Mercurial > hg > Members > kono > Proof > galois
changeset 213:f0ceffb6a7e9
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 06 Dec 2020 00:08:47 +0900 |
parents | fa1e0944d1a0 |
children | b438377a7e11 |
files | FLComm.agda |
diffstat | 1 files changed, 20 insertions(+), 16 deletions(-) [+] |
line wrap: on
line diff
--- a/FLComm.agda Sat Dec 05 12:57:44 2020 +0900 +++ b/FLComm.agda Sun Dec 06 00:08:47 2020 +0900 @@ -111,23 +111,27 @@ anyComm [] [] = record { commList = [] ; commAny = λ _ _ () } anyComm [] (cons q Q qr) = record { commList = [] ; commAny = λ _ _ () } anyComm (cons p P pr) [] = record { commList = [] ; commAny = λ _ _ _ () } -anyComm (cons p P pr) Q = anyc0n Q where - anyc00 : (Q : FList n) (q : FL n) → fresh (FL n) ⌊ _f<?_ ⌋ q Q → fresh (FL n) ⌊ _f<?_ ⌋ (perm→FL [ FL→perm p , FL→perm q ]) (commList (anyComm (cons p P pr) Q)) +anyComm (cons p P pr) Q = anyc0n Q Q where + anyc0n : (Q Q1 : FList n) → AnyComm (cons p P pr) Q1 + anyc00 : (Q Q1 : FList n) (q : FL n) → fresh (FL n) ⌊ _f<?_ ⌋ q Q1 → fresh (FL n) ⌊ _f<?_ ⌋ (perm→FL [ FL→perm p , FL→perm q ]) (commList (anyc0n Q Q1)) anyc00 = {!!} - anyc01 : (Q : FList n) (q : FL n) → (qr : fresh (FL n) ⌊ _f<?_ ⌋ q Q ) → (p₁ q₁ : FL n) → Any (_≡_ p₁) (cons p P pr) → Any (_≡_ q₁) (cons q Q qr) → - Any (_≡ perm→FL [ FL→perm p₁ , FL→perm q₁ ]) (cons (perm→FL [ FL→perm p , FL→perm q ]) (commList (anyComm (cons p P pr) Q)) (anyc00 Q q qr)) - anyc01 Q q qr p q (here refl) (here refl) = here refl - anyc01 Q q qr p q₁ (here refl) (there anyq) = there (commAny (anyComm (cons p P pr) Q) p q₁ (here refl) anyq ) - anyc01 Q q qr p₁ q (there anyp) (here refl) = anyc02 Q q qr (commAny (anyComm P (cons q Q qr)) p₁ q anyp (here refl)) where - anyc02 : (Q : FList n) (q : FL n) → (qr : fresh (FL n) ⌊ _f<?_ ⌋ q Q ) - → Any (_≡ perm→FL [ FL→perm p₁ , FL→perm q ]) (commList (anyComm P (cons q Q qr))) - → Any (_≡ perm→FL [ FL→perm p₁ , FL→perm q ]) (cons (perm→FL [ FL→perm p , FL→perm q ]) (commList (anyComm (cons p P pr) Q)) (anyc00 Q q qr)) - anyc02 Q q qr t = {!!} - anyc01 Q q qr p₁ q₁ (there anyp) (there anyq) = there (commAny (anyComm (cons p P pr) Q) p₁ q₁ (there anyp) anyq ) - anyc0n : (Q : FList n) → AnyComm (cons p P pr) Q - anyc0n [] = record { commList = [] ; commAny = λ _ _ _ () } - anyc0n (cons q Q qr ) = record { commList = cons (perm→FL [ FL→perm p , FL→perm q ]) (commList (anyComm (cons p P pr) Q)) (anyc00 Q q qr) - ; commAny = anyc01 Q q qr } + anyc01 : (Q Q1 : FList n) (q : FL n) → (qr : fresh (FL n) ⌊ _f<?_ ⌋ q Q1 ) → (p₁ q₁ : FL n) → Any (_≡_ p₁) (cons p P pr) → Any (_≡_ q₁) (cons q Q1 qr) → + Any (_≡ perm→FL [ FL→perm p₁ , FL→perm q₁ ]) (cons (perm→FL [ FL→perm p , FL→perm q ]) (commList (anyc0n Q Q1)) (anyc00 Q Q1 q qr)) + anyc01 Q Q1 q qr p q (here refl) (here refl) = here refl + anyc01 Q Q1 q qr p q₁ (here refl) (there anyq) = there (commAny (anyc0n Q Q1) p q₁ (here refl) anyq ) + anyc01 Q Q1 q qr p₁ q (there anyp) (here refl) with commAny (anyc0n Q []) p₁ q (there anyp) {!!} -- Any (_≡_ q) Q + ... | t = {!!} + where + -- anyc02 Q p₁ q qr anyp where + anyc02 : {P : FList n} {p₂ : FL n} {pr₂ : fresh (FL n) ⌊ _f<?_ ⌋ p₂ P} + → (Q1 : FList n) (p₁ q : FL n) → (qr : fresh (FL n) ⌊ _f<?_ ⌋ q Q1 ) → Any (_≡_ p₁) (cons p₂ P pr₂) + → Any (_≡ perm→FL [ FL→perm p₁ , FL→perm q ]) (cons (perm→FL [ FL→perm p , FL→perm q ]) (commList (anyc0n Q Q1)) (anyc00 Q Q1 q qr)) + anyc02 {P} Q p₁ q qr (here refl) = {!!} + anyc02 {P} Q p₁ q qr (there any) = {!!} + anyc01 Q Q1 q qr p₁ q₁ (there anyp) (there anyq) = there (commAny (anyc0n Q Q1) p₁ q₁ (there anyp) anyq ) + anyc0n Q1 [] = record { commList = (commList (anyComm P Q)) ; commAny = λ _ _ _ () } + anyc0n Q1 (cons q Q2 qr ) = record { commList = cons (perm→FL [ FL→perm p , FL→perm q ]) (commList (anyc0n Q Q2)) (anyc00 Q Q2 q qr) + ; commAny = anyc01 Q Q2 q qr } -- {-# TERMINATING #-} CommStage→ : (i : ℕ) → (x : Permutation n n ) → deriving i x → Any (perm→FL x ≡_) ( CommFListN i )