Mercurial > hg > Members > kono > Proof > galois
changeset 294:e153b9a96665
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 02 Sep 2023 14:44:32 +0900 |
parents | ec6fc84284f7 |
children | cc81d3b1a82a |
files | src/Gutil0.agda src/Solvable.agda |
diffstat | 2 files changed, 17 insertions(+), 18 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Gutil0.agda Sat Sep 02 12:06:39 2023 +0900 +++ b/src/Gutil0.agda Sat Sep 02 14:44:32 2023 +0900 @@ -62,6 +62,7 @@ P : Carrier → Set (Level.suc c ⊔ d) Pε : P ε P⁻¹ : (a : Carrier ) → P a → P (a ⁻¹) + P≈ : {a b : Carrier } → a ≈ b → P a → P b P∙ : {a b : Carrier } → P a → P b → P ( a ∙ b ) -- gN ≈ Ng Pcomm : {a b : Carrier } → P a → P ( b ∙ ( a ∙ b ⁻¹ ) )
--- a/src/Solvable.agda Sat Sep 02 12:06:39 2023 +0900 +++ b/src/Solvable.agda Sat Sep 02 14:44:32 2023 +0900 @@ -135,27 +135,25 @@ b ∙ ([ g , h ] ∙ b ⁻¹) ∎ Pcomm {a} {b} (suc i) (ccong f=a pa) = ccong (∙-cong grefl (∙-cong f=a grefl)) (Pcomm {_} {b} (suc i) pa) -comp : {a b : Carrier} → (i : ℕ) → deriving i a → deriving i b → deriving i (a ∙ b) -comp {a} {b} zero (lift tt) (lift tt) = lift tt -comp (suc i) (comm {a} {b} pa pb) (comm {c} {d} pc pd) = ccong cc1 ( comm (comp i pa pb) (comp i pc pd) ) where - cc1 : [ a ∙ b , c ∙ d ] ≈ [ a , b ] ∙ [ c , d ] - cc1 = begin - [ a ∙ b , c ∙ d ] ≈⟨ grefl ⟩ - (a ∙ b) ⁻¹ ∙ (c ∙ d) ⁻¹ ∙ (a ∙ b) ∙ (c ∙ d) ≈⟨ ∙-cong (∙-cong (∙-cong (sym (lemma5 _ _)) (sym (lemma5 _ _)) ) grefl) grefl ⟩ - (b ⁻¹ ∙ a ⁻¹) ∙ (d ⁻¹ ∙ c ⁻¹) ∙ (a ∙ b) ∙ (c ∙ d) ≈⟨ ? ⟩ - (a ⁻¹ ∙ b ⁻¹ ∙ (b ∙ a )) ∙ ((b ⁻¹ ∙ a ⁻¹) ∙ (d ⁻¹ ∙ c ⁻¹) ∙ (a ∙ b) ∙ (c ∙ d)) ≈⟨ ? ⟩ - a ⁻¹ ∙ b ⁻¹ ∙ a ∙ b ∙ (c ⁻¹ ∙ d ⁻¹ ∙ c ∙ d ) ≈⟨ grefl ⟩ - [ a , b ] ∙ [ c , d ] ∎ -comp (suc i) (comm a pa) (ccong g=b pb) = ccong (∙-cong grefl g=b ) (comp (suc i) (comm a pa) pb ) -comp {a} (suc i) (ccong f=a pa) (comm b pb) = ccong (∙-cong f=a grefl ) (comp (suc i) pa (comm b pb) ) -comp {a} {b} (suc i) (ccong f=a pa) (ccong g=b pb) = ccong (∙-cong f=a g=b) (comp (suc i) pa pb ) +-- a proudct of commutators may not be a commutator +-- so we have to use finite products of commutators + +data iCommutator (i : ℕ) : (j : ℕ) → Carrier → Set (Level.suc n ⊔ m) where + iunit : (a : Carrier) → deriving i a → iCommutator i zero a + icom : (j : ℕ) → {a b : Carrier} → deriving i a → iCommutator i j b → iCommutator i (suc j) (a ∙ b) + +record IC (i : ℕ ) (ica : Carrier) : Set (Level.suc n ⊔ m) where + field + icn : ℕ + icc : iCommutator i icn ica CommGroup : (i : ℕ) → NormalSubGroup G CommGroup i = record { - P = deriving i - ; Pε = deriving-ε - ; P⁻¹ = λ a pa → deriving-inv pa - ; P∙ = comp i + P = IC i + ; Pε = record { icn = 0; icc = iunit ε ? } + ; P⁻¹ = λ a pa → ? + ; P≈ = ? + ; P∙ = ? ; Pcomm = ? }