module whileTestGears where open import Function open import Data.Nat open import Data.Bool hiding ( _≟_ ; _≤?_ ; _≤_ ; _<_) open import Data.Product open import Level renaming ( suc to succ ; zero to Zero ) open import Relation.Nullary using (¬_; Dec; yes; no) open import Relation.Binary.PropositionalEquality open import Agda.Builtin.Unit open import utilities open _/\_ record Env : Set (succ Zero) where field varn : ℕ vari : ℕ open Env whileTest : {l : Level} {t : Set l} → (c10 : ℕ) → (Code : Env → t) → t whileTest c10 next = next (record {varn = c10 ; vari = 0 } ) {-# TERMINATING #-} whileLoop : {l : Level} {t : Set l} → Env → (Code : Env → t) → t whileLoop env next with lt 0 (varn env) whileLoop env next | false = next env whileLoop env next | true = whileLoop (record env {varn = (varn env) - 1 ; vari = (vari env) + 1}) next test1 : Env test1 = whileTest 10 (λ env → whileLoop env (λ env1 → env1 )) proof1 : whileTest 10 (λ env → whileLoop env (λ e → (vari e) ≡ 10 )) proof1 = refl -- ↓PostCondition whileTest' : {l : Level} {t : Set l} → {c10 : ℕ } → (Code : (env : Env ) → ((vari env) ≡ 0) /\ ((varn env) ≡ c10) → t) → t whileTest' {_} {_} {c10} next = next env proof2 where env : Env env = record {vari = 0 ; varn = c10 } proof2 : ((vari env) ≡ 0) /\ ((varn env) ≡ c10) -- PostCondition proof2 = record {pi1 = refl ; pi2 = refl} open import Data.Empty open import Data.Nat.Properties {-# TERMINATING #-} -- ↓PreCondition(Invaliant) whileLoop' : {l : Level} {t : Set l} → (env : Env ) → {c10 : ℕ } → ((varn env) + (vari env) ≡ c10) → (Code : Env → t) → t whileLoop' env proof next with ( suc zero ≤? (varn env) ) whileLoop' env proof next | no p = next env whileLoop' env {c10} proof next | yes p = whileLoop' env1 (proof3 p ) next where env1 = record env {varn = (varn env) - 1 ; vari = (vari env) + 1} 1<0 : 1 ≤ zero → ⊥ 1<0 () proof3 : (suc zero ≤ (varn env)) → varn env1 + vari env1 ≡ c10 proof3 (s≤s lt) with varn env proof3 (s≤s z≤n) | zero = ⊥-elim (1<0 p) proof3 (s≤s (z≤n {n'}) ) | suc n = let open ≡-Reasoning in begin n' + (vari env + 1) ≡⟨ cong ( λ z → n' + z ) ( +-sym {vari env} {1} ) ⟩ n' + (1 + vari env ) ≡⟨ sym ( +-assoc (n') 1 (vari env) ) ⟩ (n' + 1) + vari env ≡⟨ cong ( λ z → z + vari env ) +1≡suc ⟩ (suc n' ) + vari env ≡⟨⟩ varn env + vari env ≡⟨ proof ⟩ c10 ∎ -- Condition to Invariant conversion1 : {l : Level} {t : Set l } → (env : Env ) → {c10 : ℕ } → ((vari env) ≡ 0) /\ ((varn env) ≡ c10) → (Code : (env1 : Env ) → (varn env1 + vari env1 ≡ c10) → t) → t conversion1 env {c10} p1 next = next env proof4 where proof4 : varn env + vari env ≡ c10 proof4 = let open ≡-Reasoning in begin varn env + vari env ≡⟨ cong ( λ n → n + vari env ) (pi2 p1 ) ⟩ c10 + vari env ≡⟨ cong ( λ n → c10 + n ) (pi1 p1 ) ⟩ c10 + 0 ≡⟨ +-sym {c10} {0} ⟩ c10 ∎ proofGears : {c10 : ℕ } → Set proofGears {c10} = whileTest' {_} {_} {c10} (λ n p1 → conversion1 n p1 (λ n1 p2 → whileLoop' n1 p2 (λ n2 → ( vari n2 ≡ c10 )))) -- proofGearsMeta : {c10 : ℕ } → proofGears {c10} -- proofGearsMeta {c10} = {!!} -- net yet done -- -- openended Env c <=> Context -- open import Relation.Nullary hiding (proof) open import Relation.Binary record Envc : Set (succ Zero) where field c10 : ℕ varn : ℕ vari : ℕ open Envc whileTestP : {l : Level} {t : Set l} → (c10 : ℕ) → (Code : Envc → t) → t whileTestP c10 next = next (record {varn = c10 ; vari = 0 ; c10 = c10 } ) whileLoopP : {l : Level} {t : Set l} → Envc → (next : Envc → t) → (exit : Envc → t) → t whileLoopP env next exit with <-cmp 0 (varn env) whileLoopP env next exit | tri≈ ¬a b ¬c = exit env whileLoopP env next exit | tri< a ¬b ¬c = next (record