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Chapter 1. System Organization

The NitrOS-9 Operating System is composed of groups of modules which work together to perform a common task.  The following illustration shows the major modules and their position in the five layer organization of NitrOS-9:


Layer 5

Layer 4

Layer 3

Layer 2

Layer 1

Layer 1: The Kernel

At the lowest layer, Krn and KrnP2 make up the two primary parts of the kernel, or core of NitrOS-9.  It is the kernel which  provides the intelligence behind NitrOS-9, and handles basic system services such as multitasking and memory management.  The kernel also links all other NitrOS-9 modules into the system.

Another important set of modules which reside at this layer are Clock and Clock2.  Together, these two modules work to keep track of both system time (known as the tick, the heartbeat of the system) as well as actual clock time, either through software or via real-time clock hardware.

The final module of this layer is Init. This module contains a table of initialization values and is consulted by the kernel during system startup.  Information such as the user task to run after boot, initial table sizes and device names are found in this module.  It is loaded into RAM (random access memory) by the NitrOS-9 bootstrap module Boot, along with other necessary system modules.
Layer 2: IOMan

The system’s second layer (just above kernel) contains the input/output manager, IOMan.  This module provides common processing for all input/output operations, and is required for performing any I/O supported by NitrOS-9.

Layer 3: File Managers

The system’s third layer contains file managers.  File managers perform I/O request processing for similar classes of I/O devices.  There are three file managers:

RBF
The random block file manager processes all disk I/O operations.

SCF
The sequential character file manager handles all non-disk I/O operations that operate one character at a time.  These operations include terminal and printer I/O.

PIPEMAN
The pipe file manager handles pipes.  Pipes are memory buffers that act as files.  Pipes are used for data transfers between processes.

Layer 4: Device Drivers

The system’s fourth layer is the device driver layer.  Device drivers handle basic I/O functions for specific I/O controller hardware, and are normally provided to you when you purchase new I/O devices or cartridges.  You can use pre-written drivers, or you can write your own.

Layer 5: Device Descriptors

The system’s fifth layer contains the device descriptors.  Device descriptors are small tables that define the logical name, device driver and file manager for each I/O port.  They also contain port initialization and port address information.  Device descriptors require only one copy of each I/O controller driver used.

Beyond Layer 5: Applications

NitrOS-9’s primary purpose is to act as the manager of data flow for applications, which run as processes outside of the five layer hierarchy. This includes the initial user process, SysGo, which is forked after boot, and Shell, the program which allows commands to be typed and executed by NitrOS-9.

Chapter 2. The Kernel

The kernel, as stated in the previous chapter, is the true core of NitrOS-9.  All resource management and services, from memory allocation to the creation and destruction of processes, are supervised by this very important software component.

The kernel is actually split into two parts: Krn (which holds core system calls that must be present during the boot process) and KrnP2 (which handles additional system calls).  These two modules complete the concept of the NitrOS-9 kernel.

The kernel modules for NitrOS-9 Level 1 are smaller than those of NitrOS-9 Level 2, and are small enough to reside on the boot track.  Under NitrOS-9 Level 2, Krn resides boot track while KrnP2 is part of the OS9Boot file, a file which is loaded into RAM with the other NitrOS-9 modules at bootstrap time.

Here’s a look at the kernel’s main responsibilities:

· System initialization after reset

· Service request processing

· Memory management

· Multiprogramming management

· Interrupt processing

I/O functions are not included in the list because the kernel does not directly process them.  Instead, it passes I/O system calls to the I/O Manager, IOMan, for processing.

We will now explore the kernel’s responsibilities in more detail.

System Initialization

After a hardware reset, the kernel initializes the system.  This involves:

1. Locating modules loaded into memory from the NitrOS-9 boot file.

2. Determining the amount of available RAM.

3. Loading any required modules that were not loaded from the NitrOS-9 boot file.

NitrOS-9 also adds the ability to install new system calls through the F$SSvc system service call.  Under NitrOS-9 Level 1, user state programs can directly call this system call.  However, NitrOS-9 Level 2 user process cannot call this system call directly because it is privileged. Instead, new system calls are added through special kernel extension modules, named KrnP3, KrnP4, KrnP5, etc.  These kernel modules must be present in the OS9Boot file.  The cold start routine in KrnP2 performs a link to KrnP3, and if it exists in the boot file, it will be branched to.  If KrnP3 does not exist in the boot file, KrnP2 continues with a normal cold start.

System Call Processing

System Calls are used to communicate between NitrOS-9 and programs for such functions as memory allocation and process creation.  In addition to I/O and memory management functions, system calls have other functions.  These include inter-process control and timekeeping.

System calls use the 6809 microprocessor’s SWI2 instruction followed by a constant byte representing the code.  You usually pass parameters for system calls in the 6809 registers.

OS9Defs and Symbolic Names

A system-wide assembly language equate file, called OS9Defs, defines symbolic names for all system calls.  This file is normally included when assembling hand-written or compiler-generated code.  The NitrOS-9 assembler has a built-in macro to generate system calls.  For example:

os9 I$Read

is recognized and assembled as equivalent to:

swi2


fcb
I$Read

The NitrOS-9 assembler macro “os9” generates an SWI2 instruction.  The label I$Read is the label for the system call code $89.

Types of System Calls

System calls are divided into two categories: I/O calls and function calls.
I/O calls perform various input/output functions.  The kernel passes calls of this type to the I/O manager for processing.  The symbolic names for I/O calls begin with I$ instead of F$.  For example, the Read system call is called I$Read.

Function calls perform memory management, multi-programming and other functions, with most being processed by the kernel.  The symbolic names for function calls begin with F$.  For example, the Link function call is called F$Link.

The function calls include user calls and privileged system mode calls. (See Chapter 8, “System Calls”, for more information.)

Memory Management

Memory management is an important operating system function. Using memory and modules, NitrOS-9 manages the logical contents of memory and the physical assignment of memory to programs.

An important concept in memory management is the memory module.  The memory module is a format in which programs must reside. NitrOS-9 maintains a module directory which points to the modules which occupy memory.  This module directory contains information about each module, including its name and address and the number of processes using it.  The number of processes using a module is reflected in the module’s link count.

When a module’s link count reaches zero, NitrOS-9 releases the module, returns the memory it held back to the free pool, and removes its name from the module directory.

Memory modules are the foundation of NitrOS-9’s modular software environment, and have several advantages:

· Automatic runtime linking of programs to libraries of utility modules

· Automatic sharing of re-entrant programs

· Replacement of small sections of large programs into memory for update or correction.

Memory Use in NitrOS-9

NitrOS-9 automatically allocates memory when any of the following occurs:

· Program modules are loaded into RAM

· Processes are created

· Processes execute system calls to request additional RAM

· NitrOS-9 needs I/O buffers or larger tables

NitrOS-9 also has inverse functions to deallocate memory allocated to program modules, new processes, buffers and tables.

In general, memory for program modules and buffers is allocated from high addresses downward.  Memory for process data areas is allocated from low addresses upward.

