L2) → Any (_≡_ (perm→FL [ g , h ])) (tl2 L4 L1 (tl3 a L L2)) + comm8← : (L L4 L2 : FList n) → (a : FL n) → ¬ ( a ≡ perm→FL g ) + → Any (_≡_ (perm→FL [ g , h ])) (tl2 L4 L1 (tl3 a L L2)) + → Any (_≡_ (perm→FL [ g , h ])) (tl2 L4 L1 L2) + comm9← : (L4 L2 : FList n) → (a a₁ : FL n) → ¬ ( a ≡ perm→FL g ) + → Any (_≡_ (perm→FL [ g , h ])) (tl2 L4 L1 (FLinsert (perm→FL [ FL→perm a , FL→perm a₁ ]) L2)) + → Any (_≡_ (perm→FL [ g , h ])) (tl2 L4 L1 L2) + -- Any (_≡_ (perm→FL [ g , h ])) (FLinsert (perm→FL [ FL→perm a , FL→perm a₁ ]) L2) → Any (_≡_ (perm→FL [ g , h ])) L2 + comm9← [] L2 a a₁ not any = {!!} + comm9← (cons a₂ L4 x) L2 a a₁ not any = comm8← L1 L4 {!!} a₂ {!!} (comm9← L4 {!!} a a₁ not {!!}) + comm8← [] L4 L2 a _ any = any + comm8← (cons a₁ L x) L4 L2 a not any = comm8← L L4 L2 a not (comm9← L4 (tl3 a L L2 ) a a₁ not {!!}) + comm9 : (L4 L2 : FList n) → (a a₁ : FL n) → Any (_≡_ (perm→FL [ g , h ])) (tl2 L4 L1 L2) → + Any (_≡_ (perm→FL [ g , h ])) (tl2 L4 L1 (FLinsert (perm→FL [ FL→perm a , FL→perm a₁ ]) L2)) comm8 [] L4 L2 a any = any - comm8 (cons a₁ L x) L4 L2 a any = comm8 L L4 (FLinsert (perm→FL [ FL→perm a , FL→perm a₁ ]) L2) a (comm9 L4 L1 L2 a a₁ any) - comm9 [] L1 L2 a a₁ any = insAny _ any - comm9 (cons a₂ L4 x) L1 L2 a a₁ any = comm8 L1 ? (FLinsert (perm→FL [ FL→perm a , FL→perm a₁ ]) L2) a {!!} - --- Any (_≡_ (perm→FL [ g , h ])) (tl2 L4 L1 (tl3 a₂ L1 L2)) - --- → Any (_≡_ (perm→FL [ g , h ])) (tl2 (cons a₂ L4 x) L1 (FLinsert (perm→FL [ FL→perm a , FL→perm a₁ ]) L2)) - --- tl2 L4 L1 (tl3 a₂ L1 (FLinsert (perm→FL [ FL→perm a , FL→perm a₁ ] L2) + comm8 (cons a₁ L x) L4 L2 a any = comm8 L L4 (FLinsert (perm→FL [ FL→perm a , FL→perm a₁ ]) L2) a (comm9 L4 L2 a a₁ any) + comm9 [] L2 a a₁ any = insAny _ any + comm9 (cons a₂ L4 x) L2 a a₁ any = comm8 L1 L4 (FLinsert (perm→FL [ FL→perm a , FL→perm a₁ ]) L2) a₂ (comm9 L4 L2 a a₁ (comm8← L1 L4 L2 a₂ {!!} any)) -- found g, we have to walk thru till the end comm7 : (L L3 : FList n) → Any (_≡_ (perm→FL [ g , h ])) (tl2 L L1 (tl3 G L1 L3)) -- at the end, find h