env {varn = (varn env) - 1 ; vari = (vari env) + 1 }) whileLoopP' : {l : Level} {t : Set l} → Envc → (next : Envc → t) → (exit : Envc → t) → t whileLoopP' env@record { c10 = c10 ; varn = zero ; vari = vari } next exit = exit env whileLoopP' env@record { c10 = c10 ; varn = (suc varn1) ; vari = vari } next exit = next (record env {varn = varn1 ; vari = vari + 1 }) -- whileLoopP env next exit | tri≈ ¬a b ¬c = exit env -- whileLoopP env next exit | tri< a ¬b ¬c = -- next (record env {varn = (varn env) - 1 ; vari = (vari env) + 1 }) {-# TERMINATING #-} loopP : {l : Level} {t : Set l} → Envc → (exit : Envc → t) → t loopP env exit = whileLoopP env (λ env → loopP env exit ) exit whileTestPCall : (c10 : ℕ ) → Envc whileTestPCall c10 = whileTestP {_} {_} c10 (λ env → loopP env (λ env → env)) data whileTestState : Set where s1 : whileTestState s2 : whileTestState sf : whileTestState whileTestStateP : whileTestState → Envc → Set whileTestStateP s1 env = (vari env ≡ 0) /\ (varn env ≡ c10 env) whileTestStateP s2 env = (varn env + vari env ≡ c10 env) whileTestStateP sf env = (vari env ≡ c10 env) whileTestPwP : {l : Level} {t : Set l} → (c10 : ℕ) → ((env : Envc ) → whileTestStateP s1 env → t) → t whileTestPwP c10 next = next env record { pi1 = refl ; pi2 = refl } where env : Envc env = whileTestP c10 ( λ env → env ) whileLoopPwP : {l : Level} {t : Set l} → (env : Envc ) → whileTestStateP s2 env → (next : (env : Envc ) → whileTestStateP s2 env → t) → (exit : (env : Envc ) → whileTestStateP sf env → t) → t whileLoopPwP env s next exit with <-cmp 0 (varn env) whileLoopPwP env s next exit | tri≈ ¬a b ¬c = exit env (lem (sym b) s) where lem : (varn env ≡ 0) → (varn env + vari env ≡ c10 env) → vari env ≡ c10 env lem p1 p2 rewrite p1 = p2 whileLoopPwP env s next exit | tri< a ¬b ¬c = next (record env {varn = (varn env) - 1 ; vari = (vari env) + 1 }) (proof5 a) where 1<0 : 1 ≤ zero → ⊥ 1<0 () proof5 : (suc zero ≤ (varn env)) → (varn env - 1) + (vari env + 1) ≡ c10 env proof5 (s≤s lt) with varn env proof5 (s≤s z≤n) | zero = ⊥-elim (1<0 a) proof5 (s≤s (z≤n {n'}) ) | suc n = let open ≡-Reasoning in begin n' + (vari env + 1) ≡⟨ cong ( λ z → n' + z ) ( +-sym {vari env} {1} ) ⟩ n' + (1 + vari env ) ≡⟨ sym ( +-assoc (n') 1 (vari env) ) ⟩ (n' + 1) + vari env ≡⟨ cong ( λ z → z + vari env ) +1≡suc ⟩ (suc n' ) + vari env ≡⟨⟩ varn env + vari env ≡⟨ s ⟩ c10 env ∎ data _implies_ (A B : Set ) : Set (succ Zero) where proof : ( A → B ) → A implies B implies2p : {A B : Set } → A implies B → A → B implies2p (proof x) = x whileTestPSem : (c : ℕ) → whileTestP c ( λ env → ⊤ implies (whileTestStateP s1 env) ) whileTestPSem c = proof ( λ _ → record { pi1 = refl ; pi2 = refl } ) SemGears : (f : {l : Level } {t : Set l } → (e0 : Envc ) → ((e : Envc) → t) → t ) → Set (succ Zero) SemGears f = Envc → Envc → Set GearsUnitSound : (e0 e1 : Envc) {pre : Envc → Set} {post : Envc → Set} → (f : {l : Level } {t : Set l } → (e0 : Envc ) → (Envc → t) → t ) → (fsem : (e0 : Envc ) → f e0 ( λ e1 → (pre e0) implies (post e1))) → f e0 (λ e1 → pre e0 implies post e1) GearsUnitSound e0 e1 f fsem = fsem e0 whileTestPSemSound : (c : ℕ ) (output : Envc ) → output ≡ whileTestP c (λ e → e) → ⊤ implies ((vari output ≡ 0) /\ (varn output ≡ c)) whileTestPSemSound c output refl = whileTestPSem c whileLoopPSem : {l : Level} {t : Set l} → (input : Envc ) → whileTestStateP s2 input → (next : (output : Envc ) → (whileTestStateP s2 input ) implies (whileTestStateP s2 output) → t) → (exit : (output : Envc ) → (whileTestStateP s2 input ) implies (whileTestStateP sf output) → t) → t whileLoopPSem env s next exit with <-cmp 0 (varn