Mercurial > hg > Members > kono > Proof > galois
changeset 22:ae586c068d01
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 19 Aug 2020 02:02:17 +0900 |
parents | 270b28c96154 |
children | b133ef55b395 |
files | Symmetric.agda |
diffstat | 1 files changed, 12 insertions(+), 16 deletions(-) [+] |
line wrap: on
line diff
--- a/Symmetric.agda Wed Aug 19 01:00:46 2020 +0900 +++ b/Symmetric.agda Wed Aug 19 02:02:17 2020 +0900 @@ -110,11 +110,11 @@ fn (suc n) zero _ = refl fn (suc n) (suc i) (s≤s i<n) = cong (λ k → suc k ) (fn (suc n) i (<-trans i<n a<sa )) -record Pincl (i j : ℕ ) (p→i : Fin j → Fin j) : Set (Level.suc Level.zero ) where +record Pincl (i j : ℕ ) (p→i : Fin (suc (suc j)) → Fin (suc (suc j))) : Set (Level.suc Level.zero ) where field - p←i : Fin j → Fin j - piso←i : ( x : Fin j ) → (i≤x : i ≤ toℕ x) → p←i ( p→i x) i≤x ≡ x - piso→i : ( x : Fin j ) → (i≤x : i ≤ toℕ x) → p→i ( p←i i≤x x) ≡ x + p←i : (x : Fin (suc (suc j)) ) → (i≤x : toℕ x < i ) → Fin (suc (suc j)) + piso←i : ( x : Fin (suc (suc j)) ) → (i≤x : toℕ (p→i x) < i ) → p←i (p→i x) i≤x ≡ x + piso→i : ( x : Fin (suc (suc j)) ) → (i≤x : toℕ x < i ) → p→i ( p←i x i≤x ) ≡ x fperm : {n m : ℕ} → m < n → Permutation n n → Permutation (suc n) (suc n) @@ -128,19 +128,15 @@ p→ x | tri≈ ¬a b ¬c = fromℕ≤ a<sa p→ x | tri> ¬a ¬b c = fin+1 (perm ⟨$⟩ʳ (fromℕ≤ (pred<n {_} {x} 0<s ))) - pincl : Pincl (suc (suc n)) (suc (suc n)) p→ - pincl = pincl1 (suc n) ? ? where - pincl1 : (i : ℕ ) → i < suc (suc n) → Pincl i → Pincl (suc i) - pincl1 0 = ? + pincl : Pincl (suc (suc n)) n p→ + pincl = pincl1 (suc (suc n)) {!!} where + pincl1 : (i : ℕ ) → i < suc n → Pincl i n p→ + pincl1 0 _ = {!!} + pincl1 (suc i) i<n = {!!} p← : Fin (suc (suc n)) → Fin (suc (suc n)) - p← x = find (fromℕ≤ a<sa) where - find : (y : Fin (suc (suc n))) → Fin (suc (suc n)) - find y with fcmp x ( p→ y ) - find y | tri< a ¬b ¬c = {!!} - find y | tri≈ ¬a b ¬c = y - find y | tri> ¬a ¬b c = {!!} + p← x = Pincl.p←i pincl x {!!} piso← : (x : Fin (suc (suc n))) → p← ( p→ x ) ≡ x - piso← x = {!!} + piso← x = Pincl.piso←i pincl x fin<n piso→ : (x : Fin (suc (suc n))) → p→ ( p← x ) ≡ x - piso→ x = {!!} + piso→ x = Pincl.piso→i pincl x fin<n