Mercurial > hg > Members > ryokka > HoareLogic
view whileTestPrim.agda @ 4:64bd5c236002
add whileTestGears
author | ryokka |
---|---|
date | Fri, 14 Dec 2018 19:34:16 +0900 |
parents | 6be8ee856666 |
children | e7d6bdb6039d |
line wrap: on
line source
module whileTestPrim where open import Function open import Data.Nat open import Data.Bool hiding ( _≟_ ) open import Level renaming ( suc to succ ; zero to Zero ) open import Relation.Nullary using (¬_; Dec; yes; no) open import Relation.Binary.PropositionalEquality record Env : Set where field varn : ℕ vari : ℕ open Env PrimComm : Set PrimComm = Env → Env Cond : Set Cond = (Env → Bool) data Comm : Set where Skip : Comm Abort : Comm PComm : PrimComm -> Comm Seq : Comm -> Comm -> Comm If : Cond -> Comm -> Comm -> Comm While : Cond -> Comm -> Comm _-_ : ℕ -> ℕ -> ℕ x - zero = x zero - _ = zero (suc x) - (suc y) = x - y lt : ℕ -> ℕ -> Bool lt x y with (suc x ) ≤? y lt x y | yes p = true lt x y | no ¬p = false Equal : ℕ -> ℕ -> Bool Equal x y with x ≟ y Equal x y | yes p = true Equal x y | no ¬p = false program : Comm program = Seq ( PComm (λ env → record env {varn = 10})) $ Seq ( PComm (λ env → record env {vari = 0})) $ While (λ env → lt (varn env ) zero ) (Seq (PComm (λ env → record env {vari = ((vari env) + 1)} )) $ PComm (λ env → record env {varn = ((varn env) - 1)} )) simple : Comm simple = Seq ( PComm (λ env → record env {varn = 10})) $ PComm (λ env → record env {vari = 0}) {-# TERMINATING #-} interpret : Env → Comm → Env interpret env Skip = env interpret env Abort = env interpret env (PComm x) = x env interpret env (Seq comm comm1) = interpret (interpret env comm) comm1 interpret env (If x then else) with x env ... | true = interpret env then ... | false = interpret env else interpret env (While x comm) with x env ... | true = interpret (interpret env comm) (While x comm) ... | false = env test1 : Env test1 = interpret ( record { vari = 0 ; varn = 0 } ) program empty-case : (env : Env) → (( λ e → true ) env ) ≡ true empty-case _ = refl implies : Bool → Bool → Bool implies false _ = true implies true true = true implies true false = false Axiom : Cond -> PrimComm -> Cond -> Set Axiom pre comm post = ∀ (env : Env) → implies (pre env) ( post (comm env)) ≡ true Tautology : Cond -> Cond -> Set Tautology pre post = ∀ (env : Env) → implies (pre env) (post env) ≡ true _/\_ : Cond -> Cond -> Cond x /\ y = λ env → x env ∧ y env neg : Cond -> Cond neg x = λ env → not ( x env ) data HTProof : Cond -> Comm -> Cond -> Set where PrimRule : {bPre : Cond} -> {pcm : PrimComm} -> {bPost : Cond} -> (pr : Axiom bPre pcm bPost) -> HTProof bPre (PComm pcm) bPost SkipRule : (b : Cond) -> HTProof b Skip b AbortRule : (bPre : Cond) -> (bPost : Cond) -> HTProof bPre Abort bPost WeakeningRule : {bPre : Cond} -> {bPre' : Cond} -> {cm : Comm} -> {bPost' : Cond} -> {bPost : Cond} -> Tautology bPre bPre' -> HTProof bPre' cm bPost' -> Tautology bPost' bPost -> HTProof bPre cm bPost SeqRule : {bPre : Cond} -> {cm1 : Comm} -> {bMid : Cond} -> {cm2 : Comm} -> {bPost : Cond} -> HTProof bPre cm1 bMid -> HTProof bMid cm2 bPost -> HTProof bPre (Seq cm1 cm2) bPost IfRule : {cmThen : Comm} -> {cmElse : Comm} -> {bPre : Cond} -> {bPost : Cond} -> {b : Cond} -> HTProof (bPre /\ b) cmThen bPost -> HTProof (bPre /\ neg b) cmElse bPost -> HTProof bPre (If b cmThen cmElse) bPost WhileRule : {cm : Comm} -> {bInv : Cond} -> {b : Cond} -> HTProof (bInv /\ b) cm bInv -> HTProof bInv (While b cm) (bInv /\ neg b) initCond : Cond initCond env = true stmt1Cond : Cond stmt1Cond env = Equal (varn env) 10 stmt2Cond : Cond stmt2Cond env = (Equal (varn env) 10) ∧ (Equal (vari env) 0) whileInv : Cond whileInv env = Equal ((varn env) + (vari env)) 10 whileInv' : Cond whileInv' env = Equal ((varn env) + (vari env)) 11 termCond : Cond termCond env = Equal (vari env) 10 eqlemma : { x y : ℕ } → Equal x y ≡ true → x ≡ y eqlemma {x} {y} eq with x ≟ y eqlemma {x} {y} refl | yes refl = refl eqlemma {x} {y} () | no ¬p proofs : HTProof initCond simple stmt2Cond proofs = SeqRule {initCond} ( PrimRule empty-case ) $ PrimRule {stmt1Cond} {_} {stmt2Cond} lemma where lemma : Axiom stmt1Cond (λ env → record { varn = varn env ; vari = 0 }) stmt2Cond lemma env with stmt1Cond env lemma env | false = refl lemma env | true = refl proof1 : HTProof initCond program termCond proof1 = SeqRule {λ e → true} ( PrimRule empty-case ) $ SeqRule {λ e → Equal (varn e) 10} ( PrimRule lemma1 ) $ WeakeningRule {λ e → (Equal (varn e) 10) ∧ (Equal (vari e) 0)} lemma2 ( WhileRule {_} {λ e → Equal ((varn e) + (vari e)) 10} $ SeqRule (PrimRule {λ e → whileInv e ∧ lt (varn e) zero } lemma3) $ PrimRule {whileInv'} {_} {whileInv} lemma4 ) lemma5 where lemma1 : Axiom stmt1Cond (λ env → record { varn = varn env ; vari = 0 }) stmt2Cond lemma1 env with stmt1Cond env lemma1 env | false = refl lemma1 env | true = refl lemma2 : Tautology stmt2Cond whileInv lemma2 env with stmt2Cond env | Equal (varn env + vari env) 10 lemma2 env | false | false = refl lemma2 env | false | true = refl lemma2 env | true | true = refl lemma2 env | true | false = {!!} lemma3 : Axiom (whileInv /\ (λ env → lt (varn env) zero)) (λ env → record { varn = varn env ; vari = vari env + 1 }) whileInv' lemma3 = {!!} lemma4 : Axiom whileInv' (λ env → record { varn = varn env - 1 ; vari = vari env }) whileInv lemma4 = {!!} lemma5 : Tautology (whileInv /\ neg (λ z → lt (varn z) zero)) termCond lemma5 = {!!}