Mercurial > hg > Members > kono > Proof > galois
changeset 78:9cffb308269a
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 26 Aug 2020 05:58:42 +0900 |
parents | fba304a25c36 |
children | 75e2dd8f4e00 |
files | sym5.agda |
diffstat | 1 files changed, 80 insertions(+), 20 deletions(-) [+] |
line wrap: on
line diff
--- a/sym5.agda Wed Aug 26 04:56:29 2020 +0900 +++ b/sym5.agda Wed Aug 26 05:58:42 2020 +0900 @@ -56,34 +56,94 @@ record Triple {i j : ℕ } (i<3 : i ≤ 3) (j<4 : j ≤ 4) : Set where field - dba0<3 : { i : ℕ } → i < 3 - dba1<4 : { i : ℕ } → i < 4 - aec0<3 : { i : ℕ } → i < 3 - aec1<4 : { i : ℕ } → i < 4 - abc= : abc i<3 j<4 =p= [ abc dba0<3 dba1<4 , abc aec0<3 aec1<4 ] + dba0<3 : Fin 3 + dba1<4 : Fin 4 + aec0<3 : Fin 3 + aec1<4 : Fin 4 + abc= : abc i<3 j<4 =p= [ abc (fin<n {3} {dba0<3}) (fin<n {4} {dba1<4}) , abc (fin<n {3} {aec0<3}) (fin<n {4} {aec1<4}) ] open Triple - + -- d e a b c + t1 = plist ( abc (n≤ 0) (n≤ 0) ) -- ( ∷ ∷ 4 ∷ 2 ∷ 3 ∷ []) ∷ abc dba 2x30x 2,4 cea x422 + ∷ plist ( abc (n≤ 0) (n≤ 1) ) -- ( ∷ ∷ 4 ∷ 2 ∷ 3 ∷ []) ∷ + ∷ plist ( abc (n≤ 0) (n≤ 2) ) -- (4 ∷ ∷ ∷ 0 ∷ 3 ∷ []) ∷ + ∷ plist ( abc (n≤ 0) (n≤ 3) ) -- (4 ∷ ∷ 0 ∷ ∷ 2 ∷ []) ∷ + ∷ plist ( abc (n≤ 0) (n≤ 4) ) -- (3 ∷ ∷ 0 ∷ 2 ∷ ∷ []) ∷ + ∷ plist ( abc (n≤ 1) (n≤ 0) ) -- ( ∷ 4 ∷ ∷ 1 ∷ 3 ∷ []) ∷ + ∷ plist ( abc (n≤ 1) (n≤ 1) ) -- ( ∷ 4 ∷ ∷ 1 ∷ 3 ∷ []) ∷ + ∷ plist ( abc (n≤ 1) (n≤ 2) ) -- (4 ∷ ∷ ∷ 0 ∷ 3 ∷ []) ∷ + ∷ plist ( abc (n≤ 1) (n≤ 3) ) -- (4 ∷ 0 ∷ ∷ ∷ 1 ∷ []) ∷ + ∷ plist ( abc (n≤ 1) (n≤ 4) ) -- (3 ∷ 0 ∷ ∷ 1 ∷ ∷ []) ∷ + ∷ plist ( abc (n≤ 2) (n≤ 0) ) -- ( ∷ 4 ∷ 1 ∷ ∷ 2 ∷ []) ∷ + ∷ plist ( abc (n≤ 2) (n≤ 1) ) -- ( ∷ 4 ∷ 1 ∷ ∷ 2 ∷ []) ∷ + ∷ plist ( abc (n≤ 2) (n≤ 2) ) -- (4 ∷ 1 ∷ 0 ∷ ∷ 2 ∷ []) ∷ + ∷ plist ( abc (n≤ 2) (n≤ 3) ) -- (4 ∷ 0 ∷ ∷ ∷ 1 ∷ []) ∷ + ∷ plist ( abc (n≤ 2) (n≤ 4) ) -- (2 ∷ 0 ∷ 1 ∷ ∷ ∷ []) ∷ + ∷ plist ( abc (n≤ 3) (n≤ 0) ) -- ( ∷ 3 ∷ 1 ∷ 2 ∷ ∷ []) ∷ + ∷ plist ( abc (n≤ 3) (n≤ 1) ) -- ( ∷ 3 ∷ 1 ∷ 2 ∷ ∷ []) ∷ + ∷ plist ( abc (n≤ 3) (n≤ 2) ) -- (3 ∷ ∷ 0 ∷ 2 ∷ ∷ []) ∷ + ∷ plist ( abc (n≤ 3) (n≤ 3) ) -- (3 ∷ 0 ∷ ∷ 1 ∷ ∷ []) ∷ + ∷ plist ( abc (n≤ 3) (n≤ 4) ) -- (2 ∷ 0 ∷ 1 ∷ ∷ ∷ []) ∷ abc dba 13204 cea 21430 + ∷ [] + + + --- 2 ∷ 0 ∷ 1 ∷ 3 ∷ 4 ∷ [] abc + + --- 1 ∷ 0 ∷ 2 ∷ [] + --- 0 ∷ 2 ∷ 1 ∷ 3 ∷ [] + --- 1 ∷ 3 ∷ 2 ∷ 0 ∷ 4 ∷ [] + -- 2 ∷ 1 ∷ 3 ∷ 0 ∷ 4 ∷ [] (dba)⁻¹ = abd + dba99 = pprep (pprep (pswap (pid {1}))) ∘ₚ pins (n≤ 3) + tt1 = plist dba99 ∷ plist (pinv dba99) ∷ [] + -- 1 ∷ 0 ∷ [] + -- 0 ∷ 2 ∷ 1 ∷ [] + -- 1 ∷ 0 ∷ 3 ∷ 2 ∷ [] + -- 2 ∷ 1 ∷ 4 ∷ 3 ∷ 0 ∷ [] + -- 4 ∷ 1 ∷ 0 ∷ 3 ∷ 2 ∷ [] (aec)⁻¹ = cea + aec99 : Permutation 5 5 + aec99 = pprep (pprep (pprep (pswap (pid {0}))) ∘ₚ pins (n≤ 1)) ∘ₚ pins (n≤ 4) + tt2 = plist aec99 ∷ plist (pinv aec99) ∷ [] + tt3 = plist ([ pinv dba99 , pinv aec99 ]) + triple : {i j : ℕ } → (i<3 : i ≤ 3) (j<4 : j ≤ 4) → Triple i<3 j<4 - triple = {!!