Mercurial > hg > Members > kono > Proof > galois
changeset 76:cef943dcd18c
rot3 corret?
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 26 Aug 2020 01:41:52 +0900 |
parents | 4b17a4daf2df |
children | fba304a25c36 |
files | sym5.agda |
diffstat | 1 files changed, 17 insertions(+), 18 deletions(-) [+] |
line wrap: on
line diff
--- a/sym5.agda Wed Aug 26 00:53:33 2020 +0900 +++ b/sym5.agda Wed Aug 26 01:41:52 2020 +0900 @@ -23,7 +23,7 @@ open import nat ¬sym5solvable : ¬ ( solvable (Symmetric 5) ) -¬sym5solvable sol = counter-example (end5 (abc 0<3 0<4 ) (dervie-any-3rot (dervied-length sol) 0<3 0<4 ) ) where +¬sym5solvable sol = counter-example {!!} where -- (end5 (abc ? 0<4 ) (dervie-any-3rot (dervied-length sol) 0<3 0<4 ) ) where -- -- dba 1320 d → b → a → d @@ -51,7 +51,7 @@ abc : {i j : ℕ } → (i ≤ 3 ) → ( j ≤ 4 ) → Permutation 5 5 abc i<3 j<4 = (save2 ∘ₚ (pprep (pprep 3rot))) ∘ₚ flip save2 where save2 : Permutation 5 5 - save2 = ( (pprep ( pid {4} ∘ₚ flip (pins i<3 ) )) ∘ₚ flip (pins j<4)) + save2 = ( (( pid {5} ∘ₚ flip (pins (s≤s i<3) ) )) ∘ₚ flip (pins j<4)) dba-0 : {i j : ℕ } → (i < 4 ) → ( j < 3 ) → ( j < 4 ) dba-0 = {!!} @@ -59,7 +59,7 @@ dba-1 = {!!} dba : {i j : ℕ } → (i < 3 ) → ( j < 4 ) → Permutation 5 5 - dba i<3 j<4 = abc (dba-1 j<4 i<3 ) (dba-0 j<4 i<3 ) + dba i<3 j<4 = abc {!!} (dba-0 j<4 i<3 ) aec-0 : {i j : ℕ } → (i < 4 ) → ( j < 3 ) → ( j < 4 ) aec-0 = {!!} @@ -67,23 +67,22 @@ aec-1 = {!!} aec : {i j : ℕ } → (i < 3 ) → ( j < 4 ) → Permutation 5 5 - aec i<3 j<4 = abc (aec-1 j<4 i<3 ) (aec-0 j<4 i<3 ) + aec i<3 j<4 = abc {!!} (aec-0 j<4 i<3 ) - [dba,aec]=abc : {i j : ℕ } → (i<4 : i < 4 ) → (j<3 : j < 3 ) → [ dba j<3 i<4 , aec j<3 i<4 ] =p= abc j<3 i<4 + [dba,aec]=abc : {i j : ℕ } → (i<4 : i < 4 ) → (j<3 : j < 3 ) → [ dba j<3 i<4 , aec j<3 i<4 ] =p= abc {!!} i<4 [dba,aec]=abc = {!!} --- 2 ∷ 0 ∷ 1 ∷ [] abc t10 : List (List ℕ ) - t10 = t101 (n≤ 4) (n≤ 5) [] where - t101 : { i j : ℕ } → i ≤ 4 → j ≤ 5 → List (List ℕ ) → List (List ℕ ) + t10 = t101 (n≤ 3) (n≤ 4) [] where + t101 : { i j : ℕ } → i ≤ 3 → j ≤ 4 → List (List ℕ ) → List (List ℕ ) t101 z≤n z≤n t = plist (abc z≤n z≤n) ∷ t - t101 z≤n (s≤s y) t = t101 y (≤-trans y refl-≤s) ( plist (abc z≤n (y)) ∷ t ) - t101 (s≤s x) z≤n t = t101 (≤-trans x refl-≤s) z≤n ( plist (abc (x) z≤n) ∷ t ) - t101 (s≤s x) (s≤s y) t = t101 (≤-trans x refl-≤s) (s≤s y) ( plist (abc (x) y) ∷ t ) + t101 z≤n (s≤s y) t = t101 (n≤ 3) (≤-trans y refl-≤s) ( plist (abc z≤n (s≤s y)) ∷ t ) + t101 (s≤s x) z≤n t = t101 (≤-trans x refl-≤s) z≤n ( plist (abc (s≤s x) z≤n) ∷ t ) + t101 (s≤s x) (s≤s y) t = t101 (≤-trans x refl-≤s) (s≤s y) ( plist (abc (s≤s x) (s≤s y)) ∷ t ) -- t101 (s≤s x) z≤n t = t101 (≤-trans x ?) x ( abc (s≤s x) z≤n ∷ t ) -- t101 (s≤s x) (s≤s y) t = {!!} t12 = {!!} - --- 0 ∷ 1 ∷ 2 ∷ 3 ∷ 4 ∷ [] --- 1 ∷ 0 ∷ 2 ∷ 3 ∷ 4 ∷ [] --- 1 ∷ 2 ∷ 0 ∷ 3 ∷ 4 ∷ [] @@ -101,16 +100,16 @@ --- 1 ∷ 3 ∷ 2 ∷ 0 ∷ 4 ∷ [] abd -- 2 ∷ 1 ∷ 4 ∷ 3 ∷ 0 ∷ [] cea - dervie-any-3rot : (n : ℕ ) → {i j : ℕ } → (i<3 : i < 3 ) → (j<4 : j < 4 ) → deriving n (abc i<3 j<4 ) + dervie-any-3rot : (n : ℕ ) → {i j : ℕ } → (i<3 : i < 3 ) → (j<4 : j < 4 ) → deriving n (abc {!!} j<4 ) dervie-any-3rot 0 i<3 j<4 = lift tt - dervie-any-3rot (suc i) i<3 j<4 = - ccong ( [dba,aec]=abc j<4 i<3 ) ( - comm {{!!}} {dba i<3 j<4} {aec i<3 j<4 } - ( dervie-any-3rot i (dba-1 j<4 i<3) (dba-0 j<4 i<3 ) ) - ( dervie-any-3rot i (aec-1 j<4 i<3) (aec-0 j<4 i<3 ) )) + dervie-any-3rot (suc i) i<3 j<4 = {!!} + -- ccong ( [dba,aec]=abc j<4 i<3 ) ( + -- comm {{!!}} {dba i<3 j<4} {aec i<3 j<4 } + -- ( dervie-any-3rot i (dba-1 j<4 i<3) (dba-0 j<4 i<3 ) ) + -- ( dervie-any-3rot i (aec-1 j<4 i<3) (aec-0 j<4 i<3 ) )) open _=p=_ - counter-example : ¬ (abc 0<3 0<4 =p= pid ) + counter-example : ¬ (abc {!!} 0<4 =p= pid ) counter-example = {!!}