Mercurial > hg > Members > kono > Proof > prob1
changeset 17:61a889d975e1
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 27 Nov 2019 18:44:28 +0900 |
parents | 3557795c7bb3 |
children | e35d729efd58 |
files | prob1.agda |
diffstat | 1 files changed, 27 insertions(+), 1 deletions(-) [+] |
line wrap: on
line diff
--- a/prob1.agda Wed Nov 27 17:51:59 2019 +0900 +++ b/prob1.agda Wed Nov 27 18:44:28 2019 +0900 @@ -32,7 +32,6 @@ -- k = 1 → n = 0 → ∀ M → A = i -- k = 2 → n = 1 → - -- i + 2 * M = M * (suc n) + A i = suc n → A = 0 problem : ( A M k : ℕ ) → Set @@ -145,6 +144,33 @@ -- cannot1 : { n k M i A : ℕ } → n < suc k → i < suc M → (i + suc k * suc M ) > ( suc M * suc n + A) → ¬ ( suc A < suc k * suc M ) -- cannot1 = {!!} +-- range-n : n < k +-- range-i : i < M +-- rule1 : i + k * M ≡ M * (suc n) + A -- A ≡ (i + k * M ) - (M * (suc n)) + +problem1-0 : (A M k : ℕ ) + → (c1 : Cond1 A M k ) → (c2 : Cond1 A M k ) + → ( Cond1.n c1 ≡ Cond1.n c2 ) ∧ ( Cond1.i c1 ≡ Cond1.i c2 ) +problem1-0 A (suc m) (suc k) c1 c2 = cc k a<sa (start-range k) where + M = suc m + cck : ( n : ℕ ) → n < suc k → (suc A > ((k - n) ) * M ) → A - ((k - n) * M) < M → ( Cond1.n c1 ≡ Cond1.n c2 ) ∧ ( Cond1.i c1 ≡ Cond1.i c2 ) + cck n n<k k<A i<M = {!!} where + c0 = record { n = n ; i = A - (((k - n)) * M ) ; range-n = n<k ; range-i = {!!} ; rule1 = {!!} } + lemma-i : (i : ℕ ) → i < M → i + suc k * M ≡ M * suc n + A → i ≡ A - (k - n) * M + lemma-i = {!!} + lemma-n : (n1 : ℕ ) → ¬ ( n1 ≡ n ) → ¬ ( ( i : ℕ ) → i < M → i + suc k * M ≡ M * suc n1 + A → i ≡ A - (k - n1) * M ) + lemma-n = {!!} + cc : (n : ℕ) → n < suc k → suc A > (k - n) * M → ( Cond1.n c1 ≡ Cond1.n c2 ) ∧ ( Cond1.i c1 ≡ Cond1.i c2 ) + cc zero n<k k<A = cck 0 n<k k<A {!!} + cc (suc n) n<k k<A with <-cmp (A - ((k - (suc n)) * M)) M + cc (suc n) n<k k<A | tri< a ¬b ¬c = cck (suc n) n<k k<A {!!} + cc (suc n) n<k k<A | tri≈ ¬a b ¬c = {!!} + cc (suc n) n<k k<A | tri> ¬a ¬b c = {!!} + + start-range : (k : ℕ ) → suc A > (k - k) * M + start-range zero = s≤s z≤n + start-range (suc k) = start-range k + problem1 : (A1 A2 M k : ℕ ) → (c1 : Cond1 A1 M k ) → (c2 : Cond1 A2 M k ) → ( A1 ≡ A2 ) → ( Cond1.n c1 ≡ Cond1.n c2 ) ∧ ( Cond1.i c1 ≡ Cond1.i c2 )