Mercurial > hg > Members > kono > Proof > galois
changeset 30:a9fa68dfbd26
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 19 Aug 2020 16:08:32 +0900 |
parents | a65f3b17eade |
children | 039e8511da2a |
files | Symmetric.agda |
diffstat | 1 files changed, 18 insertions(+), 13 deletions(-) [+] |
line wrap: on
line diff
--- a/Symmetric.agda Wed Aug 19 11:54:19 2020 +0900 +++ b/Symmetric.agda Wed Aug 19 16:08:32 2020 +0900 @@ -99,8 +99,10 @@ lemma i refl x | tri< a ¬b ¬c = fin+1 (perm ⟨$⟩ˡ (fromℕ≤ x<sn)) where x<sn : toℕ x < suc n x<sn = a - lemma i refl x | tri≈ ¬a b ¬c = fromℕ≤ (s≤s (s≤s m<n)) + lemma i refl x | tri≈ ¬a b ¬c = fromℕ≤ {m} {suc (suc n)} (<-trans (s≤s m<n ) a<sa ) lemma i refl x | tri> ¬a ¬b c = ⊥-elim ( nat-≤> c fin<n ) + lem8 : {x : Fin (suc (suc n)) } → toℕ ( fromℕ≤ {m} {suc (suc n)} (<-trans (s≤s m<n ) a<sa )) ≡ m + lem8 {x} = toℕ-fromℕ≤ (<-trans (s≤s m<n ) a<sa ) piso← : (x : Fin (suc (suc n))) → p← ( p→ x ) ≡ x piso← x with <-cmp (toℕ x) m piso← x | tri< a ¬b ¬c = {!!} @@ -108,16 +110,16 @@ piso← x | tri≈ ¬a refl ¬c = begin p← ( fromℕ≤ a<sa ) ≡⟨ lem4 refl ⟩ - fromℕ≤ (s≤s (s≤s m<n)) + fromℕ≤ {m} {suc (suc n)} (<-trans (s≤s m<n ) a<sa ) ≡⟨ {!!} ⟩ x ∎ where open ≡-Reasoning - lem4 : {x : Fin (suc (suc n)) } → x ≡ fromℕ≤ {suc n} a<sa → p← x ≡ fromℕ≤ (s≤s (s≤s m<n)) + lem4 : {x : Fin (suc (suc n)) } → x ≡ fromℕ≤ {suc n} a<sa → p← x ≡ fromℕ≤ {m} {suc (suc n)} (<-trans (s≤s m<n ) a<sa ) lem4 {x} refl with <-cmp (toℕ x) (suc n) - lem4 refl | tri< a ¬b ¬c = {!!} + lem4 refl | tri< a ¬b ¬c = ⊥-elim ( ¬b {!!} ) lem4 refl | tri≈ ¬a b ¬c = refl - lem4 refl | tri> ¬a ¬b c = {!!} + lem4 refl | tri> ¬a ¬b c = ⊥-elim ( ¬b {!!} ) piso→ : (x : Fin (suc (suc n))) → p→ ( p← x ) ≡ x piso→ x = lemma2 (suc n) refl x where lemma2 : (i : ℕ ) → i ≡ suc n → (x : Fin (suc (suc n))) → p→ ( p← x ) ≡ x @@ -125,18 +127,21 @@ lemma2 i refl x | tri< a ¬b ¬c = {!!} lemma2 i refl x | tri> ¬a ¬b c = {!!} lemma2 i refl x | tri≈ ¬a b ¬c = begin - p→ (fromℕ≤ (s≤s (s≤s m<n))) - ≡⟨ lem5 refl ⟩ + p→ (fromℕ≤ {m} {suc (suc n)} (<-trans (s≤s m<n ) a<sa )) + ≡⟨ lem5 (fromℕ≤ {m} {suc (suc n)} (<-trans (s≤s m<n ) a<sa )) {!!} ⟩ fromℕ≤ a<sa - ≡⟨ {!!} ⟩ + ≡⟨ {!!} ⟩ x ∎ where open ≡-Reasoning + lem7 : {x : Fin (suc (suc n)) } → x ≡ fromℕ≤ (s≤s (s≤s m<n)) → toℕ x ≡ m + lem7 refl = trans (toℕ-fromℕ≤ _) {!!} lem6 : {x : Fin (suc (suc n)) } → x ≡ fromℕ≤ (s≤s (s≤s m<n)) → toℕ x ≡ (suc m) lem6 refl = toℕ-fromℕ≤ _ - lem5 : {x : Fin (suc (suc n)) } → x ≡ fromℕ≤ (s≤s (s≤s m<n)) → p→ x ≡ fromℕ≤ a<sa - lem5 refl with <-cmp (toℕ x) m - lem5 refl | tri< a ¬b ¬c = {!!} - lem5 refl | tri≈ ¬a refl ¬c = {!!} - lem5 refl | tri> ¬a ¬b c = {!!} + -- lem5 : {x : Fin (suc (suc n)) } → x ≡ fromℕ≤ {m} {suc (suc n)} (<-trans (s≤s m<n ) a<sa ) → p→ x ≡ fromℕ≤ a<sa + lem5 : (x : Fin (suc (suc n)) ) → x ≡ fromℕ≤ {m} {suc (suc n)} (<-trans (s≤s m<n ) a<sa ) → p→ x ≡ fromℕ≤ a<sa + lem5 x eq with <-cmp (toℕ x) m + lem5 x eq | tri< a ¬b ¬c = {!!} + lem5 x eq | tri≈ ¬a refl ¬c = refl + lem5 x eq | tri> ¬a ¬b c = {!!}