Mercurial > hg > Members > kono > Proof > galois
changeset 40:e87ed47742b1
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 20 Aug 2020 12:17:08 +0900 |
parents | 7b890eb577a6 |
children | 84c84695de94 |
files | Symmetric.agda |
diffstat | 1 files changed, 17 insertions(+), 12 deletions(-) [+] |
line wrap: on
line diff
--- a/Symmetric.agda Thu Aug 20 09:44:08 2020 +0900 +++ b/Symmetric.agda Thu Aug 20 12:17:08 2020 +0900 @@ -163,17 +163,22 @@ plist {suc j} perm = plist1 j a<sa where n = suc j plist1 : (i : ℕ ) → i < n → List ℕ - plist1 zero _ = toℕ ( perm ⟨$⟩ˡ (fromℕ≤ {zero} (s≤s z≤n))) ∷ [] - plist1 (suc i) (s≤s lt) = toℕ ( perm ⟨$⟩ˡ (fromℕ≤ (s≤s lt))) ∷ plist1 i (<-trans lt a<sa) + plist1 zero _ = toℕ ( perm ⟨$⟩ˡ (fromℕ≤ {zero} (s≤s z≤n))) ∷ [] + plist1 (suc i) (s≤s lt) = toℕ ( perm ⟨$⟩ˡ (fromℕ≤ (s≤s lt))) ∷ plist1 i (<-trans lt a<sa) test = eperm {3} ( s≤s ( s≤s z≤n )) ( eperm (s≤s z≤n) pid ) +test10 = plist (eperm {2} {0} ( s≤s z≤n) pid) +test11 = plist (eperm {2} {0} ( s≤s z≤n) (eperm {1} {0} (s≤s z≤n) pid)) +test20 = plist (eperm {2} {1} (s≤s ( s≤s z≤n)) pid) +test21 = plist (eperm {2} {1} (s≤s ( s≤s z≤n)) (eperm {1} {0} (s≤s z≤n) pid)) +test3 = test10 ∷ test11 ∷ test20 ∷ test21 ∷ [] NL : (n : ℕ ) → Set NL 0 = ℕ NL (suc n) = List ( NL n ) pls : (n : ℕ ) → List (List ℕ ) -pls n = pls1 n n lem0 where +pls n = Data.List.map plist (pls6 n) where lem0 : {n : ℕ } → n ≤ n lem0 {zero} = z≤n lem0 {suc n} = s≤s lem0 @@ -182,12 +187,12 @@ lem1 (s≤s lt) = s≤s (lem1 lt) lem2 : {i n : ℕ } → i ≤ n → i ≤ suc n lem2 i≤n = ≤-trans i≤n ( refl-≤s ) - pls3 : ( i n : ℕ ) → (i<n : i < n ) → List (Permutation n n) → List (Permutation (suc n) (suc n)) → List (Permutation (suc n) (suc n)) - pls3 i n i<n [] x = x - pls3 i n i<n (h ∷ t) x = pls3 i n i<n t ( eperm {n} {i} i<n h ∷ x ) - pls2 : ( i n : ℕ ) → (i<n : i ≤ n ) → List (Permutation (suc n) (suc n)) - pls2 0 n i≤<n = pid ∷ [] - pls2 (suc i) (suc n) (s≤s i≤n) = pls3 i (suc n) (lem1 i≤n) ( pls2 i n i≤n) [] - pls1 : ( i n : ℕ ) → i ≤ n → List (List ℕ) - pls1 0 n _ = [] - pls1 (suc i) n (s≤s i≤n) = (Data.List.map plist ( pls2 i n (lem2 i≤n)) ) ++ pls1 i n (lem2 i≤n) + pls4 : ( i n : ℕ ) → (i<n : i ≤ n ) → Permutation n n → List (Permutation (suc n) (suc n)) → List (Permutation (suc n) (suc n)) + pls4 zero n i≤n perm x = pid ∷ x + pls4 (suc i) n i≤n perm x = pls4 i n (≤-trans refl-≤s i≤n ) perm (eperm {n} {i} i≤n perm ∷ x) + pls5 : ( n : ℕ ) → List (Permutation n n) → List (Permutation (suc n) (suc n)) → List (Permutation (suc n) (suc n)) + pls5 n [] x = x + pls5 n (h ∷ x) y = pls5 n x (pls4 n n lem0 h y) + pls6 : ( n : ℕ ) → List (Permutation (suc n) (suc n)) + pls6 zero = pid ∷ [] + pls6 (suc n) = pls5 (suc n) (pls6 n) []