NitrOS-9 Level 1 Memory Specifics
Under NitrOS-9 Level 1, a maximum of 64K of RAM is supported.  The operating system and all processes must share this memory.  In the 64K address map, NitrOS-9 reserves some space at the top and bottom of RAM for its own use.  The amount depends on the sizes of system tables that are specified in the Init module.

NitrOS-9 pools all other RAM into a free memory space.  As the system allocates or deallocates memory, it dynamically takes it from or returns it to this pool.  Under NitrOS-9 Level 2, RAM does not need to be contiguous because the memory management unit can dynamically rearrange memory addresses.

The basic unit of memory allocation is the 256-byte page.  NitrOS-9 Level 1 always allocates memory in whole numbers of pages.

The data structure that NitrOS-9 uses to keep track of memory allocation is a 256-byte bit map.  Each bit in this table is associated with a specific page of memory.  A cleared bit indicates that the page is free and available for assignment.  A set bit indicates that the page is in use (that no RAM is free at that address).

NitrOS-9 Level 2 Memory Specifics
Because NitrOS-9 Level 2 utilizes the Memory Management Unit (MMU) component of the Color Computer 3, up to 2MB of memory can be supported.  However, each process is still limited to a maximum of 64K of RAM.

Even with this limitation, there is a significant advantage over NitrOS-9 Level 1.  Every process has its own 64K “playground.”  Even the operating system itself has its own 64K area.  This means that programs do not have to share a single 64K block with each other or the system.  Consequently, larger programs are possible under NitrOS-9 Level 2.

These 64K areas are made up of 8K blocks, the size that is imposed by the MMU found in the Color Computer 3.  NitrOS-9 Level 2 assembles a number of these 8K blocks to provide every process (including the system) its own 64K working area.

Within the system’s 64K address map, memory is still allocated in 256-byte pages, just like NitrOS-9 Level 1.  

Color Computer 3 Memory Management Hardware

As mentioned previously, the 8-bit CPU in the Color Computer 3 can directly address only 64K of memory.  This limitation is imposed by the 6809, which has only 16 address lines (A0-A15).  The Color Computer 3’s Memory Management Unit (MMU) extends the addressing capability of the computer by increasing the address lines to 19 (A0-A18).  This lets the computer address up to 512K of memory ($0-$7FFFF), or up to 2MB of memory ($0-$1FFFFF) when enhanced with certain memory upgrades.  In this document we will discuss the more common 512K configuration.

The 512K address space is called the physical address space.  The physical address space is subdivided into 8K blocks.  The six high order address bits (A13-A18) define a block number.

NitrOS-9 creates a logical address space of up to 64K for each task by using the F$Fork system call.  Even though the memory within a logical address space appears to be contiguous, it might not be – the MMU translates the physical addresses to access available memory.  Address spaces can also contain blocks of memory that are common to more than one map.

The MMU consists of a multiplexer and a 16 by 6-bit RAM array.  Each of the 6-bit elements in this array is an MMU task register.  The computer uses these task registers to determine the proper 8-kilobyte memory segment to address.

The MMU task registers are loaded with addressing data by the CPU.  This data indicates the actual location of each 8-kilobyte segment of the current system memory.  The task register are divided into two sets consisting of eight registers each.  Whether the task register select bit (TR bit) is set or reset, determines which of the two sets is to be used.

The relation between the data in the task register and the generated addresses is as follows:

	Bit
	D5
	D4
	D3
	D2
	D1
	D0

	Corresponding Memory Address
	A18
	A17
	A16
	A15
	A14
	A13


When the CPU accesses any memory outside the I/O and control range (XFF00 – XFFFF), the CPU address lines (A13-A15) and the TR bit determine what segment of memory to address.  This is done through the multiplexer when SELECT is low (See the following table.)

When the CPU writes data to the MMU, A0-A3 determine the location of the MMU register to receive the incoming data when SELECT is high.  The following diagram illustrates the operation of the Color Computer 3’s memory management:

The system uses the data from the MMU registers to determine the block of memory to be accessed, according to the following table:

	TR Bit
	A15     A14     A13
	Address Range
	MMU Address

	0
0

0

0

0

0

0

0
	 0            0          0

 0            0          1

 0            1          0

 0            1          1

 1            0          0

 1            0          1

 1            1          0

 1            1          1
	X0000-X1FFF
X2000-X3FFF
X4000-X5FFF

X6000-X7FFF

X8000-X9FFF

XA000-XBFFF

XC000-XDFFF

XE000-XFFFF
	FFA0

FFA1

FFA2

FFA3

FFA4

FFA5

FFA6

FFA7

	1
1

1

1

1

1

1

1
	 0            0          0

 0            0          1

 0            1          0

 0            1          1

 1            0          0

 1            0          1

 1            1          0

 1            1          1
	X0000-X1FFF
X2000-X3FFF
X4000-X5FFF

X6000-X7FFF

X8000-X9FFF

XA000-XBFFF

XC000-XDFFF

XE000-XFFFF
	FFA8

FFA9

FFAA

FFAB

FFAC

FFAD

FFAE

FFAF


The translation of physical addresses to 8K blocks is as follows:

	Range

From         To
	Block

Number
	
	Range

From         To
	Block

Number

	 00000       01FFF
	00
	
	 40000       41FFF
	20

	 02000       03FFF
	01
	
	 42000       43FFF
	21

	 04000       05FFF
	02
	
	 44000       45FFF
	22

	 06000       07FFF
	03
	
	 46000       47FFF
	23

	 08000       09FFF
	04
	
	 48000       49FFF
	24

	 0A000       0BFFF
	05
	
	 4A000       4BFFF
	25

	 0C000       0DFFF
	06
	
	 4C000       4DFFF
	26

	 0E000       0FFFF
	07
	
	 4E000       4FFFF
	27

	 10000       11FFF
	08
	
	 50000       51FFF
	28

	 12000       13FFF
	09
	
	 52000       53FFF
	29

	 14000       15FFF
	0A
	
	 54000       55FFF
	2A

	 16000       17FFF
	0B
	
	 56000       57FFF
	2B

	 18000       19FFF
	0C
	
	 58000       59FFF
	2C

	 1A000       1BFFF
	0D
	
	 5A000       5BFFF
	2D

	 1C000       1DFFF
	0E
	
	 5C000       5DFFF
	2E

	 1E000       1FFFF
	0F
	
	 5E000       5FFFF
	2F

	 20000       21FFF
	10
	
	 60000       61FFF
	30

	 22000       23FFF
	11
	
	 62000       63FFF
	31

	 24000       25FFF
	12
	
	 64000       65FFF
	32

	 26000       27FFF
	13
	
	 66000       67FFF
	33

	 28000       29FFF
	14
	
	 68000       69FFF
	34

	 2A000       2BFFF
	15
	
	 6A000       6BFFF
	35

	 2C000       2DFFF
	16
	
	 6C000       6DFFF
	36

	 2E000       2FFFF
	17
	
	 6E000       6FFFF
	37

	 30000       31FFF
	18
	
	 70000       71FFF
	38

	 32000       33FFF
	19
	
	 72000       73FFF
	39

	 34000       35FFF
	1A
	
	 74000       75FFF
	3A

	 36000       37FFF
	1B
	
	 76000       77FFF
	3B

	 38000       39FFF
	1C
	
	 78000       79FFF
	3C

	 3A000       3BFFF
	1D
	
	 7A000       7BFFF
	3D

	 3C000       3DFFF
	1E
	
	 7C000       7DFFF
	3E

	 3E000       3FFFF
	1F
	
	 7E000       7FFFF
	3F


In order for the MMU to function, the TR bit at $FF90 must be cleared and the MMU must be enabled.  However, before doing this, the address data for each memory segment must be loaded into the designated set of task registers.  For example, to select a standard 64K map in the top range of the Color Computer 3’s 512K RAM, with the TR bit set to 0, the following values must be preloaded into the MMU’s registers:

