Mercurial > hg > Members > kono > Proof > galois
changeset 114:eb1dcba4752e
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 02 Sep 2020 19:20:20 +0900 |
parents | d8a21c5db0e0 |
children | 32df4073746e |
files | sym5.agda |
diffstat | 1 files changed, 26 insertions(+), 21 deletions(-) [+] |
line wrap: on
line diff
--- a/sym5.agda Wed Sep 02 18:55:15 2020 +0900 +++ b/sym5.agda Wed Sep 02 19:20:20 2020 +0900 @@ -27,7 +27,7 @@ open _∧_ ¬sym5solvable : ¬ ( solvable (Symmetric 5) ) -¬sym5solvable sol = counter-example (end5 (abc 0<3 0<4 ) (proj1 (dervie-any-3rot (dervied-length sol) 0<3 0<4 ) )) where +¬sym5solvable sol = counter-example (end5 (abc 0<3 0<4 ) (proj1 (dervie-any-3rot0 (dervied-length sol) 0<3 0<4 ) )) where -- -- dba 1320 d → b → a → d @@ -198,29 +198,34 @@ - dervie-any-3rot : (n : ℕ ) → {i j : ℕ } → (i<3 : i ≤ 3 ) → (j<4 : j ≤ 4 ) - → deriving n (abc i<3 j<4 ) ∧ deriving n (dba i<3 j<4 ) ∧ deriving n (aec i<3 j<4 ) - dervie-any-3rot 0 i<3 j<4 = ⟪ lift tt , ⟪ lift tt , lift tt ⟫ ⟫ - dervie-any-3rot (suc i) i<3 j<4 = ⟪ d0 , ⟪ d1 , d2 ⟫ ⟫ where - tc : Triple i<3 j<4 3rot + dervie-any-3rot0 : (n : ℕ ) → {i j : ℕ } → (i<3 : i ≤ 3 ) → (j<4 : j ≤ 4 ) + → deriving n (abc i<3 j<4 ) + dervie-any-3rot1 : (n : ℕ ) → {i j : ℕ } → (i<3 : i ≤ 3 ) → (j<4 : j ≤ 4 ) + → deriving n (dba i<3 j<4 ) + dervie-any-3rot2 : (n : ℕ ) → {i j : ℕ } → (i<3 : i ≤ 3 ) → (j<4 : j ≤ 4 ) + → deriving n (aec i<3 j<4 ) + + dervie-any-3rot0 0 i<3 j<4 = lift tt + dervie-any-3rot0 (suc i) i<3 j<4 = + ccong {deriving i} ( psym (abc= tc)) ( + comm {deriving i} {dba (fin≤n {3} (dba0<3 tc)) (fin≤n {4} (dba1<4 tc))} {aec (fin≤n {3} (aec0<3 tc)) (fin≤n {4} (aec1<4 tc))} + ( dervie-any-3rot1 i (fin≤n {3} (dba0<3 tc)) (fin≤n {4} (dba1<4 tc))) + ( dervie-any-3rot2 i (fin≤n {3} (aec0<3 tc)) (fin≤n {4} (aec1<4 tc)))) where tc = triple i<3 j<4 - d0 : deriving (suc i) (abc i<3 j<4) - d0 = ccong {deriving i} ( psym (abc= tc)) ( - comm {deriving i} {dba (fin≤n {3} (dba0<3 tc)) (fin≤n {4} (dba1<4 tc))} {aec (fin≤n {3} (aec0<3 tc)) (fin≤n {4} (aec1<4 tc))} - (proj1 (proj2 ( dervie-any-3rot i (fin≤n {3} (dba0<3 tc)) (fin≤n {4} (dba1<4 tc))))) - (proj2 (proj2 ( dervie-any-3rot i (fin≤n {3} (aec0<3 tc)) (fin≤n {4} (aec1<4 tc)))))) + + dervie-any-3rot1 (suc i) i<3 j<4 = {!!} + ccong {deriving i} ( psym (abc= tdba )) ( + comm {deriving i} {aec (fin≤n {3} (dba0<3 tdba)) (fin≤n {4} (dba1<4 tdba))} {abc (fin≤n {3} (aec0<3 tdba)) (fin≤n {4} (aec1<4 tdba))} + (dervie-any-3rot2 i (fin≤n {3} (dba0<3 tdba) (fin≤n {4} (dba1<4 tdba) ))) + (dervie-any-3rot0 i (fin≤n {3} (aec0<3 tdba)) (fin≤n {4} (aec1<4 tdba) ))) where tdba = dba-triple i<3 j<4 - d1 : deriving (suc i) (dba i<3 j<4) - d1 = ccong {deriving i} ( psym (abc= tdba )) ( - comm {deriving i} {aec (fin≤n {3} (dba0<3 tdba)) (fin≤n {4} (dba1<4 tdba))} {abc (fin≤n {3} (aec0<3 tdba)) (fin≤n {4} (aec1<4 tdba))} - (proj2 (proj2 ( dervie-any-3rot i (fin≤n {3} (dba0<3 tdba) (fin≤n {4} (dba1<4 tdba) ))))) - (proj1 ( dervie-any-3rot i (fin≤n {3} (aec0<3 tdba)) (fin≤n {4} (aec1<4 tdba) )))) + + dervie-any-3rot2 (suc i) i<3 j<4 = {!!} + ccong {deriving i} ( psym (abc= (aec-triple i<3 j<4) )) ( + comm {deriving i} {abc (fin≤n {3} (dba0<3 taec)) (fin≤n {4} (dba1<4 taec) )} {dba (fin≤n {3} (aec0<3 taec)) (fin≤n {4} (aec1<4 taec))} + ( dervie-any-3rot0 i (fin≤n {3} (dba0<3 taec) (fin≤n {4} (dba1<4 taec) ))) + ( dervie-any-3rot1 i (fin≤n {3} (aec0<3 taec) (fin≤n {4} (aec1<4 taec))))) where taec = aec-triple i<3 j<4 - d2 : deriving (suc i) (aec i<3 j<4) - d2 = ccong {deriving i} ( psym (abc= (aec-triple i<3 j<4) )) ( - comm {deriving i} {abc (fin≤n {3} (dba0<3 taec)) (fin≤n {4} (dba1<4 taec) )} {dba (fin≤n {3} (aec0<3 taec)) (fin≤n {4} (aec1<4 taec))} - (proj1 ( dervie-any-3rot i (fin≤n {3} (dba0<3 taec) (fin≤n {4} (dba1<4 taec) )))) - (proj1 (proj2 ( dervie-any-3rot i (fin≤n {3} (aec0<3 taec) (fin≤n {4} (aec1<4 taec))))))) open _=p=_ counter-example : ¬ (abc 0<3 0<4 =p= pid )