Mercurial > hg > Members > kono > Proof > galois
changeset 273:9bee24b4017f
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 24 Jan 2023 23:38:32 +0900 |
parents | ce372f6347d6 |
children | 691b2ee844ef |
files | src/Fundamental.agda |
diffstat | 1 files changed, 13 insertions(+), 9 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Fundamental.agda Tue Jan 24 19:15:38 2023 +0900 +++ b/src/Fundamental.agda Tue Jan 24 23:38:32 2023 +0900 @@ -124,7 +124,9 @@ open NormalSubGroup K φ : (G : Group c c) (K : NormalSubGroup G) → Group.Carrier G → Group.Carrier (G / K ) -φ G K g = ? +φ G K g x = record { a = x ; n = ε ; aN=x = ? } where + open Group G + open NormalSubGroup K φ-homo : (G : Group c c) (K : NormalSubGroup G) → IsGroupHomomorphism (GR G) (GR (G / K)) (φ G K) φ-homo = ? @@ -141,17 +143,18 @@ φ-cong : {f g : Carrier } → f ≈ g → {x : Carrier } → ⟦ n (φ G K f x ) ⟧ ≈ ⟦ n (φ G K g x ) ⟧ φ-cong = ? +inv-φ : (G : Group c c) (K : NormalSubGroup G) → Group.Carrier (G / K ) → Group.Carrier G +inv-φ = ? + φ-surjective : (G : Group c c) (K : NormalSubGroup G) → Surjective (φe G K ) -φ-surjective G K = record { from = record { _⟨$⟩_ = inv-φ ; cong = λ {f} {g} → cong-i {f} {g} } ; right-inverse-of = is-inverse } where +φ-surjective G K = record { from = record { _⟨$⟩_ = inv-φ G K ; cong = λ {f} {g} → cong-i {f} {g} } ; right-inverse-of = is-inverse } where open Group G open aN open NormalSubGroup K open IsGroupHomomorphism normal - inv-φ : Group.Carrier (G / K ) → Group.Carrier G - inv-φ = ? - cong-i : {f g : Group.Carrier (G / K ) } → ({x : Carrier } → ⟦ n (f x) ⟧ ≈ ⟦ n (g x) ⟧ ) → inv-φ f ≈ inv-φ g + cong-i : {f g : Group.Carrier (G / K ) } → ({x : Carrier } → ⟦ n (f x) ⟧ ≈ ⟦ n (g x) ⟧ ) → inv-φ G K f ≈ inv-φ G K g cong-i = ? - is-inverse : (f : (x : Carrier) → aN K x ) → {y : Carrier} → ⟦ n (φ G K (inv-φ f) y) ⟧ ≈ ⟦ n (f y) ⟧ + is-inverse : (f : (x : Carrier) → aN K x ) → {y : Carrier} → ⟦ n (φ G K (inv-φ G K f) y) ⟧ ≈ ⟦ n (f y) ⟧ is-inverse = ? record FundamentalHomomorphism (G H : Group c c ) @@ -178,8 +181,7 @@ } where open Group H h : Group.Carrier (G / K ) → Group.Carrier H - h r = ? - _o_ = Group._∙_ G + h r = f ( aN.n (r (Group.ε G ) )) h03 : (x y : Group.Carrier (G / K ) ) → h ( qadd G K x y ) ≈ h x ∙ h y h03 x y = {!!} h-homo : IsGroupHomomorphism (GR (G / K ) ) (GR H) h @@ -192,7 +194,9 @@ ; ⁻¹-homo = {!!} } is-solution : (x : Group.Carrier G) → f x ≈ h ( φ G K x ) is-solution x = begin - f x ≈⟨ grefl H ⟩ + f x ≈⟨ ? ⟩ + ? ≈⟨ ? ⟩ + f ( aN.n (( φ G K x ) (Group.ε G ) )) ≈⟨ ? ⟩ h ( φ G K x ) ∎ where open EqReasoning (Algebra.Group.setoid H ) unique : (h1 : Group.Carrier (G / K ) → Group.Carrier H) → ( (x : Group.Carrier G) → f x ≈ h1 ( φ G K x ) ) → ( ( x : Group.Carrier (G / K)) → h x ≈ h1 x )