	MMU Location Address
	Data (Hex)
	Data (Binary)
	Address Range

	FFA0
FFA1

FFA2

FFA3

FFA4

FFA5

FFA6

FFA6
	38

39

3A

3B

3C

3D

3E

3F
	111000

111001

111010

111011

111100

111101

111110

111111
	70000-71FFF

72000-73FFF

74000-75FFF

76000-77FFF

78000-79FFF

7A000-7BFFF

7C000-7DFFF

7E000-7FFFF


Although this table shows MMU data in the range $38 to $3F, any data between $0 and $3F can be loaded into the MMU registers to select memory addresses in the range 0 to $7FFFF.

Normally, the blocks containing I/O devices are kept in the system map, but not in the user maps.  This is appropriate for timesharing applications, but not for process control.  To directly access I/O devices, use the F$MapBlk system call.  This call takes a starting block number and block count, and maps them into unallocated spaces of the process’ address space.  The system call returns the logical address at which the blocks were inserted.

For example, suppose a display screen in your system is allocated at extended addresses $7A000-$7DFFF (blocks $3D and $3E).  The following system call maps them into your address space:

ldb 

#$02 

number of blocks

ldx 

#$3D 

starting block number

os9 

F$MapBlk 
call MapBlk

stu 

IOPorts 

save address where mapped

On return, the U register contains the starting address at which the blocks were switched.  For example, suppose that the call returned $4000.  To access extended address $7A020, write to $4020.

Other system calls that copy data to or from one task’s map to another are available, such as F$STABX and F$Move.  Some of these calls are system mode privileged.  You can unprotect them by changing the appropriate bit in the corresponding entry of the system service request table and them making a new system boot with the patched table.

Multiprogramming

NitrOS-9 is a multiprogramming operating system.  This means that several independent programs called processes can be executed at the same time.  By issuing the appropriate system call to NitrOS-9, each process can have access to any system resource.

Multiprogramming functions use a hardware real-time clock.  The clock generates interrupts 60 times per second, or one every 16.67 milliseconds.  These interrupts are called ticks.

Processes that are not waiting for some event are called active processes.  NitrOS-9 runs active processes for a specific system-assigned period called a time slice.  The number of time slices per minute during which a process is allowed to execute depends on a process’ priority relative to all other active processes.  Many NitrOS-9 system calls are available to create, terminate and control processes.

Process Creation

A process is created when an existing process executes the F$Fork system call.  This call’s main argument is the name of the program module that the new process is to execute first (the primary module).

Finding the Module. NitrOS-9 first attempts to find the module in the module directory.  If it does not find the module, NitrOS-9 usually attempts to load into a memory a mass-storage file in the execution directory, with the requestedmodule name as a filename.

Assigning a Process Descriptor. Once OS-9 fins the module, it assigns the process a data structure called a process descriptor.  This is a 64-byte package that contains information about the process, its state (see the following section, “Process States”), memory allocations, priority, queue pointers, and so on.  NitrOS-9 automatically initializes and maintains the process descriptor.

Allocate RAM.  The next step is to allocate RAM for the process.  The primary module’s header contains a storage size, which NitrOS-9 uses, unless a larger one was requested at fork time.  The memory is allocated from the free memory space and given to that process.

Assign Process ID and User ID.  NitrOS-9 assigns the new process a unique number called a process ID.  Other processes can communicate with the process by referring to its ID in various system calls.

The process also has a user ID, which is used to identify all processes and files that belong to a particular user.  The user ID is inhereited from the parent process.

Process Termination.  A process terminates when it executes the F$Exit system call, or when it receives a fatal signal.  The termination closes any open paths, deallocates memory used by the process, and unlinks its primary module.

Process States

At any instant a process can be in one of three states:

· Active – The process is ready for execution.

· Waiting – The process is suspended until a child process terminates or until it receives a signal.  A child process is a process that is started by another process known as the parent process.

· Sleeping – The process is suspended for a specific period of time or until it receives a signal.

Each state has its own queue, a linked list of descriptors of processes in that state.  To change a process’ state, NitrOS-9 moves its descriptor to another queue.

The Active State.  Each active process is given a time slice for execution, according to its priority.  The scheduler in the kernel ensures that all active processes, even those of low priority, get some CPU time.

The Wait State. This state is entered when a process executes the F$Wait system call.  The process remains suspended until one of its child processes terminates or until it receives a signal.  (See the “Signals” section later in this chapter.)

The Sleep State. This state is entered when a process executes the F$Sleep system call, which expects the number of ticks for which the process is to remain in the sleep queue.  The process will remain until the specified time has elapsed, or until it receives a wakeup signal.

Execution Scheduling

The NitrOS-9 scheduler uses an algorithm that ensures that all active processes get some amount of execution time.

All active processes are members of the active process queue, which is kept sorted by process age.  Age is the number of process switches that have occurred since the process’ last time slice.  When a process is moved to the active process queue from antoerh queue, its age is set according to its priority – the higher the priority, the higher the age.

Whenver a new process becomes active, the ages of all other active processes increase by one time slice count.  When the executing process’ time slice has elapsed, the scheduler selects the next process to be executed (the one with the next highest age, the first one in the queue).  At this time, the ages of all other active processes increase by one.  Ages never go beyond 255.

A new active process that was terminated while in the system state is an exception.  The process is given high priority because it is usually executing critical routines that affect shared system resources.

When there are no active processes, the kernel handles the next interrupt and then executes a CWAI instruction.  This procedure decreases interrupt latency time (the time it takes the system to process an interrupt).

Signals

A signal is an asynchronous control mechanism used for interprocess communication and control.  It behaves like a software interrupt, and can cause a process to suspend a program, execute a specific routine, and then return to the interrupted program.

Signals can be sent from one process to another by the F$Send system call.  Or, they can be sent from NitrOS-9 service routines to a process.

A signal can convey status information in the form of a 1-byte numeric value.  Some signal codes (values) are predefined, but you can define most.  Those already defined by NitrOS-9 are:

	0
	= Kill (terminates the process, is non-interceptable)

	1
	= Wakeup (wakes up a sleeping process)

	2
	= Keyboard terminate

	3
	= Keyboard interrupt

	4
	= Window change

	128-255
	= User defined


When a signal is sent to a process, the signal is saved in the process descriptor.  If the process is in the sleeping or waiting state, it is changed to the active state.  When the process gets its next time slice, the signal is processed.

What happens next depends on whether or not the process has set up a signal intercept trap (also known as a signal service routine) by executing the F$Icpt system call.

