changeset 86:c5329963c583

(x : Permutation 1 1 ) → x =p= pid
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Thu, 27 Aug 2020 08:29:56 +0900
parents 2d79a2c06c6c
children c68956f6c3ad
files Putil.agda sym5.agda
diffstat 2 files changed, 30 insertions(+), 1 deletions(-) [+]
line wrap: on
line diff
--- a/Putil.agda	Thu Aug 27 01:19:32 2020 +0900
+++ b/Putil.agda	Thu Aug 27 08:29:56 2020 +0900
@@ -146,6 +146,9 @@
 
 open _=p=_
 
+--
+-- plist cong
+--
 ←pleq  : {n  : ℕ} → (x y : Permutation n n ) → x =p= y → plist0 x ≡ plist0 y 
 ←pleq {zero} x y eq = refl
 ←pleq {suc n} x y eq =  ←pleq1  n a<sa where
@@ -159,6 +162,9 @@
 taileq : {A : Set } →  {x y : A } → {xt yt : List A } → (x ∷ xt)  ≡ (y ∷ yt)  →  xt ≡ yt
 taileq refl = refl
 
+--
+-- plist equalizer 
+--
 pleq  : {n  : ℕ} → (x y : Permutation n n ) → plist0 x ≡ plist0 y → x =p= y
 pleq  {0} x y refl = record { peq = λ q → pleq0 q } where
   pleq0 : (q : Fin 0 ) → (x ⟨$⟩ʳ q) ≡ (y ⟨$⟩ʳ q)
@@ -204,6 +210,29 @@
           pleq2 : toℕ ( x ⟨$⟩ʳ (suc (fromℕ< i<sn)) ) ≡ toℕ ( y ⟨$⟩ʳ (suc (fromℕ< i<sn)) )
           pleq2 = headeq eq
 
+pprep-cong : {n  : ℕ} → (x y : Permutation n n ) → x =p= y → pprep x =p= pprep y
+pprep-cong {n} x y x=y = {!!} where
+    pprep-cong02 : (x : Permutation 1 1 ) →  (q : Fin 1) → (x ⟨$⟩ʳ q) ≡ (pid ⟨$⟩ʳ q)
+    pprep-cong02 x zero with x ⟨$⟩ʳ zero | inspect (_⟨$⟩ʳ_ x) zero
+    ... | zero | record { eq = e } = refl
+    pprep-cong01 : (x : Permutation 1 1 ) → x =p= pid
+    pprep-cong01 x = record { peq = pprep-cong02 x  }
+    pprep-cong0 : (n  : ℕ) → (x : Permutation (suc n) (suc n) ) → toℕ (x ⟨$⟩ʳ fromℕ< a<sa ) ≡ n
+    pprep-cong0 zero x = begin
+        toℕ (x ⟨$⟩ʳ fromℕ< a<sa)
+       ≡⟨⟩ 
+        toℕ (x ⟨$⟩ʳ zero)
+       ≡⟨ cong (λ k → toℕ k) (pprep-cong02 x zero) ⟩ 
+        toℕ {suc zero} zero
+       ≡⟨⟩ 
+        zero
+       ∎ where open ≡-Reasoning
+    pprep-cong0 (suc n) x = {!!}
+    t1 = plist0 (pprep (pid {3}))
+    pprep-cong1 : (n  : ℕ) → (x : Permutation n n ) → plist0 (pprep x) ≡ n ∷ plist0 x
+    pprep-cong1 zero x = refl
+    pprep-cong1 (suc n)  x = {!!}
+
 data  FL : (n : ℕ )→ Set where
    f0 :  FL 0 
    _::_ :  { n : ℕ } → Fin (suc n ) → FL n → FL (suc n)
--- a/sym5.agda	Thu Aug 27 01:19:32 2020 +0900
+++ b/sym5.agda	Thu Aug 27 08:29:56 2020 +0900
@@ -112,7 +112,7 @@
          lemma1 : dba a<3 a<4 =p= [ aec b<3 b<4  , abc c<3 c<4 ]
          lemma1 = begin
                dba a<3 a<4
-             ≈⟨ ? ⟩
+             ≈⟨ {!!} ⟩
                [ aec b<3 b<4  , abc c<3 c<4 ]