Mercurial > hg > Members > kono > Proof > galois
changeset 28:ce6a1a08653a
try again
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 19 Aug 2020 11:28:10 +0900 |
parents | 5091302d990d |
children | a65f3b17eade |
files | Symmetric.agda |
diffstat | 1 files changed, 3 insertions(+), 32 deletions(-) [+] |
line wrap: on
line diff
--- a/Symmetric.agda Tue Aug 18 23:21:03 2020 +0900 +++ b/Symmetric.agda Wed Aug 19 11:28:10 2020 +0900 @@ -14,31 +14,8 @@ open import Data.Nat.Properties -- using (<-trans) open import Relation.Binary.PropositionalEquality open import Data.List using (List; []; _∷_ ; length) -open import Data.List.Relation.Binary.Permutation.Inductive renaming ( refl to irefl ; trans to itrans ) open import nat -f1 : Fin 3 → Fin 3 -f1 zero = suc (suc zero) -f1 (suc zero) = zero -f1 (suc (suc zero)) = suc zero - -lemma1 : Permutation 3 3 -lemma1 = permutation f1 ( f1 ∘ f1 ) lemma2 where - lemma3 : (x : Fin 3 ) → f1 (f1 (f1 x)) ≡ x - lemma3 zero = refl - lemma3 (suc zero) = refl - lemma3 (suc (suc zero)) = refl - lemma2 : :→-to-Π (λ x → f1 (f1 x)) InverseOf :→-to-Π f1 - lemma2 = record { left-inverse-of = λ x → lemma3 x ; right-inverse-of = λ x → lemma3 x } - -finpid : (n i : ℕ ) → i Data.Nat.< n → List (Fin n) -finpid (suc n) zero _ = fromℕ≤ {zero} (s≤s z≤n) ∷ [] -finpid (suc n) (suc i) (s≤s lt) = fromℕ≤ (s≤s lt) ∷ finpid (suc n) i (<-trans lt a<sa) - -fpid : (n : ℕ ) → List (Fin n) -fpid 0 = [] -fpid (suc j) = finpid (suc j) j a<sa where - fid : {p : ℕ } → Fin p → Fin p fid x = x @@ -103,12 +80,6 @@ open import Relation.Binary.Core open import fin -flist>0 : ( n : ℕ ) → n Data.Nat.> 0 → length (fpid n) ≡ n -flist>0 (suc n) _ = fn (suc n) n a<sa where - fn : (n i : ℕ ) → (i<n : i Data.Nat.< n ) → (length (finpid n i i<n)) ≡ suc i - fn (suc n) zero _ = refl - fn (suc n) (suc i) (s≤s i<n) = cong (λ k → suc k ) (fn (suc n) i (<-trans i<n a<sa )) - fperm : {n m : ℕ} → m < n → Permutation n n → Permutation (suc n) (suc n) fperm {zero} () fperm {suc n} {m} (s≤s m<n) perm = permutation p→ p← record { left-inverse-of = piso← ; right-inverse-of = piso→ } where @@ -132,6 +103,7 @@ piso← : (x : Fin (suc (suc n))) → p← ( p→ x ) ≡ x piso← x with <-cmp (toℕ x) m piso← x | tri< a ¬b ¬c = {!!} + piso← x | tri> ¬a ¬b c = {!!} piso← x | tri≈ ¬a refl ¬c = begin p← ( fromℕ≤ a<sa ) ≡⟨ lem4 refl ⟩ @@ -145,12 +117,12 @@ lem4 refl | tri< a ¬b ¬c = {!!} lem4 refl | tri≈ ¬a b ¬c = refl lem4 refl | tri> ¬a ¬b c = {!!} - piso← x | tri> ¬a ¬b c = {!!} piso→ : (x : Fin (suc (suc n))) → p→ ( p← x ) ≡ x piso→ x = lemma2 (suc n) refl x where lemma2 : (i : ℕ ) → i ≡ suc n → (x : Fin (suc (suc n))) → p→ ( p← x ) ≡ x lemma2 i refl x with <-cmp (toℕ x) i lemma2 i refl x | tri< a ¬b ¬c = {!!} + lemma2 i refl x | tri> ¬a ¬b c = {!!} lemma2 i refl x | tri≈ ¬a b ¬c = begin p→ (fromℕ≤ (s≤s (s≤s m<n))) ≡⟨ lem5 refl ⟩ @@ -162,7 +134,6 @@ lem5 : {x : Fin (suc (suc n)) } → x ≡ fromℕ≤ (s≤s (s≤s m<n)) → p→ x ≡ fromℕ≤ a<sa lem5 refl with <-cmp (toℕ x) m lem5 refl | tri< a ¬b ¬c = {!!} - lem5 refl | tri≈ ¬a refl ¬c = refl + lem5 refl | tri≈ ¬a refl ¬c = {!!} lem5 refl | tri> ¬a ¬b c = {!!} - lemma2 i refl x | tri> ¬a ¬b c = {!!}