Mercurial > hg > Members > kono > Proof > galois
changeset 27:e26c4a3bbea0
dead end
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 19 Aug 2020 11:23:15 +0900 |
parents | fb9dcee4ed86 |
children | |
files | Symmetric.agda |
diffstat | 1 files changed, 17 insertions(+), 22 deletions(-) [+] |
line wrap: on
line diff
--- a/Symmetric.agda Wed Aug 19 10:17:12 2020 +0900 +++ b/Symmetric.agda Wed Aug 19 11:23:15 2020 +0900 @@ -101,31 +101,26 @@ piso→i : (x : Fin (suc (suc n)) ) → p→ (p←i x) ≡ x open Pincl + open _∧_ pincl : Pincl - pincl = record { p←i = p←i0 ; piso←i = p2 ; piso→i = p3 } where + pincl = record { p←i = λ x → proj1 (p←i0 x) + ; piso←i = λ x y p=x → proj1 (proj2 (p←i0 x) ) x y _ p=x + ; piso→i = λ x → proj2 (proj2 (p←i0 x) ) x (proj1 (p←i0 x)) } where p←i0 : (x : Fin (suc (suc n))) → Fin (suc (suc n)) - p←i0 x = p0 (suc n) a<sa where - p0 : (i : ℕ ) → i < suc (suc n) → Fin (suc (suc n)) - p0 zero _ = zero - p0 (suc i) i<n with fcmp (fromℕ≤ i<n) ( p→ x ) - p0 (suc i) (s≤s i<n) | tri< a ¬b ¬c = p0 i ( <-trans i<n a<sa ) - p0 (suc i) i<n | tri≈ ¬a b ¬c = p→ x - p0 (suc i) (s≤s i<n) | tri> ¬a ¬b c = p0 i ( <-trans i<n a<sa ) - p2 : (x y : Fin (suc (suc n)) ) → p→ y ≡ x → p←i0 (p→ y) ≡ y - p2 = {!!} - p3 : (x : Fin (suc (suc n)) ) → p→ (p←i0 x) ≡ x - p3 x = p30 (suc n) a<sa where - p30 : (i : ℕ ) → i < suc (suc n) → p→ (p←i0 x) ≡ x - p30 zero _ = {!!} - p30 (suc i) i<n with fcmp (fromℕ≤ i<n) ( p→ x ) - p30 (suc i) (s≤s i<n) | tri< a ¬b ¬c = p30 i ( <-trans i<n a<sa ) - p30 (suc i) i<n | tri≈ ¬a b ¬c = begin - p→ (p←i0 x) - ≡⟨ {!!} ⟩ - x - ∎ where open ≡-Reasoning - p30 (suc i) (s≤s i<n) | tri> ¬a ¬b c = p30 i ( <-trans i<n a<sa ) + ∧ ( (x y p : Fin (suc (suc n))) → p→ y ≡ x → p ≡ y ) + ∧ ( (x p : Fin (suc (suc n))) → p→ p ≡ x ) + p←i0 = p0 (suc n) a<sa where + p0 : (i : ℕ ) → i < suc (suc n) → (x : Fin (suc (suc n))) → ( Fin (suc (suc n)) + ∧ ( (x y p : Fin (suc (suc n))) → p→ y ≡ x → p ≡ y ) + ∧ ( (x p : Fin (suc (suc n))) → p→ p ≡ x )) + p0 zero _ x = {!!} + p0 (suc i) i<n x with fcmp (fromℕ≤ i<n) ( p→ x ) + p0 (suc i) (s≤s i<n) x | tri< a ¬b ¬c = p0 i ( <-trans i<n a<sa ) x + p0 (suc i) (s≤s i<n) x | tri> ¬a ¬b c = p0 i ( <-trans i<n a<sa ) x + p0 (suc i) (s≤s i<n) x | tri≈ ¬a b ¬c = ⟪ p→ x , ⟪ {!!} , (λ x1 p → {!!} ) ⟫ ⟫ where + lemma-p0 : (i<n : suc i ≤ suc n ) → (p x1 : Fin (suc (suc n))) → fromℕ≤ (s≤s i<n) ≡ p→ x → p→ x ≡ x1 + lemma-p0 = {!!} open _∧_ p← : Fin (suc (suc n)) → Fin (suc (suc n))