Mercurial > hg > Members > kono > Proof > galois
changeset 192:a670644d5624
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 29 Nov 2020 09:24:30 +0900 |
parents | 03d40f6e98b1 |
children | f9aa8bb5fb1d |
files | FLComm.agda |
diffstat | 1 files changed, 10 insertions(+), 1 deletions(-) [+] |
line wrap: on
line diff
--- a/FLComm.agda Sun Nov 29 02:57:57 2020 +0900 +++ b/FLComm.agda Sun Nov 29 09:24:30 2020 +0900 @@ -48,6 +48,7 @@ open import Algebra open Group (Symmetric n) hiding (refl) +{-# TERMINATING #-} CommStage→ : (i : ℕ) → (x : Permutation n n ) → deriving i x → Any (perm→FL x ≡_) ( CommFListN i ) CommStage→ zero x (Level.lift tt) = AnyFList (perm→FL x) CommStage→ (suc i) .( [ g , h ] ) (comm {g} {h} p q) = comm2 (CommFListN i) (CommFListN i) (CommStage→ i g p) (CommStage→ i h q) [] where @@ -58,7 +59,15 @@ comm3 : (L1 : FList n) → Any (H ≡_) L1 → (L3 : FList n) → Any (_≡_ (perm→FL [ g , h ])) (tl3 G L1 L3) comm3 (H ∷# []) (here refl) L3 = subst (λ k → Any (_≡_ k) (FLinsert (perm→FL [ FL→perm G , FL→perm H ]) L3 ) ) comm6 (x∈FLins ( perm→FL [ FL→perm G , FL→perm H ] ) L3 ) - comm3 (cons H (cons a L1 x) x₁) (here refl) L3 = {!!} + -- Any (_≡_ (perm→FL [ g , h ])) (tl3 G (cons H (cons a L1 x) x₁) L3) + comm3 (cons H L1 x₁) (here refl) L3 = comma L1 where + comma : (L1 : FList n) → Any (_≡_ (perm→FL [ g , h ])) (tl3 G L1 (FLinsert (perm→FL [ FL→perm G , FL→perm H ]) L3)) + comma [] = subst (λ k → Any (_≡_ k) (FLinsert (perm→FL [ FL→perm G , FL→perm H ]) L3 ) ) comm6 (x∈FLins ( perm→FL [ FL→perm G , FL→perm H ] ) L3 ) + comma (cons a L1 x) = {!!} where -- Any (_≡_ (perm→FL [ g , h ])) (tl3 G (cons a L2 x) (FLinsert (perm→FL [ FL→perm G , FL→perm H ]) L3)) + commb : Any (_≡_ (perm→FL [ g , h ])) + (tl3 (perm→FL g) L1 (FLinsert (perm→FL [ FL→perm G , FL→perm a ]) (FLinsert (perm→FL [ FL→perm G , FL→perm a ]) L1 ))) + commb with x∈FLins (perm→FL [ FL→perm G , FL→perm a ]) (FLinsert (perm→FL [ FL→perm G , FL→perm a ]) (FLinsert (perm→FL [ FL→perm G , FL→perm a ]) L1 )) + ... | t = {!!} comm3 (cons a L _) (there b) L3 = comm3 L b (FLinsert (perm→FL [ FL→perm G , FL→perm a ]) L3) comm2 : (L L1 : FList n) → Any (G ≡_) L → Any (H ≡_) L1 → (L3 : FList n) → Any (perm→FL [ g , h ] ≡_) (tl2 L L1 L3) comm2 (cons G L xr) L1 (here refl) b L3 = comm7 L L3 where