view Hoare.agda @ 94:c3b08293a72e

remove exit from LoopS
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Tue, 02 Nov 2021 07:08:54 +0900
parents e668962ac31a
children
line wrap: on
line source

module Hoare
        (PrimComm : Set)
        (Cond : Set)
        (Axiom : Cond -> PrimComm -> Cond -> Set)
        (Tautology : Cond -> Cond -> Set)
        (_and_ :  Cond -> Cond -> Cond)
        (neg :  Cond -> Cond )
  where

data Comm : Set where
  Skip  : Comm
  Abort : Comm
  PComm : PrimComm -> Comm
  Seq   : Comm -> Comm -> Comm
  If    : Cond -> Comm -> Comm -> Comm
  While : Cond -> Comm -> Comm


{-
                prPre              pr              prPost
             -------------  ------------------  ----------------
             bPre => bPre'  {bPre'} c {bPost'}  bPost' => bPost
Weakening : ----------------------------------------------------
                       {bPre} c {bPost}

Assign: ----------------------------
         {bPost[v<-e]} v:=e {bPost}

             pr1                pr2
      -----------------  ------------------
      {bPre} cm1 {bMid}  {bMid} cm2 {bPost}
Seq: ---------------------------------------
      {bPre} cm1 ; cm2 {bPost}

               pr1                         pr2
     -----------------------  ---------------------------
     {bPre /\ c} cm1 {bPost}  {bPre /\ neg c} cm2 {bPost}
If: ------------------------------------------------------
     {bPre} If c then cm1 else cm2 fi {bPost}

                          pr
                 -------------------
                 {inv /\ c} cm {inv}
While: ---------------------------------------
        {inv} while c do cm od {inv /\ neg c}
-}


data HTProof : Cond -> Comm -> Cond -> Set where
  PrimRule : {bPre : Cond} -> {pcm : PrimComm} -> {bPost : Cond} ->
             (pr : Axiom bPre pcm bPost) ->
             HTProof bPre (PComm pcm) bPost
  SkipRule : (b : Cond) -> HTProof b Skip b
  AbortRule : (bPre : Cond) -> (bPost : Cond) ->
              HTProof bPre Abort bPost
  WeakeningRule : {bPre : Cond} -> {bPre' : Cond} -> {cm : Comm} ->
                {bPost' : Cond} -> {bPost : Cond} ->
                Tautology bPre bPre' ->
                HTProof bPre' cm bPost' ->
                Tautology bPost' bPost ->
                HTProof bPre cm bPost
  SeqRule : {bPre : Cond} -> {cm1 : Comm} -> {bMid : Cond} ->
            {cm2 : Comm} -> {bPost : Cond} ->
            HTProof bPre cm1 bMid ->
            HTProof bMid cm2 bPost ->
            HTProof bPre (Seq cm1 cm2) bPost
  IfRule : {cmThen : Comm} -> {cmElse : Comm} ->
           {bPre : Cond} -> {bPost : Cond} ->
           {b : Cond} ->
           HTProof (bPre and b) cmThen bPost ->
           HTProof (bPre and neg b) cmElse bPost ->
           HTProof bPre (If b cmThen cmElse) bPost
  WhileRule : {cm : Comm} -> {bInv : Cond} -> {b : Cond} ->
              HTProof (bInv and b) cm bInv ->
              HTProof bInv (While b cm) (bInv and neg b)