Mercurial > hg > Members > ryokka > HoareLogic
view Hoare.agda @ 94:c3b08293a72e
remove exit from LoopS
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 02 Nov 2021 07:08:54 +0900 |
parents | e668962ac31a |
children |
line wrap: on
line source
module Hoare (PrimComm : Set) (Cond : Set) (Axiom : Cond -> PrimComm -> Cond -> Set) (Tautology : Cond -> Cond -> Set) (_and_ : Cond -> Cond -> Cond) (neg : Cond -> Cond ) where data Comm : Set where Skip : Comm Abort : Comm PComm : PrimComm -> Comm Seq : Comm -> Comm -> Comm If : Cond -> Comm -> Comm -> Comm While : Cond -> Comm -> Comm {- prPre pr prPost ------------- ------------------ ---------------- bPre => bPre' {bPre'} c {bPost'} bPost' => bPost Weakening : ---------------------------------------------------- {bPre} c {bPost} Assign: ---------------------------- {bPost[v<-e]} v:=e {bPost} pr1 pr2 ----------------- ------------------ {bPre} cm1 {bMid} {bMid} cm2 {bPost} Seq: --------------------------------------- {bPre} cm1 ; cm2 {bPost} pr1 pr2 ----------------------- --------------------------- {bPre /\ c} cm1 {bPost} {bPre /\ neg c} cm2 {bPost} If: ------------------------------------------------------ {bPre} If c then cm1 else cm2 fi {bPost} pr ------------------- {inv /\ c} cm {inv} While: --------------------------------------- {inv} while c do cm od {inv /\ neg c} -} data HTProof : Cond -> Comm -> Cond -> Set where PrimRule : {bPre : Cond} -> {pcm : PrimComm} -> {bPost : Cond} -> (pr : Axiom bPre pcm bPost) -> HTProof bPre (PComm pcm) bPost SkipRule : (b : Cond) -> HTProof b Skip b AbortRule : (bPre : Cond) -> (bPost : Cond) -> HTProof bPre Abort bPost WeakeningRule : {bPre : Cond} -> {bPre' : Cond} -> {cm : Comm} -> {bPost' : Cond} -> {bPost : Cond} -> Tautology bPre bPre' -> HTProof bPre' cm bPost' -> Tautology bPost' bPost -> HTProof bPre cm bPost SeqRule : {bPre : Cond} -> {cm1 : Comm} -> {bMid : Cond} -> {cm2 : Comm} -> {bPost : Cond} -> HTProof bPre cm1 bMid -> HTProof bMid cm2 bPost -> HTProof bPre (Seq cm1 cm2) bPost IfRule : {cmThen : Comm} -> {cmElse : Comm} -> {bPre : Cond} -> {bPost : Cond} -> {b : Cond} -> HTProof (bPre and b) cmThen bPost -> HTProof (bPre and neg b) cmElse bPost -> HTProof bPre (If b cmThen cmElse) bPost WhileRule : {cm : Comm} -> {bInv : Cond} -> {b : Cond} -> HTProof (bInv and b) cm bInv -> HTProof bInv (While b cm) (bInv and neg b)