} + triple z≤n z≤n = record { dba0<3 = {!!} ; dba1<4 = {!!} ; aec0<3 = {!!} ; aec1<4 = {!!} ; abc= = {!!} } + triple z≤n (s≤s z≤n) = {!!} + triple z≤n (s≤s (s≤s z≤n)) = {!!} + triple z≤n (s≤s (s≤s (s≤s z≤n))) = {!!} + triple z≤n (s≤s (s≤s (s≤s (s≤s z≤n)))) = {!!} + triple (s≤s z≤n) z≤n = {!!} + triple (s≤s z≤n) (s≤s z≤n) = {!!} + triple (s≤s z≤n) (s≤s (s≤s z≤n)) = {!!} + triple (s≤s z≤n) (s≤s (s≤s (s≤s z≤n))) = {!!} + triple (s≤s z≤n) (s≤s (s≤s (s≤s (s≤s z≤n)))) = {!!} + triple (s≤s (s≤s z≤n)) z≤n = {!!} + triple (s≤s (s≤s z≤n)) (s≤s z≤n) = {!!} + triple (s≤s (s≤s z≤n)) (s≤s (s≤s z≤n)) = {!!} + triple (s≤s (s≤s z≤n)) (s≤s (s≤s (s≤s z≤n))) = {!!} + triple (s≤s (s≤s z≤n)) (s≤s (s≤s (s≤s (s≤s z≤n)))) = {!!} + triple (s≤s (s≤s (s≤s z≤n))) z≤n = {!!} + triple (s≤s (s≤s (s≤s z≤n))) (s≤s z≤n) = {!!} + triple (s≤s (s≤s (s≤s z≤n))) (s≤s (s≤s z≤n)) = {!!} + triple (s≤s (s≤s (s≤s z≤n))) (s≤s (s≤s (s≤s z≤n))) = {!!} + triple (s≤s (s≤s (s≤s z≤n))) (s≤s (s≤s (s≤s (s≤s z≤n)))) = {!!} dervie-any-3rot : (n : ℕ ) → {i j : ℕ } → (i<3 : i ≤ 3 ) → (j<4 : j ≤ 4 ) → deriving n (abc i<3 j<4 ) dervie-any-3rot 0 i<3 j<4 = lift tt - dervie-any-3rot (suc i) i<3 j<4 = - ccong {deriving i} ( abc= (triple i<3 j<4 ) ) ( - comm {deriving i} {dba} {aec} - ( dervie-any-3rot i (dba0<3 tc) (dba1<4 tc) ) - ( dervie-any-3rot i (aec0<3 tc) (aec1<4 tc) )) where - tc : Triple i<3 j<4 - tc = triple i<3 j<4 - dba : Permutation 5 5 - dba = abc (dba0<3 tc) (dba1<4 tc) - aec : Permutation 5 5 - aec = abc (aec0<3 tc) (aec1<4 tc) + dervie-any-3rot (suc i) i<3 j<4 = {!!} + -- ccong {deriving i} ( abc= (triple i<3 j<4 ) ) ( + -- comm {deriving i} {dba} {aec} + -- ( dervie-any-3rot i (fin<n {3} {dba0<3 tc}) (fin<n {4} {dba1<4 tc}) ) + -- ( dervie-any-3rot i (fin<n {3} {aec0<3 tc}) (fin<n {4} {aec1<4 tc}) )) where + -- tc : Triple i<3 j<4 + -- tc = triple i<3 j<4 + -- dba : Permutation 5 5 + -- dba = abc (fin<n {3} {dba0<3 tc}) (fin<n {4} {dba1<4 tc}) + -- aec : Permutation 5 5 + -- aec = abc (fin<n {3} {aec0<3 tc}) (fin<n {4} {aec1<4 tc}) open _=p=_ counter-example : ¬ (abc 0<3 0<4 =p= pid ) - counter-example p with peq p (# 1) - ... | () + counter-example = {!!} -- p with peq p (# 1) + -- ... | ()