17
|
1 module whileTestGears1 where
|
4
|
2
|
|
3 open import Function
|
|
4 open import Data.Nat
|
10
|
5 open import Data.Bool hiding ( _≟_ )
|
4
|
6 open import Level renaming ( suc to succ ; zero to Zero )
|
|
7 open import Relation.Nullary using (¬_; Dec; yes; no)
|
|
8 open import Relation.Binary.PropositionalEquality
|
|
9
|
10
|
10 open import utilities
|
|
11 open _/\_
|
4
|
12
|
6
|
13 record Env : Set where
|
|
14 field
|
|
15 varn : ℕ
|
|
16 vari : ℕ
|
|
17 open Env
|
|
18
|
14
|
19 whileTest : {l : Level} {t : Set l} -> (c10 : ℕ) → (Code : Env -> t) -> t
|
|
20 whileTest c10 next = next (record {varn = c10 ; vari = 0} )
|
4
|
21
|
|
22 {-# TERMINATING #-}
|
|
23 whileLoop : {l : Level} {t : Set l} -> Env -> (Code : Env -> t) -> t
|
|
24 whileLoop env next with lt 0 (varn env)
|
|
25 whileLoop env next | false = next env
|
|
26 whileLoop env next | true =
|
|
27 whileLoop (record {varn = (varn env) - 1 ; vari = (vari env) + 1}) next
|
|
28
|
|
29 test1 : Env
|
14
|
30 test1 = whileTest 10 (λ env → whileLoop env (λ env1 → env1 ))
|
4
|
31
|
|
32
|
14
|
33 proof1 : whileTest 10 (λ env → whileLoop env (λ e → (vari e) ≡ 10 ))
|
4
|
34 proof1 = refl
|
|
35
|
16
|
36 -- ↓PostCondition
|
14
|
37 whileTest' : {l : Level} {t : Set l} -> {c10 : ℕ } → (Code : (env : Env) -> ((vari env) ≡ 0) /\ ((varn env) ≡ c10) -> t) -> t
|
|
38 whileTest' {_} {_} {c10} next = next env proof2
|
4
|
39 where
|
|
40 env : Env
|
14
|
41 env = record {vari = 0 ; varn = c10}
|
16
|
42 proof2 : ((vari env) ≡ 0) /\ ((varn env) ≡ c10) -- PostCondition
|
4
|
43 proof2 = record {pi1 = refl ; pi2 = refl}
|
11
|
44
|
|
45 open import Data.Empty
|
|
46 open import Data.Nat.Properties
|
|
47
|
|
48
|
16
|
49 {-# TERMINATING #-} -- ↓PreCondition(Invaliant)
|
14
|
50 whileLoop' : {l : Level} {t : Set l} -> (env : Env) -> {c10 : ℕ } → ((varn env) + (vari env) ≡ c10) -> (Code : Env -> t) -> t
|
9
|
51 whileLoop' env proof next with ( suc zero ≤? (varn env) )
|
|
52 whileLoop' env proof next | no p = next env
|
14
|
53 whileLoop' env {c10} proof next | yes p = whileLoop' env1 (proof3 p ) next
|
4
|
54 where
|
|
55 env1 = record {varn = (varn env) - 1 ; vari = (vari env) + 1}
|
11
|
56 1<0 : 1 ≤ zero → ⊥
|
|
57 1<0 ()
|
14
|
58 proof3 : (suc zero ≤ (varn env)) → varn env1 + vari env1 ≡ c10
|
9
|
59 proof3 (s≤s lt) with varn env
|
11
|
60 proof3 (s≤s z≤n) | zero = ⊥-elim (1<0 p)
|
|
61 proof3 (s≤s (z≤n {n'}) ) | suc n = let open ≡-Reasoning in
|
|
62 begin
|
|
63 n' + (vari env + 1)
|
|
64 ≡⟨ cong ( λ z → n' + z ) ( +-sym {vari env} {1} ) ⟩
|
|
65 n' + (1 + vari env )
|
|
66 ≡⟨ sym ( +-assoc (n') 1 (vari env) ) ⟩
|
13
|
67 (n' + 1) + vari env
|
11
|
68 ≡⟨ cong ( λ z → z + vari env ) +1≡suc ⟩
|
|
69 (suc n' ) + vari env
|
|
70 ≡⟨⟩
|
|
71 varn env + vari env
|
|
72 ≡⟨ proof ⟩
|
14
|
73 c10
|
11
|
74 ∎
|
6
|
75
|
16
|
76 -- Condition to Invaliant
|
14
|
77 conversion1 : {l : Level} {t : Set l } → (env : Env) -> {c10 : ℕ } → ((vari env) ≡ 0) /\ ((varn env) ≡ c10)
|
|
78 -> (Code : (env1 : Env) -> (varn env1 + vari env1 ≡ c10) -> t) -> t
|
|
79 conversion1 env {c10} p1 next = next env proof4
|
6
|
80 where
|
14
|
81 proof4 : varn env + vari env ≡ c10
|
6
|
82 proof4 = let open ≡-Reasoning in
|
|
83 begin
|
|
84 varn env + vari env
|
|
85 ≡⟨ cong ( λ n → n + vari env ) (pi2 p1 ) ⟩
|
14
|
86 c10 + vari env
|
|
87 ≡⟨ cong ( λ n → c10 + n ) (pi1 p1 ) ⟩
|
|
88 c10 + 0
|
|
89 ≡⟨ +-sym {c10} {0} ⟩
|
|
90 c10
|
6
|
91 ∎
|
4
|
92
|
6
|
93
|
14
|
94 proofGears : {c10 : ℕ } → Set
|
|
95 proofGears {c10} = whileTest' {_} {_} {c10} (λ n p1 → conversion1 n p1 (λ n1 p2 → whileLoop' n1 p2 (λ n2 → ( vari n2 ≡ c10 ))))
|
9
|
96
|
14
|
97 proofGearsMeta : {c10 : ℕ } → whileTest' {_} {_} {c10} (λ n p1 → conversion1 n p1 (λ n1 p2 → whileLoop' n1 p2 (λ n2 → ( vari n2 ≡ c10 ))))
|
|
98 proofGearsMeta {c10} = {!!}
|
17
|
99
|
|
100
|
|
101
|
|
102 whileTest0 : {l : Level} {t m : Set l} -> (c10 : ℕ) → (Code : m -> Env -> t) -> t
|
|
103 whileTest0 c10 next = next {!!} (record {varn = c10 ; vari = 0} )
|
|
104
|
|
105 {-# TERMINATING #-}
|
|
106 whileLoop0 : {l : Level} {t m : Set l} -> m -> Env -> (Code : m -> Env -> t) -> t
|
|
107 whileLoop0 m env next with lt 0 (varn env)
|
|
108 whileLoop0 m env next | false = next m env
|
|
109 whileLoop0 m env next | true =
|
|
110 whileLoop0 m (record {varn = (varn env) - 1 ; vari = (vari env) + 1}) next
|
|
111
|