Mercurial > hg > Members > kono > Proof > galois
changeset 271:c209aebeab2a
Fundamental again
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 24 Jan 2023 16:40:39 +0900 |
parents | 0081e1ed5ead |
children | ce372f6347d6 |
files | src/Fundamental.agda src/Gutil.agda src/Gutil0.agda |
diffstat | 3 files changed, 109 insertions(+), 94 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Fundamental.agda Tue May 31 18:45:43 2022 +0900 +++ b/src/Fundamental.agda Tue Jan 24 16:40:39 2023 +0900 @@ -7,11 +7,16 @@ open import Algebra open import Algebra.Structures open import Algebra.Definitions +open import Algebra.Core +open import Algebra.Bundles + open import Data.Product open import Relation.Binary.PropositionalEquality +open import Gutil0 +import Function.Definitions as FunctionDefinitions + +import Algebra.Morphism.Definitions as MorphismDefinitions open import Algebra.Morphism.Structures -open GroupMorphisms -open import Gutil0 open import Tactic.MonoidSolver using (solve; solve-macro) @@ -32,96 +37,92 @@ import Relation.Binary.Reasoning.Setoid as EqReasoning -open HomoMorphism +_<_∙_> : (m : Group c l ) → Group.Carrier m → Group.Carrier m → Group.Carrier m +m < x ∙ y > = Group._∙_ m x y + +infixr 9 _<_∙_> -- -- Coset : N : NormalSubGroup → { a ∙ n | G ∋ a , N ∋ n } -- -record GSet (G : Group c l) : Set (Level.suc ( c Level.⊔ l) ) where - field - def : ( x : Group.Carrier G ) → Set ( c Level.⊔ l ) -open GSet - -record _==_ { G : Group c l } (x y : GSet G ) : Set ( c Level.⊔ (Level.suc l )) where - open Group G - field - eq→ : {g : Carrier } → def x g → def y g - eq← : {g : Carrier } → def y g → def x g - -open NormalSubGroup -- G has at least an element other than ε - -record GCoset (G : Group c l) (K : NormalSubGroup G) (base x : Group.Carrier G ) : Set ( c Level.⊔ l) where - open Group G - field - factor : Carrier - isCoset : x ≈ base ∙ sub K factor - -record Coset (G : Group c l) (K : NormalSubGroup G) : Set ( c Level.⊔ l) where - open Group G - field - base : Carrier - -open Coset - -φset : {G : Group c l} → {K : NormalSubGroup G} → (g : Group.Carrier G ) → GSet G -φset {G} {K} g = record { def = λ x → GCoset G K g x } - -φ : {G : Group c l} → {K : NormalSubGroup G} → (g : Group.Carrier G ) → Coset G K -φ {G} {K} g = record { base = g } - --- Na ∙ Nb = Nab - -mul : {G : Group c l} {K : NormalSubGroup G} → (x y : Coset G K ) → Coset G K -mul {G} {K} x y = record { base = base x ∙ base y } where open Group G - -inv : {G : Group c l} {K : NormalSubGroup G} → Coset G K → Coset G K -inv {G} {K} x = record { base = (base x) ⁻¹ } where open Group G - --- import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) --- open HE +open GroupMorphisms import Axiom.Extensionality.Propositional postulate f-extensionality : { n m : Level} → Axiom.Extensionality.Propositional.Extensionality n m --- G / K : Quotient -_/_ : (G : Group c l) (K : NormalSubGroup G) → Group ( c Level.