If the process has set up a signal intercept trap, the process resumes execution at the address given in the system call.  The signal code passes to this routine.  Terminate the routine with an RTI instruction to resume normal execution of the process.

Note: A wakeup signal activates a sleeping process.  It sets a flag but ignores the call to branch to the intercept routine.
If it has not set up a signal intercept trap, the process is terminated immediately.  It is also terminated if the signal code is zero.  If the process is in the system mode, NitrOS-9 defers the termination.  The process dies upon return to the user state.

A process can have a signal pending (usually because the process has not been assigned a time slice since receiving the signal).  If it does, and another process tries to send it another signal, the new signal is terminated, and the F$Send system call returns an error.  To give the destination process time to process the pending signal, the sender needs to execute an F$Sleep system call for a few ticks before trying to send the signal again.

Interrupt Processing

Interrupt processing is another important function of the kernel.  OS-9 sends each hardware interrupt to a specific address. This address, in turn, specifies the address of the device service routine to be executed.  This is called vectoring the interrupt.  The address that points to the routine is called the vector.  It has the same name as the interrupt.

The SWI, SWI2, and SWI3 vectors point to routines that read the corresponding pseudo vector from the process’ descriptor and dispatch to it.  This is why the F$SSWI system call is local to a process; it only changes a pseudo vector in the process descriptor.

	Vector
	Address

	SWI3
	$FFF2

	SWI2
	$FFF4

	FIRQ
	$FFF6

	IRQ
	$FFF8

	SWI
	$FFFA

	NMI
	$FFFC

	RESTART
	$FFFE


FIRQ Interrupt. The system uses the FIRQ interrupt.  The FIRQ vector is not available to you.  The FIRQ vector is reserved for future use.  Only one FIRQ generating device can be in the system at a time.

Logical Interrupt Polling System

Because most NitrOS-9 I/O devices use IRQ interrupts, NitrOS-9 includes a sophisticated polling system.  The IRQ polling system automatically identifies the source of the interrupt, and then executes its associated user- or system-defined service routine.

IRQ Interrupt. Most NitrOS-9 I/O devices generate IRQ interrupts.  The IRQ vector points to the real-time clock and the keyboard scanner routines.  These routines, in turn, jump to a special IRQ polling system that determines the source of the interrupt.  The polling system is discussed in an upcoming paragraph.

NMI Interrupt.  The system uses the NMI interrupt.  The NMI vector, which points to the disk driver interrupt service routine, is not available to you.

The Polling Table.  The information required for IRQ polling is maintained in a data structure called the IRQ polling table.  The table has an entry for each device that might generate an IRQ interrupt.  The table size is permanent and is defined by an initialization constant in the Init module.  Each entry in the polling table is given a number from 0 (lowest priority) to 255 (highest priority).  In this way, the more important devices (those that have a higher interrupt frequency) can be polled before the less important ones.

Each entry has six variables:

	Polling Address
	Points to the status register of the device.  The register must have a bit or bits that indicate if it is the source of an interrupt.

	Flip byte
	Selects wheter the bits in the device status register indicate active when set or active when cleared.  If a bit in the flip byte is set, it indicates that the task is active whenever the corresponding bit in the status register is clear.

	Mask Byte
	Selects one or more interrupt request flag bits within the device status register.  The bits identify the active task or device.

	Service Routine

Address
	Points to the interrupt service routine for the device. You supply this address.

	Static Storage Address
	Points to the permanent storage area required by the device service routine.  You supply this address.

	Priority
	Sets the order in which the devices are polled (a number from 0 to 255).


Polling the Entries.  When an IRQ interrupt occurs, NitrOS-9 enters the polling system via the corresponding RAM interrupt vector.  It starts polling the devices in order of priority.  NitrOS-9 loads the status register address of each entry into Accumulator A, using the device address from the table.

NitrOS-9 performs an exclusive-OR operation using the flip byte, followed by a logical-AND operation using the mask byte.  If the result is non-zero, NitrOS-9 assumes that the device is the source of the interrupt.

NitrOS-9 reads the device memory address and service routine address from the table, and performs the interrupt service routine.

Note: If you are writing your own device driver, terminate the interrupt service routine with an RTS instruction, not an RTI instruction.

Adding Entries to the Table. You can make entries to the IRQ (interrupt request) polling table by using the F$IRQ system call.  This call is a privileged system call, and can only be executed in system mode.  NitrOS-9 is in system mode whenever it is running a device driver.

Note: The code for the interrupt polling system is located in the I/O Manager module.  The Krn and KrnP2 modules contain the physical interrupt processing routines.
Virtual Interrupt Processing

A virtual IRQ, or VIRQ, is useful with devices in Multi-Pak expansion slots.  Because of the absence of an IRQ line from the Multi-Pak interface, these devices cannot initiate physical interrupts.  VIRQ enables these devices to act as if they were interrupt drive.  Use VIRQ only with device driver and pseudo device driver modules.  VIRQ is handled in the Clock module, which handles the VIRQ polling table and installs the F$VIRQ system call.  Since the F$VIRQ system call is dependent on clock initialization, the SysGo module forces the clock to start.

The virtual interrupt is set up so that a device can be interrupted at a given number of clock ticks.  The interrupt can occur one time, or can be repeated as long as the device is used.

The F$VIRQ system call installs VIRQ in a table.  This call requires specification of a 5-byte packet for use in the VIRQ table.  This packet contains:

· Bytes for an actual counter

· A reset value for the counter

· A status byte that indicates whether a virtual interrupt has occurred and whether the VIRQ is to be reinstalled in the table after being issued

F$VIRQ also specifies an initial tick count for the interrupt.  The actual call is summarized here and is described in detail in Chapter 8.

	Call:
	os9 F$VIRQ

	Input:
	(Y) = address of 5-byte packet

(X) = 0 to delete entry, 1 to install entry

(D) = initial count value

	Output:
	None

(CC) carry set on error

(IS) appropriate error code


The 5-byte packet is defined as follows:

	Name
	Offset
	Function

	Vi.Cnt
	$0
	Actual counter

	Vi.Rst
	$2
	Reset value for counter

	Vi.Stat
	$4
	Status byte


Two of the bits in the status byte are used.  These are:


Bit 0 – set if a VIRQ occurs


Bit 7 – set if a count reset is required

When making an F$VIRQ call, the packet might require initialization with a reset value.  Bit 7 of the status byte must be either set or cleared to signify a reset of the counter or a one-time VIRQ call.  The reset value does not need to be the same as the initial counter value.  When NitrOS-9 processes the call, it writes the packet address into the VIRQ table.

At each clock tick, NitrOS-9 scans the VIRQ table and subtracts one from each timer value.  When a timer count reaches zero, NitrOS-9 performs the following actions:

1. Sets bit 0 in the status byte.  This specifies a Virtual IRQ.

2. Checks bit 7 of the status byte for a count reset request.

3. If bit 7 is set, resets the count using the reset value.  If bit 7 is reset, deletes the packet address from the VIRQ table.

When a counter reaches zero and makes a virtual interrupt request, NitrOS-9 runs the standard interrupt polling routine and services the interrupt.  Because of this, you must install entries on both the VIRQ and IRQ polling tables whenever you are using a VIRQ.

