Mercurial > hg > Members > ryokka > HoareLogic
comparison RelOp.agda @ 21:5e4abc1919b4
fix module relation
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 24 Dec 2018 22:50:25 +0900 |
parents | 5001cda86c3d |
children | bfe7d83cf9ba |
comparison
equal
deleted
inserted
replaced
20:fe7d6c90e435 | 21:5e4abc1919b4 |
---|---|
7 open import Data.Sum | 7 open import Data.Sum |
8 open import Data.Unit | 8 open import Data.Unit |
9 open import Relation.Binary | 9 open import Relation.Binary |
10 open import Relation.Binary.Core | 10 open import Relation.Binary.Core |
11 open import Relation.Nullary | 11 open import Relation.Nullary |
12 | 12 open import utilities |
13 | 13 |
14 module RelOp (S : Set) where | 14 module RelOp (S : Set) where |
15 | |
16 Pred : Set -> Set₁ | |
17 Pred X = X -> Set | |
18 | |
19 Imply : Set -> Set -> Set | |
20 Imply X Y = X -> Y | |
21 | |
22 Iff : Set -> Set -> Set | |
23 Iff X Y = Imply X Y × Imply Y X | |
24 | |
25 NotP : {S : Set} -> Pred S -> Pred S | |
26 NotP X s = ¬ X s | |
27 | 15 |
28 data Id {l} {X : Set} : Rel X l where | 16 data Id {l} {X : Set} : Rel X l where |
29 ref : {x : X} -> Id x x | 17 ref : {x : X} -> Id x x |
30 | 18 |
31 -- substId1 | x == y & P(x) => P(y) | 19 -- substId1 | x == y & P(x) => P(y) |