⊔ l ) (c ⊔ Level.suc l) -G / K = record { - Carrier = Coset G K - ; _≈_ = λ x y → φset {G} {K} (base x) == φset {G} {K} (base y) - ; _∙_ = λ x y → mul x y - ; ε = record { base = ε } - ; _⁻¹ = λ x → inv x - ; isGroup = record { isMonoid = record { isSemigroup = record { isMagma = record { - isEquivalence = record { refl = {!!} ; sym = {!!} ; trans = {!!} } - ; ∙-cong = λ {x y u v} → {!!} } - ; assoc = {!!} } - ; identity = {!!} } - ; inverse = {!!} - ; ⁻¹-cong = λ {x} {y} → {!!} - } - } where - open Group G hiding (refl ; sym ; trans ) - open EqReasoning (Algebra.Group.setoid G) - open IsGroupHomomorphism (s-homo K ) +record NormalSubGroup (A : Group (c ⊔ l) l ) : Set (c ⊔ l) where + open Group A + field + ⟦_⟧ : Group.Carrier A → Group.Carrier A + normal : IsGroupHomomorphism (GR A) (GR A) ⟦_⟧ + comm : {a b : Carrier } → b ∙ ⟦ a ⟧ ≈ ⟦ a ⟧ ∙ b + +-- Set of a ∙ ∃ n ∈ N +-- +record aN {A : Group (c ⊔ l) l } (N : NormalSubGroup A ) (x : Group.Carrier A ) : Set (c ⊔ l) where + open Group A + open NormalSubGroup N + field + a n : Group.Carrier A + aN=x : a ∙ ⟦ n ⟧ ≈ x + +open import Tactic.MonoidSolver using (solve; solve-macro) + +_/_ : (A : Group (c ⊔ l) l ) (N : NormalSubGroup A ) → Group (c ⊔ l) l +_/_ A N = record { + Carrier = (x : Group.Carrier A ) → aN N x + ; _≈_ = ? + ; _∙_ = _+_ + ; ε = λ x → record { a = x ; n = ε ; x=aN = ? } + ; _⁻¹ = λ f x → record { a = x ∙ ⟦ n (f x) ⟧ ⁻¹ ; n = n (f x) ; x=aN = ? } + ; isGroup = record { isMonoid = record { isSemigroup = record { isMagma = record { + isEquivalence = record {refl = ? ; trans = ? ; sym = ? } + ; ∙-cong = ? } + ; assoc = ? } + ; identity = ? , (λ q → ? ) } + ; inverse = ( (λ x → ? ) , (λ x → ? )) + ; ⁻¹-cong = λ i=j → ? + } + } where + open Group A + open aN + open NormalSubGroup N + open IsGroupHomomorphism normal + _+_ : (f g : (x : Group.Carrier A ) → aN N x ) → (x : Group.Carrier A ) → aN N x + _+_ f g x = record { a = x ⁻¹ ∙ a (f x) ∙ a (g x) ; n = n (f x) ∙ n (g x) ; aN=x = q00 } where + q00 : ( x ⁻¹ ∙ a (f x) ∙ a (g x) ) ∙ ⟦ n (f x) ∙ n (g x) ⟧ ≈ x + q00 = begin + ( x ⁻¹ ∙ a (f x) ∙ a (g x) ) ∙ ⟦ n (f x) ∙ n (g x) ⟧ ≈⟨ ∙-cong (assoc _ _ _) (homo _ _ ) ⟩ + x ⁻¹ ∙ (a (f x) ∙ a (g x) ) ∙ ( ⟦ n (f x) ⟧ ∙ ⟦ n (g x) ⟧ ) ≈⟨ solve monoid ⟩ + x ⁻¹ ∙ (a (f x) ∙ ((a (g x) ∙ ⟦ n (f x) ⟧ ) ∙ ⟦ n (g x) ⟧ )) ≈⟨ ∙-cong (grefl A) (∙-cong (grefl A) (∙-cong comm (grefl A) )) ⟩ + x ⁻¹ ∙ (a (f x) ∙ ((⟦ n (f x) ⟧ ∙ a (g x)) ∙ ⟦ n (g x) ⟧ )) ≈⟨ solve monoid ⟩ + x ⁻¹ ∙ (a (f x) ∙ ⟦ n (f x) ⟧ ) ∙ (a (g x) ∙ ⟦ n (g x) ⟧ ) ≈⟨ ∙-cong (grefl A) (aN=x (g x) ) ⟩ + x ⁻¹ ∙ (a (f x) ∙ ⟦ n (f x) ⟧ ) ∙ x ≈⟨ ∙-cong (∙-cong (grefl A) (aN=x (f x))) (grefl A) ⟩ + (x ⁻¹ ∙ x ) ∙ x ≈⟨ ∙-cong (proj₁ inverse _ ) (grefl A) ⟩ + ε ∙ x ≈⟨ solve monoid ⟩ + x ∎ where + open EqReasoning (Algebra.Group.setoid A) + -- open IsGroup isGroup + -- K ⊂ ker(f) -K⊆ker : (G H : Group c l) (K : NormalSubGroup G) (f : Group.Carrier G → Group.Carrier H ) → Set ( c Level.⊔ l ) -K⊆ker G H K f = (x : Group.Carrier G ) → f ( sub K x ) ≈ ε where +K⊆ker : (G H : Group (c ⊔ l) l) (K : NormalSubGroup G) (f : Group.Carrier G → Group.Carrier H ) → Set ( c Level.⊔ l ) +K⊆ker G H K f = (x : Group.Carrier G ) → f ( ? K x ) ≈ ε where open Group H -record FundamentalHomomorphism (G H : Group c l) +record FundamentalHomomorphism (G H : Group (c ⊔ l) l) (f : Group.Carrier G → Group.Carrier H ) (homo : IsGroupHomomorphism (GR G) (GR H) f ) (K : NormalSubGroup G ) (kf : K⊆ker G H K f) : Set ( c Level.⊔ ( Level.suc l) ) where open Group H field - h : Coset G K → Group.Carrier H - h-homo : IsGroupHomomorphism (GR (G / K) ) (GR H) h - unique : (x : Group.Carrier G) → f x ≈ h ( φ x ) + h : ? → Group.Carrier H + h-homo : IsGroupHomomorphism (GR (G / ?) ) (GR H) h + unique : (x : Group.Carrier G) → f x ≈ h ( ? x ) -FundamentalHomomorphismTheorm : (G H : Group c l) +FundamentalHomomorphismTheorm : (G H : Group (c ⊔ l) l) (f : Group.Carrier G → Group.Carrier H ) (homo : IsGroupHomomorphism (GR G) (GR H) f ) (K : NormalSubGroup G ) → (kf : K⊆ker G H K f) → FundamentalHomomorphism G H f homo K kf @@ -131,12 +132,12 @@ ; unique = unique } where open Group H - h : Coset G K → Carrier -- G / K → H - h r = f (base r) + h : ? G K → Carrier -- G / K → H + h r = f ? _o_ = Group._∙_ G - h03 : (x y : Group.Carrier (G / K ) ) → h ( mul x y ) ≈ h x ∙ h y + h03 : (x y : Group.Carrier (G / ? ) ) → h ( ? x y ) ≈ h x ∙ h y h03 x y = {!!} - h-homo : IsGroupHomomorphism (GR (G / K) ) (GR H) h + h-homo : IsGroupHomomorphism (GR (G / ? ) ) (GR H) h h-homo = record { isMonoidHomomorphism = record { isMagmaHomomorphism = record { @@ -144,10 +145,10 @@ ; homo = h03 } ; ε-homo = {!!} } ; ⁻¹-homo = {!!} } - unique : (x : Group.Carrier G) → f x ≈ h ( φ x ) + unique : (x : Group.Carrier G) → f x ≈ h ( ? x ) unique x = begin f x ≈⟨ grefl H ⟩ - h ( φ x ) ∎ where open EqReasoning (Algebra.Group.setoid H ) + h ( ? x ) ∎ where open EqReasoning (Algebra.Group.setoid H )