Unless the device has an actual physical interrupt, install the device on the IRQ polling table via the F$IRQ system call before placing it on the VIRQ table.

If the device has a physical interrupt, use the interrupt’s hardware register address as the polling address for the F$IRQ call.  After setting the polling address, set the flip and mask bytes for the device and make the F$IRQ call.

If the device is totally VIRQ-driven, and has no interrupts, use the status byte from the VIRQ packet as the status byte.  Use a mask byte of %00000001, defined as Vi.IFlag in the os9defs file.  Use a flip byte value of 0.

See the appendix for example code using the VIRQ feature of NitrOS-9

Chapter 3. Memory Modules

In Chapter 2, you learned that NitrOS-9 is based on the concept that memory is modular. This means that each program is considered to be an individually named object. 

You also learned that each program loaded into memory must be in the module format. This format lets NitrOS-9 manage the logical contents of memory, as well as the physical contents. Module types and formats are discussed in detail in this chapter. 

Module Types

There are several types of modules. Each has a different use and function. These are the main requirements of a module: 

· It cannot modify itself.

· It must be position-independent so that NitrOS-9 can load or relocate it wherever space is available. In this respect, the module format is the NitrOS-9 equivalent of load records used in older operating systems.

A module need not be a complete program or even 6809 machine language. It can contain BASIC09 I-code, constants, single subroutines, and subroutine packages. 

Module Format

Each module has three parts: a module  header,  a  module body,  and a  cyclic-redundancy-check value (CRC  value). 


Module Header

At the beginning of the module (the lowest address) is the module header. Its form depends upon the module's use.  The header contains information about the module and its use. This information includes the following: 

· Size

· Type (machine code, BASIC09 compiled code, and so on)

· Attributes (executable, re-entrant, and so on)

· Data storage memory requirements

· Execution starting address

Usually, you do not need to write routines to generate the modules and headers. All OS-9 programming languages automatically create modules and headers. 

Module Body

The module body contains the program or constants. It usually is pure code. The module name string is included in this area. 

The following figure provides the offset values for calculating the location of a module's name. (See "Offset to Module Name".) 

CRC Value

The last three bytes of the module are the Cyclic Redundancy Check (CRC) value. The CRC value is used to verify the integrity of a module. 

When the system first loads the module into memory, it performs a 24-bit CRC over the entire module, from the first byte of the module header to the byte immediately before the CRC. The CRC polynomial used is $800FE3. 

As with the header, you usually don't need to write routines to generate the CRC value. Most OS-9 programs do this automatically. 

Module Headers: Standard Information

The first nine bytes of all module headers are defined as follows:

	Relative Address
	Use

	$00,$01
	Sync bytes ($87,$CD)

	$02,$03
	Module size

	$04,$05
	Offset to module name

	$06
	Module type/language

	$07
	Attributes/revision level

	$08
	Header check


Sync Bytes

The sync bytes specify the location of the module. (The first sync byte is the start of the module.) These two bytes are constant.

Module Size

The module size specifies the size of the module in bytes (includes CRC). 

Offset to Module Name

The offset to module name specifies the address of the module name string relative to the start of the module. The name string can be located anywhere in the module. It consists of a string of ASCII characters with the most significant bit set on the last character. 

Type/Language Byte

The type/language byte specifies the type and language of the module. 

The four most significant bits of this byte indicate the type.  Eight types are pre-defined. Some of these are for OS-9's internal use only. The type codes are given here (0 is not a legal type code):

	Code
	Module Type
	Name

	$1x
	Program module
	Prgrm

	$2x
	Subroutine module
	Sbrtn

	$3x
	Multi-module (for future use)
	Multi

	$4x
	Data module
	Data

	$5x-$Bx
	User-definable module
	

	$Cx
	NitrOS-9 system module
	Systm

	$Dx
	NitrOS-9 file manager module
	FlMgr

	$Ex
	NitrOS-9 device driver module
	Drivr

	$Fx
	NitrOS-9 device descriptor module
	Devic


The four least significant bits of Byte 6 indicate the language (denoted by x in the previous Figure). The language codes are given here:

	Code
	Language

	$x0
	Data (non executable)

	$x1
	6809 object code

	$x2
	Basic09 I-Code

	$x3
	Pascal P-Code

	$x4-$XF
	Reserved for future use


By checking the language type, high-level language runtime systems can verify that a module is the correct type before attempting execution. Basic09, for example, can run either I-Code or 6809 machine language procedures arbitrarily by checking the language type code.

Attributes/Revision Level Byte

The attributes/revision level byte defines the attributes and revision level of the module. 

The four most significant bits of this byte are reserved for module attributes. Currently, only Bit 7 is defined. When set, it indicates the module is re-entrant and, therefore, shareable. 

The four least significant bits of this byte are a revision level in the range 0 to 15. If two or more modules have the same name, type, language, and so on, NitrOS-9 keeps in the module directory only the module having the highest revision level. Therefore, you can replace or patch a ROM module, simply by loading a new, equivalent module that has a higher revision level. 

Note: A previously linked module cannot be replaced until its link count goes to zero.
Header Check

The header check byte contains the one's complement of the Exclusive-OR of the previous eight bytes. 

Module Headers: Type-Dependent Information

More information usually follows the first nine bytes of a module header. The layout and meaning vary, depending on the module type. 

Module types $Cx-$Fx (system module, file manager module, device driver module, and device descriptor module) are used only by OS-9. Their formats are given later in the manual. 

Module types $lx through $Bx have a general-purpose executable format. This format is often used in programs called by F$Fork or F$Chain. Here is the format used by these module types: 

$00

$01

$02

$03

$04

$05

$06

$07

$08

$09

$0A

$0B

$0C

$0D
As you can see from the preceding chart, the executable memory has four extra bytes in its header. They are:

$09,$0A

Execution offset

$0B,$0C

Permanent storage size

Execution Offset. The program or subroutine's offset starting address, relative to the first byte of the sync code. A module that has multiple entry points (such as cold start and warm start) might have a branch table starting at this address.

Permanent Storage Size. The minimum number of bytes of data storage required to run. Fork and Chain use this number to allocate a process's data area.

If the module is not directly executed by a Fork or Chain system call (for instance a subroutine package), this entry is not used by NitrOS-9. It is commonly used to specify the maximum stack size required by re-entrant subroutine modules. The calling program can check this value to determine if the subroutine has enough stack space.

When NitrOS-9 starts after a single system reset, it searches the entire memory space for ROM modules. It finds them by looking for the module header sync code ($87,$CD). 

When NitrOS-9 detects the header sync code, it checks to see if the header is correct. If it is, the system obtains the module size from the header and performs a 24-bit CRC over the entire module. If the CRC matches, NitrOS-9 considers the module to be valid and enters it into the module directory. All ROM modules that are present in the system at startup are automatically included in the system module directory. 

After the module search, NitrOS-9 links to the component modules it found. This is the secret to NitrOS-9's ability to adapt to almost any 6809 computer. It automatically locates its required and optional component modules and rebuilds the system each time it is started. 

