Mercurial > hg > Members > kono > Proof > galois
changeset 227:8c20b6710f1d
anyComm done
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 08 Dec 2020 10:45:01 +0900 |
parents | adcbf19410fe |
children | feddff78bb24 |
files | FLComm.agda |
diffstat | 1 files changed, 19 insertions(+), 10 deletions(-) [+] |
line wrap: on
line diff
--- a/FLComm.agda Tue Dec 08 10:07:50 2020 +0900 +++ b/FLComm.agda Tue Dec 08 10:45:01 2020 +0900 @@ -141,16 +141,25 @@ commListQ (cons q₁ Q1 qr₁) = FLinsert (fpq p q₁) (commListQ Q1) anyc0n : (p₁ q₁ : FL n) → Any (_≡_ p₁) (cons p P pr) → Any (_≡_ q₁) (cons q Q qr) → Any (_≡_ (perm→FL [ FL→perm p₁ , FL→perm q₁ ])) (FLinsert (fpq p q) (commListQ Q)) - anyc0n p₁ q₁ anyp anyq with FLcmp q q₁ | FLcmp p p₁ - ... | tri> ¬a ¬b c | _ = ⊥-elim (¬a (p<anyL1 anyq ¬b)) -- can't happen - ... | _ | tri> ¬a ¬b c = ⊥-elim (¬a (p<anyL1 anyp ¬b)) -- can't happen - ... | tri≈ ¬a refl ¬c | tri≈ ¬a₁ refl ¬c₁ = x∈FLins (fpq p q) (commListQ Q) -- p,q case - ... | tri≈ ¬a b ¬c | tri< ¬a₁ ¬b c₁ = insAny (commListQ Q) (anyc01 Q anyq ) where -- p,qi case - anyc01 : (Q1 : FList n) → Any (_≡_ q₁ ) Q1 → Any (_≡_ (fpq p₁ q₁)) (commListQ Q1) - anyc01 [] any = {!!} - anyc01 (cons a Q1 x) anyq = {!!} - ... | tri< a ¬b ¬c | tri≈ ¬a₁ b ¬c₁ = {!!} --- pi,q case - ... | tri< a ¬b ¬c | tri< a₁ ¬b₁ ¬c₁ = {!!} -- previous case + anyc0n p₁ q₁ (here refl) (here refl) = x∈FLins _ (commListQ Q) + anyc0n p₁ q₁ (here refl) (there anyq) = insAny (commListQ Q) (anyc01 Q anyq) where + anyc01 : (Q1 : FList n) → Any (_≡_ q₁) Q1 → Any (_≡_ (fpq p₁ q₁)) (commListQ Q1) + anyc01 (cons q Q1 qr₂) (here refl) = x∈FLins _ _ + anyc01 (cons q₂ Q1 qr₂) (there any) = insAny _ (anyc01 Q1 any) + anyc0n p₁ q₁ (there anyp) (here refl) = insAny _ (anyc02 Q) where + anyc03 : (P1 : FList n) → Any (_≡_ p₁) P1 → Any (_≡_ (fpq p₁ q₁)) (commListP P1) + anyc03 (cons a P1 x) (here refl) = x∈FLins _ _ + anyc03 (cons a P1 x) (there any) = insAny _ ( anyc03 P1 any) + anyc02 : (Q1 : FList n) → Any (_≡_ (fpq p₁ q₁)) (commListQ Q1) + anyc02 [] = anyc03 P anyp + anyc02 (cons a Q1 x) = insAny _ (anyc02 Q1) + anyc0n p₁ q₁ (there anyp) (there anyq) = insAny (commListQ Q) (anyc04 Q) where + anyc05 : (P1 : FList n) → Any (_≡_ (fpq p₁ q₁)) (commListP P1) + anyc05 [] = commAny (anyComm P Q) p₁ q₁ anyp anyq + anyc05 (cons a P1 x) = insAny _ (anyc05 P1) + anyc04 : (Q1 : FList n) → Any (_≡_ (fpq p₁ q₁)) (commListQ Q1) + anyc04 [] = anyc05 P + anyc04 (cons a Q1 x) = insAny _ (anyc04 Q1) -- {-# TERMINATING #-} CommStage→ : (i : ℕ) → (x : Permutation n n ) → deriving i x → Any (perm→FL x ≡_) ( CommFListN i )