--- a/src/Gutil.agda Tue May 31 18:45:43 2022 +0900 +++ b/src/Gutil.agda Tue Jan 24 16:40:39 2023 +0900 @@ -128,3 +128,17 @@ (f ∙ g) ⁻¹ ∎ where open EqReasoning (Algebra.Group.setoid G) +open import Tactic.MonoidSolver using (solve; solve-macro) + +lemma7 : (f g : Carrier ) → g ⁻¹ ∙ f ⁻¹ ≈ (f ∙ g) ⁻¹ +lemma7 f g = begin + g ⁻¹ ∙ f ⁻¹ ≈⟨ gsym (proj₂ identity _) ⟩ + g ⁻¹ ∙ f ⁻¹ ∙ ε ≈⟨ gsym (∙-cong grefl (proj₂ inverse _ )) ⟩ + g ⁻¹ ∙ f ⁻¹ ∙ ( (f ∙ g) ∙ (f ∙ g) ⁻¹ ) ≈⟨ solve monoid ⟩ + g ⁻¹ ∙ ((f ⁻¹ ∙ f) ∙ (g ∙ ((f ∙ g) ⁻¹ ∙ ε))) ≈⟨ ∙-cong grefl (gtrans (∙-cong (proj₁ inverse _ ) grefl) (proj₁ identity _)) ⟩ + g ⁻¹ ∙ (g ∙ ((f ∙ g) ⁻¹ ∙ ε)) ≈⟨ solve monoid ⟩ + (g ⁻¹ ∙ g ) ∙ ((f ∙ g) ⁻¹ ∙ ε) ≈⟨ gtrans (∙-cong (proj₁ inverse _ ) grefl) (proj₁ identity _) ⟩ + (f ∙ g) ⁻¹ ∙ ε ≈⟨ solve monoid ⟩ + (f ∙ g) ⁻¹ + ∎ where open EqReasoning (Algebra.Group.setoid G) +
--- a/src/Gutil0.agda Tue May 31 18:45:43 2022 +0900 +++ b/src/Gutil0.agda Tue Jan 24 16:40:39 2023 +0900 @@ -54,27 +54,27 @@ gtrans : {c l : Level } → (G : Group c l ) → {x y z : Group.Carrier G} → Group._≈_ G x y → Group._≈_ G y z → Group._≈_ G x z gtrans G = IsGroup.trans ( Group.isGroup G ) -record NormalSubGroup {c l : Level } ( G : Group c l ) : Set ( c Level.⊔ l ) where - open Group G - field - sub : Carrier → Carrier - s-homo : IsGroupHomomorphism (GR G) (GR G) sub - commute : ( g n : Carrier ) → g ∙ sub n ≈ sub n ∙ g - -- it has at least one element other than ε - -- anElement : Carrier - -- notE : ¬ ( Group._≈_ G anElement (Group.ε G) ) +-- record NormalSubGroup {c l : Level } ( G : Group c l ) : Set ( c Level.⊔ l ) where +-- open Group G +-- field +-- sub : Carrier → Carrier +-- s-homo : IsGroupHomomorphism (GR G) (GR G) sub +-- commute : ( g n : Carrier ) → g ∙ sub n ≈ sub n ∙ g +-- -- it has at least one element other than ε +-- -- anElement : Carrier +-- -- notE : ¬ ( Group._≈_ G anElement (Group.ε G) ) -- open import Relation.Binary.Morphism.Structures import Relation.Binary.Reasoning.Setoid as EqReasoning -record HomoMorphism {c l : Level } (G : Group c l) (f : Group.Carrier G → Group.Carrier G) : Set ( c Level.⊔ l ) where - open Group G - field - f-cong : {x y : Carrier } → x ≈ y → f x ≈ f y - f-homo : (x y : Carrier ) → f ( x ∙ y ) ≈ f x ∙ f y - f-ε : f ( ε ) ≈ ε - f-inv : (x : Carrier) → f ( x ⁻¹ ) ≈ (f x ) ⁻¹ +-- record HomoMorphism {c l : Level } (G : Group c l) (f : Group.Carrier G → Group.Carrier G) : Set ( c Level.⊔ l ) where +-- open Group G +-- field +-- f-cong : {x y : Carrier } → x ≈ y → f x ≈ f y +-- f-homo : (x y : Carrier ) → f ( x ∙ y ) ≈ f x ∙ f y +-- f-ε : f ( ε ) ≈ ε +-- f-inv : (x : Carrier) → f ( x ⁻¹ ) ≈ (f x ) ⁻¹ -- HM : {c l : Level } → (G : Group c l ) → (f : Group.Carrier G → Group.Carrier G ) -- → IsGroupHomomorphism (GR G) (GR G) f → HomoMorphism G f