Mercurial > hg > Members > kono > Proof > galois
changeset 268:86408a621c6e
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 31 May 2022 12:42:57 +0900 |
parents | 864afb582fc7 |
children | 0452e7021054 |
files | src/Fundamental.agda |
diffstat | 1 files changed, 10 insertions(+), 8 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Fundamental.agda Tue May 31 12:27:07 2022 +0900 +++ b/src/Fundamental.agda Tue May 31 12:42:57 2022 +0900 @@ -125,7 +125,7 @@ sub K (base y ∙ base v) ≈⟨ {!!} ⟩ sub K (base (mul y v)) ∎ assoc1 : (x y z : COSET G K) → sub K (base (mul (mul x y ) z)) ≈ sub K (base (mul x ( mul y z ) )) - assoc1 x y z = {!!} where + assoc1 x y z = {!!} -- crefl1 (coset a b) = ⟦⟧-cong (grefl G) -- K ⊂ ker(f) @@ -139,9 +139,9 @@ (K : NormalSubGroup G ) (kf : K⊆ker G H K f) : Set ( c Level.⊔ l ) where open Group H field - h : {!!} → Group.Carrier H - h-homo : IsGroupHomomorphism (GR (G / K) ) (GR H) {!!} - unique : (x : Group.Carrier G) → {!!} -- f x ≈ h ( φ x ) + h : COSET G K → Group.Carrier H + h-homo : IsGroupHomomorphism (GR (G / K) ) (GR H) h + unique : (x : Group.Carrier G) → f x ≈ h ( φ x ) FundamentalHomomorphismTheorm : (G H : Group c l) (f : Group.Carrier G → Group.Carrier H ) @@ -159,10 +159,11 @@ (IsGroup.isMonoid (Group.isGroup G) ))) h1 : {x : Group.Carrier G } → Coset G K x → Carrier h1 (coset a b) = f a - h : {!!} -- CosetCarrier G K → Carrier -- G / K → H - h r = {!!} + h1 (cscong a b) = h1 b + h : COSET G K → Carrier -- G / K → H + h r = h1 {Group.ε G} (r (Group.ε G)) _o_ = Group._∙_ G - h03 : (x y : Group.Carrier (G / K ) ) → {!!} + h03 : (x y : Group.Carrier (G / K ) ) → h ( mul x y ) ≈ h x ∙ h y h03 x y = {!!} h-homo : IsGroupHomomorphism (GR (G / K) ) (GR H) {!!} h-homo = record { @@ -175,7 +176,8 @@ unique : (x : Group.Carrier G) → f x ≈ h ( φ x ) unique x = begin f x ≈⟨ {!!} ⟩ - f ( x o (Group._⁻¹ G (sub K x))) ∎ where open EqReasoning (Algebra.Group.setoid H ) + f ((G Group.∙ Group.ε G) ((G Group.⁻¹) (sub K x))) ≈⟨ grefl H ⟩ + h1 {Group.ε G} ((φ x) (Group.ε G)) ∎ where open EqReasoning (Algebra.Group.setoid H )