Mercurial > hg > Members > kono > Proof > galois
changeset 36:ee56e29a903c
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 19 Aug 2020 23:31:48 +0900 |
parents | 0364ad4f2a47 |
children | 32db08b3c1a3 |
files | Symmetric.agda |
diffstat | 1 files changed, 3 insertions(+), 3 deletions(-) [+] |
line wrap: on
line diff
--- a/Symmetric.agda Wed Aug 19 23:23:07 2020 +0900 +++ b/Symmetric.agda Wed Aug 19 23:31:48 2020 +0900 @@ -135,8 +135,8 @@ eperm : {n m : ℕ} → m < n → Permutation n n → Permutation (suc n) (suc n) eperm {zero} () eperm {n} {0} (s≤s z≤n) perm = pprep perm -eperm {n} {suc m} (s≤s m<n) perm = eperm1 m 2 {!!} (pswap {0} pid ) (pprep perm) where - eperm1 : (m i : ℕ ) → i < suc (suc m) → Permutation i i → Permutation (suc n)(suc n)→ Permutation (suc n)(suc n) - eperm1 zero i i<ssm sw perm = perm ∘ₚ ( pfill {!!} sw ) +eperm {n} {suc m} (s≤s m<n) perm = eperm1 m 2 (s≤s (s≤s (z≤n))) (pswap {0} pid ) (pprep perm) where + eperm1 : (m i : ℕ ) → i ≤ suc (suc m) → Permutation i i → Permutation (suc n)(suc n)→ Permutation (suc n)(suc n) + eperm1 zero i i<ssm sw perm = perm ∘ₚ ( pfill {!!} sw ) -- i ≤ suc (suc n) eperm1 (suc m) i i<ssm sw perm = eperm1 m (suc i) {!!} (pprep sw) perm