Mercurial > hg > Members > kono > Proof > galois
changeset 262:f36d2ed8ed9e
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 30 May 2022 11:28:38 +0900 |
parents | ea6c61079789 |
children | 93a2a2c2d7c0 |
files | src/FundamentalHomomorphism.agda |
diffstat | 1 files changed, 8 insertions(+), 6 deletions(-) [+] |
line wrap: on
line diff
--- a/src/FundamentalHomomorphism.agda Mon May 30 10:57:30 2022 +0900 +++ b/src/FundamentalHomomorphism.agda Mon May 30 11:28:38 2022 +0900 @@ -131,7 +131,7 @@ -- K ⊂ ker(f) K⊆ker : (G H : Group c l) (K : NormalSubGroup G) (f : Group.Carrier G → Group.Carrier H ) → Set ( c Level.⊔ l ) -K⊆ker G H K f = (k : CosetCarrier G K ) → f (CosetCarrier.r k ) ≈ ε where +K⊆ker G H K f = (x : Group.Carrier G ) → f ( sub K x ) ≈ ε where open Group H record FundamentalHomomorphism (G H : Group c l) @@ -159,7 +159,7 @@ EqG = IsMagma.isEquivalence (IsSemigroup.isMagma (IsMonoid.isSemigroup (IsGroup.isMonoid (Group.isGroup G) ))) h1 : {x : Group.Carrier G } → Coset G K x → Carrier - h1 (coset a b) = f (sub K b) + h1 (coset a b) = f a ∙ f (sub K b) h : CosetCarrier G K → Carrier -- G / K → H h r = h1 (isCoset r) _o_ = Group._∙_ G @@ -169,9 +169,11 @@ h13 : {gx gy : Group.Carrier G } → ( x : Coset G K gx ) ( y : Coset G K gy ) → h (Group._∙_ (G / K) record { r = gx ; isCoset = x } record {r = gy ; isCoset = y } ) ≈ h1 x ∙ h1 y h13 (coset a b) (coset c d) = begin - h (φ {G} {K} ((a o sub K b) o (c o sub K d) )) ≈⟨ IsEquivalence.refl EqH ⟩ - f (sub K (( a o sub K b ) o (c o sub K d ))) ≈⟨ {!!} ⟩ - f (sub K b) ∙ f (sub K d) ≈⟨ IsEquivalence.refl EqH ⟩ + h (φ {G} {K} ((a o sub K b) o (c o sub K d) )) ≡⟨ _≡_.refl ⟩ + f ( ((a o sub K b) o (c o sub K d)) o ( Group._⁻¹ G (sub K ((a o sub K b) o (c o sub K d))) )) ∙ + f (sub K ((a o sub K b ) o (c o sub K d))) ≈⟨ {!!} ⟩ + f ((a o sub K b ) o (c o sub K d)) ≈⟨ {!!} ⟩ + f a ∙ f (sub K b) ∙ (f c ∙ f (sub K d)) ≡⟨ _≡_.refl ⟩ h1 (coset a b) ∙ h1 (coset c d) ∎ h-homo : IsGroupHomomorphism (Group→Raw (G / K) ) (Group→Raw H) h h-homo = record { @@ -184,7 +186,7 @@ unique : (x : Group.Carrier G) → f x ≈ h ( φ x ) unique x = begin f x ≈⟨ {!!} ⟩ - f (sub K x ) ∎ + f ( x o (Group._⁻¹ G (sub K x))) ∙ f (sub K x) ∎