Chapter 4. NitrOS-9’s Unified Input/Output System

Chapter 1 mentioned that NitrOS-9 has a unified 1/O system, consisting of all modules except those on the kernel level. This chapter discusses the I/O modules in detail.

The VDG Interface performs both interface and low level routines for VDG Color Computer 2 compatible modes and has limited support for high res screen allocation.

The Grflnt Interface provides the standard code interpretations and interface functions.

The Windint Interface, available in the Multi-view package, contains all the functionality of Grfint, along with additional support features. If you use WindInt, do not include Grflnt.

Both WindInt and Grflnt use the low-level driver Grfdrv to perform drawing on the bit-map screens.

Term-VDG uses CC310NdgInt while Term-win and all window descriptors use CC310/(WindInt/Grflnt)/GrfDrv modules.

The I/O system provides system-wide, hardware-independent I/O services for user programs and OS-9 itself. All I/O system calls are received by the kernel and passed to the I/O manager for processing.

The I/O manager performs some processing, such as the allocation of data structures for the I/O path. Then, it calls the file managers and device drivers to do most of the work. Additional file manager, device driver, and device descriptor modules can be loaded into memory from files and used while the system is running.

The I/O Manager

The I/O manager provides the first level of service of I/O system calls. It routes data on I/O process paths to and from the appropriate file managers and device drivers.

The I/O Manager also maintains two important internal OS-9 data structures-the device table and the path table. Never modify the I/O manager.

When a path is opened, the I/O manager tries to link to a memory module that has the device name given or implied in the pathlist. This module is the device descriptor. It contains the names of the device driver and file manager for the device. The I/O manager saves the names so later system calls can be routed to these modules.

File Managers 

NitrOS-9 can have any number of file manager modules. Each of these modules processes the raw data stream to or from a class of device drivers that have similar operational characteristics. It removes as many unique characteristics as possible from I/O operations. Thus, it assures that similar devices conform to the  NitrOS-9 standard I/O and file structure. 

The file manager also is responsible for mass storage allocation and directory processing, if these are applicable to the class of devices it serves. File managers usually buffer the data stream and issue requests to the kernel for dynamic allocation of buffer memory. They can also monitor and process the data stream, for example, adding line-feed characters after carriage-return characters. 

The file managers are re-entrant. The three standard NitrOS-9 file managers are: 

· Random block file manager: The RBF manager supports random-access, block-structured devices such as disk systems and bubble memories. (Chapter 5 discusses the RBF manager in detail.) 

· Sequential Character File Manager: The SCF manager supports single-character-oriented devices, such as CRTs  or hardcopy terminals, printers, and modems. (Chapter 6 discusses SCF in detail.) 

· Pipe File Manager (PIPEMAN): The pipe manager supports interprocess communication via pipes. 

File Manager Structure 

Every file manager must have a branch table in exactly the following format. Routines that are not used by the file manager must branch to an error routine, that sets the carry and loads B with an appropriate error code before returning. Routines returning without error must ensure that the carry bit is clear. 

* All routines are entered with: 

* CY) = Path Descriptor pointer 

* CU) = Caller's register stack pointer 

*

EntryPt equ 

*

lbra 
Create 

lbra 
Open 

lbra 
MakDir 

lbra 
ChgDir 

lbra 
Delete 

lbra 
Seek 

lbra 
Read 

lbra 
Write 

lbra 
ReadLn 

lbra 
WriteLn 

lbra 
GetStat 

lbra 
PutStat 

lbra 
Close 

Create, Open

Create and Open handle file creating and opening for devices. Typically, the process involves allocating any required buffers, initializing path descriptor variables, and establishing the path name. If the file manager controls multi-file devices (RBF), directory searching is performed to find or create the specified file.

Makdir

Makdir creates a directory file on multi-file devices. Makdir is neither preceded by a Create nor followed by a Close. File managers that are incapable of supporting directories need to return carry set with an appropriate error code in Register B.

ChgDir

On multi-file devices, ChgDir searches for a directory file. If ChgDir finds the directory, it saves the address of the directory (up to four bytes) in the caller's process descriptor. The descriptor is located at P$DIO + 2 (for a data directory) or P$DIO + 8 (for an execution directory).

In the case of the RBF manager, the address of the directory's file descriptor is saved. Open/Create begins searching in the current directory when the caller's pathlist does not begin with a backslash M. File managers that do not support directories should return the carry set and an appropriate error code in Register B.

Delete

Multi-file device managers handle file delete requests by initiating a directory search that is similar to Open. Once a device manager finds the file, it removes the file from the directory.

Any media in use by the file are returned to unused status. In the case of the RBF manager, space is returned for system use and is marked as available in the free cluster bit map on the disk. File managers that do not support multi- file devices return an error.

Seek

File managers that support random access devices use Seek to position file pointers of an already open path to the byte specified. Typically, the positioning is a logical movement. No error is produced at the time of the seek if the position is beyond the current "end of file".

Normally, file managers that do not support random access ignore Seek, However, an SCF-type manager can use Seek to perform cursor positioning.

Read

Read returns the number of bytes requested to the user's data buffer. Make sure Read returns an EOF error if there is no data available. Read must be capable of copying pure binary data, and generally performs no editing on the data. Generally, the file manager calls the device driver to actually read the data into the buffer. Then, the file manager copies the data from the buffer into the user's data area to keep file managers device independent.

Write

The Write request, like Read, must be capable of recording pure binary data without alteration. The routines for Read and Write are almost identical with the exception that Write uses the device driver's output routine instead of the input routine. The RBF manager and similar random access devices that use fixed length records (sectors) must often preread a sector before writing it, unless they are writing the entire sector. In OS-9, writing past the end of file on a device expands the file with new data.

ReadLn

ReadLn differs from Read in two respects. First, ReadLn terminates when the first end-of-line (carriage return) is encountered.  ReadLn performs any input editing that is appropriate for the device. In the case of SCF, editing involves handling functions such as backspace, line deletion, and the removal of the high order bit from characters.

WriteLn

WriteLn is the counterpart of ReadLn. It calls the device driver to transfer data up to and including the first (if any) carriage return encountered. Appropriate output editing can also be performed. For example, SCF outputs a line feed, a carriage return character, and nulls (if appropriate for the device). It also pauses at the end of a screen page.

GetStat, PutStat

The GetStat (get status) and PutStat (put status) system calls are wildcard calls designed to provide a method of accessing features of a device (or file manager) that are not generally device independent. The file manager can perform specific functions such as setting the size of a file to a given value. Pass unknown status calls to the driver to provide further means of device independence. For example, a PutStat call to format a disk track might behave differently on different types of disk controllers.

Close

Close is responsible for ensuring that any output to a device is completed. (If necessary, Close writes out the last buffer.) It releases any buffer space allocated in an Open or Create. Close does not execute the device driver's terminate routine, but can do specific end-of-file processing if you want it to, such as writing end-of-file records on disks, or form feeds on printers.

Interfacing with Device Drivers

Strictly speaking, device drivers must conform to the general format presented in this manual. The I/O Manager is slightly different because it only uses the Init and Terminate entry points.

