Mercurial > hg > Members > kono > Proof > galois
changeset 189:d0b678eec506
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 29 Nov 2020 00:05:15 +0900 |
parents | 9e0d946d35b6 |
children | 2056fc69974c |
files | FLComm.agda |
diffstat | 1 files changed, 16 insertions(+), 5 deletions(-) [+] |
line wrap: on
line diff
--- a/FLComm.agda Sat Nov 28 21:50:16 2020 +0900 +++ b/FLComm.agda Sun Nov 29 00:05:15 2020 +0900 @@ -46,18 +46,29 @@ CommFListN (suc i) = CommFList (CommFListN i) open import Algebra -open Group (Symmetric n) +open Group (Symmetric n) hiding (refl) CommStage→ : (i : ℕ) → (x : Permutation n n ) → deriving i x → Any (perm→FL x ≡_) ( CommFListN i ) CommStage→ zero x (Level.lift tt) = AnyFList (perm→FL x) CommStage→ (suc i) .( [ g , h ] ) (comm {g} {h} p q) = comm2 (CommFListN i) (CommFListN i) (CommStage→ i g p) (CommStage→ i h q) [] where G = perm→FL g H = perm→FL h - comm3 : (L L1 : FList n) → (xr : fresh (FL n) ⌊ _f<?_ ⌋ G L ) → Any (H ≡_) L1 → (L3 : FList n) → Any (_≡_ (perm→FL [ g , h ])) (tl2 (cons G L xr) L1 L3) - comm3 [] L1 _ b L3 = {!!} - comm3 (cons a L x) L1 _ b L3 = {!!} + comm6 : perm→FL [ FL→perm G , FL→perm H ] ≡ perm→FL [ g , h ] + comm6 = pcong-pF (comm-resp (FL←iso _) (FL←iso _)) + comm3 : (L1 : FList n) → Any (H ≡_) L1 → (L3 : FList n) → Any (_≡_ (perm→FL [ g , h ])) (tl3 G L1 L3) + comm3 (H ∷# []) (here refl) L3 = subst (λ k → Any (_≡_ k) (FLinsert (perm→FL [ FL→perm G , FL→perm H ]) L3 ) ) + comm6 (x∈FLins ( perm→FL [ FL→perm G , FL→perm H ] ) L3 ) + comm3 (H ∷# cons a L1 x) (here refl) L3 = ? + comm3 (cons _ _ _) (there b) L3 = {!!} comm2 : (L L1 : FList n) → Any (G ≡_) L → Any (H ≡_) L1 → (L3 : FList n) → Any (perm→FL [ g , h ] ≡_) (tl2 L L1 L3) - comm2 (cons G L xr) L1 (here refl) b L3 = comm3 L L1 xr b L3 + comm2 (cons G L xr) L1 (here refl) b L3 = comm7 L L3 where + comm7 : (L L3 : FList n) → Any (_≡_ (perm→FL [ g , h ])) (tl2 L L1 (tl3 G L1 L3)) + comm8 : (L5 L4 L3 : FList n) → (a : FL n) → Any (_≡_ (perm→FL [ g , h ])) (tl2 L4 L1 (tl3 a L5 (tl3 (perm→FL g) L1 L3))) + comm8 [] L4 L3 a = comm7 L4 L3 + comm8 (cons a₁ L5 x) L4 L3 a = {!!} + -- subst (λ k → Any (_≡_ (perm→FL [ g , h ])) k) {!!} (comm8 L5 L4 (cons a L3 {!!}) a₁ ) + comm7 [] L3 = comm3 L1 b L3 + comm7 (cons a L4 x) L3 = comm8 L1 L4 L3 a comm2 (cons x L xr) L1 (there a) b L3 = comm2 L L1 a b {!!} CommStage→ (suc i) x (ccong {f} {x} eq p) = subst (λ k → Any (k ≡_) (tl2 (CommFListN i) (CommFListN i) [])) (comm4 eq) (CommStage→ (suc i) f p ) where comm4 : f =p= x → perm→FL f ≡ perm→FL x