Other entry points need only be compatible with the file manager for which the driver is written. For example, the Read entry point of an SCF driver is expected to return one byte from the device. The Read entry point of an RBF driver, on the other hand, expects Read to return an entire sector.

The following code is part of an SCF file manager. The code shows how a file manager might call a driver.

********************

* IOEXEC 

*
Execute Device's Read/Write Routine 

*

* Passed:
(A) = Output character (write) 

*


(X) = Device Table entry ptr 

*


(Y) = Path Descriptor pointer 

*


(U) = Offset of routine (D$Read,D$Write) 

*

* Returns:
(A) = Input char (read) 

*


(B) = Error code, CC set if error 

*

* Destroys B,CC 

IOEXEC
pshs
 a,x,y,u save registers 

ldu
V$STAT,x get static storage for driver

ldx
V$DRIV,x get driver module address 

ldd 
M$EXEC,x and offset of execution entries 

addd 5,s offset by read/write 

leax d,x absolute entry address 

lda ,s+ restore char (for write) 

jsr ,x execute driver read/write 

puls x,y,u,pc return (A)=char, (B)=error

emod 
Module CRC

Size 
equ 
* 
size of sequential file manager

Device Driver Modules

The device driver modules are subroutine packages that perform basic, low-level I/O transfers to or from a specific type of I/O device hardware controller. These modules are re-entrant. So, one copy of the module can concurrently run several devices that use identical I/O controllers.

Device driver modules use a standard module header, in which the module type is specified as code $Ex (device driver). The execution offset address in the module header points to a branch table that has a minimum of six 3-byte entries.

Each entry is typically an LBRA to the corresponding subroutine. The file managers call specific routines in the device driver through this table, passing a pointer to a path descriptor and passing the hardware control register address in the 6809 registers. The branch table looks like this: 

	Code
	Meaning

	$00
	Device initialization routine

	$03
	Read form device

	$06
	Write to device

	$09
	Get device status

	$0C
	Set device status

	$0F
	Device termination routine


(For a complete description of the parameters passed to these subroutines, see the "Device Driver Subroutines" sections in Chapters 5 and 6.)

Relative

Address














NitrOS-9 Interaction With Devices

Device drivers often must wait for hardware to complete a task or for a user to enter data. Such a wait situation occurs if an SCF device driver receives a Read but there is no data is available, or if it receives a Write and no buffer space is available.  NitrOS-9 drivers that encounter this situation should suspend the current process (via F$Sleep). In this way the driver allows other processes to continue using CPU time.

The most efficient way for a driver to awaken itself and resume processing data is by using interrupt requests (IRAs). It is possible for the driver to sleep for a number of system clock ticks and then check the device or buffer for a ready signal. The drawbacks to this technique are:

· It requires the system clock to always remain active. 

· It might require a large number of ticks (perhaps 20) for the device to become ready. Such a case leaves you with a dilemma. If you make the program sleep for two ticks, the system wastes CPU time while checking for device ready. If the driver sleeps 20 ticks, it does not have a good response time.

An interrupt system allows the hardware to report to the CPU and the device drivers when the device is finished with an operation. Using interrupts to its advantage, a device driver can setup interrupt handling to occur when a character is sent or received or when a disk operation is complete. There is a built-in polling facility for pausing and awakening processes. Here is a technique for handling interrupts in a device driver:

1. Use the Init routine to place the driver interrupt service call (IRQSVC) routine in the IRQ polling sequence via an F$IRQ system call: 

ldd V.Port,u get address to poll 

leax IRQPOLL,pcr point to IRQ packet 

leay IRQSERVC,pcr point to IRQ routine 

os9 F$IRQ add dev to poll Sequence 

bcs Error abnormal exit if error 

2. Ensure that driver programs waiting for their hardware, call the sleep routine. The sleep routine copies V.Busy to V.Wake. Then, it goes to sleep for some period of time.

3. When the driver program wakes up, have it check to see whether it was awakened by an interrupt or by a signal sent from some other process. 

Usually, the driver performs this check by reading the V.Wake storage byte. The V.Busy byte is maintained by the file manager to be used as the process ID of the process using the driver. When V.Busy is copied into V.Wake, then V.Wake becomes a flag byte and an information byte. A non zero Wake byte indicates that there is a process awaiting an interrupt. The value in the Wake byte indicates the process to be awakened by sending a wakeup signal as shown in the following code:

lda V.Busy,u get proc ID

sta V.Wake,u arrange for wakeup

andcc #^IntMasks prep for interrupts

Sleep50 ldx #0 or any other tick time (if signal test )

os9 F$Sleep await an IRQ

ldx D.Proc get proc desc ptr if signal test

ldb P$Signal,x i5 signal present? (if signal test)

bne SigTest bra if 50 if Signal test

tst V.Wake,u IRQ occur?

bne Sleep50 bra if not

Note that the code labeled "if signal test" is only necessary if the driver wishes to return to the caller if a signal is sent without waiting for the device to finish. Also note that IRQs and FIRQs must be masked between the time a command is given to the device and the moving of V.Busy and V .Wake . If they are not masked, it is possible for the device IRQ to occur and the IRQSERVC routine to become confused as to whether it is sending a wakeup signal or not. 

4. When the device issues an interrupt, NitrOS-9 calls the routine at the address given in F$IRQ with the interrupts masked.  Make the routine as short as possible, and have it return with an RTS instruction. IRQSERVC can verify that an interrupt has occurred for the device. It needs to clear the interrupt to retrieve any data in the device. Then the V.Wake byte communicates with the main driver module. If V.Wake is non-zero, clear it to indicate a true device interrupt and use its contents as the process ID for an F$Send system call. The F$Send call sends a wakeup signal to the process. Here is an example: 

ldx V.Port,u get device address

tst ?? is it real interrupt from device?

bne IRQSVC90 bra to error if not

lda Data,x get data from device

sta 0,y

lda V.Wake,u

beq IRQSVC80 bra if none

clr V.Wake,u clear it as flag to main routine

ldb #S$Wake,u get wakeup signal

os9 F$Send Send Signal to driver

IRQSVC80 clrb clear carry bit (all is well)

rts

IROSVC90 comb Set carry bit (is an IRQ call)

rts

Suspend State (NitrOS-9 Level 2 only)

The Suspend State allows the elimination of the F$Send system call during interrupt handling. Because the process is already in the active queue, it need not be moved from one queue to another. The device driver IRQSERVC routine can now wake up the suspended main driver by clearing the process status byte suspend bit in the process state. Following are sample routines for the Sleep and IRQSERVC calls:

                  Ida D.Proc get process ptr 

                  sta V.Wake,u prep for re-awakening 

` enable device to IRQ, give command, etc.

                        bra CmdSO enter 5u5pend loop 

            Cmd30 ldx D.Proc get ptr to proce55 desc 
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      Ida P$State,x get state flag 

      ora `Suspend put proc in suspend state 

      sta P$State,x save it in proc desc 

      andcc #^IntMasks unmask interrupts 

      ldx #1 give up time slice 

      OS9 F$Sleep suspend (in active queue) 

      Cmd50 orcc #IntMasks mask interrupts while 

      changing state 

      ldx D.Proc get proc desc addr (if signal 

      test) 

      Ida P$Signal,x get signal (if signal test) 

      beg SigProc bra if signal to be handled 

      Ida V.Wake,u true interrupt? 

      bne Cmd30 bra if not 

      andcc #^IntMasks assure interrupts unmasked 

Note that D.Proc is a pointer to the process descriptor of the cur

rent process. Process descriptors are always allocated on 256

byte page boundaries. Thus, having the high order byte of the

address is adequate to locate the descriptor. D.Proc is put in

V.Wake as a dual value. In one instance, it is a flag byte indi

cating that a process is indeed suspended. In the other instance,

it is a pointer to the process descriptor which enables the

IRQSERVC routine to clear the suspend bit. It is necessary to

have the interrupts masked from the time the device is enabled

until the suspend bit has been set. Making the interrupts

ensure that the IRQSERVC routine does not think it has cleared

the suspend bit before it is even set. If this happens, when the

bit is set the process might go into permanent suspension. The

IRQSERVC routine sample follows:

                        ldy V.Port,u get dev addr 

                        tst V.Wake,u is process awaiting 

                        IRQ? 

                        beg IRQSVCER no exit 

                        clear device interrupt 

                        exit if IRQ not from this device 

                        Ida V.Wake,u get process ptr 

                        clrb 

                        stb V.Wake,u clear proc waiting flag 

                        tfr d,x get process descriptor ptr 

                        Ida P$State,x get state flag 

                        anda # Suspend clear suspend state 

                        sta P$State,x save it 
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                                    clrb clear carry bit 

                                    rt5 

r-- IRQSVCER comb Set carry bit

                                    rt5 

      Device Descriptor Modules 

      Device descriptor modules are small, non-executable modules. 

      Each one provides information that associates a specific 1/O 

      device with its logical name, hardware controller address(es), 

      device driver, file manager name, and initialization parameters. 

      Unlike the device drivers and file managers, which operate on 

      classes of devices, each device descriptor tailors its functions to a 

      specific device. Each device must have a device descriptor. 

      Device descriptor modules use a standard module header, in 

      which the module type is specified as code $Fx (device descrip 

      tor). The name of the module is the name by which the system 

      and user know the device (the device name given in pathlists). 

The rest of the device descriptor header consists of the informa

tion in the following chart:

Relative

Address(es) Use

$09,$OA The relative address of the file manager

name string address

$OB,$OC The relative address of the device driver

name string

$OD Mode/Capabilities: D S PE PW PR E W R

(directory, single user, public execute, pub

lic write, public read, execute, write, read)

$OE,$OF,$10 The absolute physical (24-bit) address of the

device controller

$11 The number of bytes (n bytes) in the ini

tialization table

$12,$12 + n Initialization table

When OS-9 opens a path to the device, the system copies the ini-

tialization table into the option section (PD.OPT) of the path

descriptor. (See "Path Descriptors" in this chapter.)
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The values in this table can be used to define the operating

parameters that are alterable by the Get Status and Set Status

system calls (I$GetStt and I$SetStt). For example, parameters

that are used when initializing terminals define which control

characters are to be used for functions such as backspace and

delete.

The initialization table can be a maximum of 32 bytes long. If

the table is fewer than 32 bytes long, OS-9 sets the remaining

values in the path descriptor to 0.

You might wish to add devices to your system. If a similar device

driver already exists, all you need to do is add the new hardware

and load another device descriptor. Device descriptors can be in

the boot module or they can be loaded into RAM from mass-stor

age files while the system is running.

The following diagram illustrates the device descriptor format:
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Device Descriptor Format

Relative

Address

$00

$01

$02

$03

$04

$05

$06

$07

$08

$09

$OA

$OB

Use

$OD

$OE

$OF

$10

$11

$12,$12 + n

Sync Bytes ($87CD)

Module Size (bytes)

Offset to Module Name

F$ (Type) $1 (Lang)

Attributes Revision

Header Parity Check

Offset to File Manager

Name String

Offset to Device Driver

Name String

Mode Byte

Device Controller

Absolute Physical Addr.

(24 bit)

Initialization Table Size

(Initialization Table)

(Name Strings, and so on)

CRC Check Value

Check

Range

header

parity

      module 

      CRC 

      1 Y,o 

DN LL" ~lGL

OFF

)w U s? B E

$D7

R^TNBOLr

,MAY t f9 7

P,A
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Path Descriptors

Every open path is represented by a data structure called a path _ ,

descriptor (PD). The PD contains the information the file man

agers and device drivers require to perform I/O functions.

PDs are 64 bytes long and are dynamically allocated and deallo

cated by the I/O manager as paths are opened and closed.

They are internal data structures, that are not normally refer

enced from user or applications programs. The description of PDs

is presented here mainly for those programmers who need to

write custom file managers, device drivers, or other extensions to

OS-9.

PDs have three sections. The first section, which is ten bytes

long, is the same for all file managers and device drivers. The

information in the first section is shown in the following chart.

Path Descriptor: Standard Information

Relative Size

Name Address (Bytes) Use

PD.PD $00 1 Path number

PD.MOD $01 1 Access mode: 1 = read, 2 =

write, 3 = update

PD.CNT $02 1 Number of open paths using

this PD

PD.DEV $03 2 Address of the associated

device table entry

PD.CPR $05 1 Current process ID

PD.RGS $06 2 Address of the caller's regis

ter stack

PD.BUF $08 2 Address of the 256-byte

data buffer (if used)

PDYST $OA 22 Defined by the file manager

PD.OPT $20 32 Reserved for the Getstat/

Setstat options

PD.FST is 12-byte storage reserved for and defined by each type

of file manager for file pointers, permanent variables, and so on.
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PROPT is a 32-byte option area used for file or device operat

ing parameters that are dynamically alterable. When the path is

opened, the 1/O manager initializes these variables by copying

the initialization table that is in the device descriptor module.

User programs can change the values later, using the Get Status

and Set Status system calls.

PD.FST and PD.OPT are defined for the file manager in the

assembly-language equate file (SCFDefs for the SCF manager or

RBFDefs for the RBF manager).
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Character File Manager (SCF)





Disk File Manager (RBF)





Input/Output Manager (IOMan)





NitrOS-9 Kernel (Krn, KrnP2)





Pipe File Manager (PIPEMAN)





Floppy Driver (rb1773)





Terminal or Serial Driver





Pipe Driver (Piper)





D0





D1





D2





Term 





Pipe





T1





T2





Init





Clock





Clock2





Module Header





Program


Or


Constants





CRC Value








Sync Bytes ($87,$CD)








Module Size (bytes)








Module Name Offset





Type





Language





Revision





Attributes





Header Parity Check











Execution Offset








Permanent Storage Size





(Additional optional header


extensions)


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 


Module Body, object code, constants, and so on








24-bit CRC Check Value





Module


CRC





Header


parity





Header


parity





Module


CRC








24-bit CRC Check Value





Mode Byte








Permanent Storage Size








Execution Offset





Header Parity Check








Revision





Attributes





Language





Type








Module Name Offset








Module Size (bytes)








Sync Bytes ($87,$CD)








Module Body
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