env) whileLoopPSem env s next exit | tri≈ ¬a b ¬c rewrite (sym b) = exit env (proof (λ z → z)) whileLoopPSem env s next exit | tri< a ¬b ¬c = next env (proof (λ z → z)) whileLoopPSem' : {l : Level} {t : Set l} → (input : Envc ) → whileTestStateP s2 input → (next : (output : Envc ) → (whileTestStateP s2 input ) implies (whileTestStateP s2 output) → t) → (exit : (output : Envc ) → (whileTestStateP s2 input ) implies (whileTestStateP sf output) → t) → t whileLoopPSem' env@(record { c10 = c10 ; varn = zero ; vari = vari }) s next exit = exit env (proof (λ z → z)) whileLoopPSem' env@(record { c10 = c10 ; varn = (suc varn₁) ; vari = vari }) s next exit = next env (proof (λ z → z)) loopPP : (n : ℕ) → (input : Envc ) → (n ≡ varn input) → Envc loopPP n input@(record { c10 = c10 ; varn = zero ; vari = vari }) refl = input loopPP n input@(record { c10 = c10 ; varn = (suc varn₁) ; vari = vari }) refl = whileLoopP (record { c10 = c10 ; varn = (varn₁) ; vari = vari }) (λ x → loopPP (n - 1) (record { c10 = c10 ; varn = (varn₁) ; vari = vari }) refl) (λ output → output) loopPPSem : {l : Level} {t : Set l} → (input output : Envc ) → loopPP (varn input) input refl ≡ output → (whileTestStateP s2 input ) implies (whileTestStateP sf output) loopPPSem {l} {t} input output refl = loopPPSemInduct (varn input) input refl where loopPPSemInduct : (n : ℕ) → (current : Envc) → varn current ≡ n → (whileTestStateP s2 current ) implies (whileTestStateP sf output) loopPPSemInduct zero current refl = proof λ x → {!!} loopPPSemInduct (suc n) current refl with whileLoopPSem current {!!} {!!} {!!} ... | aa = {!!} lpc : (input : Envc ) → Envc lpc input@(record { c10 = c10 ; varn = zero ; vari = vari }) = input lpc input@(record { c10 = c10 ; varn = (suc varn₁) ; vari = vari }) = whileLoopP (record { c10 = c10 ; varn = (varn₁) ; vari = vari }) (λ x → lpc record { c10 = c10 ; varn = (varn₁) ; vari = vari }) (λ output → output) -- loopPP' input | tri≈ ¬a b ¬c = input -- loopPP' input | tri< a ¬b ¬c = whileLoopP input (λ enext → loopPP' enext) (λ eout → eout) -- loopPP' (whileLoopP input (λ next → loopPP' next) (λ output → output)) -- = whileLoopP input (λ next → loopPP next ) (λ output → output ) whileLoopPSemSound : (input output : Envc ) → whileTestStateP s2 input → output ≡ lpc input → (whileTestStateP s2 input ) implies ( whileTestStateP sf output ) whileLoopPSemSound input output pre eq = {!!} -- with (lpc input) -- record { c10 = c11 ; varn = varn₁ ; vari = vari₁ } .(lpc (record { c10 = c11 ; varn = varn₁ ; vari = vari₁ })) pre refl | record { c10 = c10 ; varn = varn ; vari = vari } = proof λ x → {!!} -- where -- lem : (whileTestStateP s2 input ) → (varn input + vari input ≡ c10 input) -- implies (vari output ≡ c10 output) -- lem refl = proof λ x → {!!} -- whileLoopPSem' input pre (λ output1 x → proof (λ x₁ → ?)) (λ output₁ x → proof (λ x₁ → ?)))) -- proof (whileLoopPwP input pre (λ e p1 p11 → {!!}) (λ e2 p2 p22 → {!!}) ) -- with <-cmp 0 (varn input ) -- ... | ttt = {!!} -- induction にする {-# TERMINATING #-} loopPwP : {l : Level} {t : Set l} → (env : Envc ) → whileTestStateP s2 env → (exit : (env : Envc ) → whileTestStateP sf env → t) → t loopPwP env s exit = whileLoopPwP env s (λ env s → loopPwP env s exit ) exit -- wP を Env のRel にする Env → Env → Set にしちゃう whileTestPCallwP : (c : ℕ ) → Set whileTestPCallwP c = whileTestPwP {_} {_} c ( λ env s → loopPwP env (conv env s) ( λ env s → vari env ≡ c ) ) where conv : (env : Envc ) → (vari env ≡ 0) /\ (varn env ≡ c10 env) → varn env + vari env ≡ c10 env conv e record { pi1 = refl ; pi2 = refl } = +zero conv1 : (env : Envc ) → (vari env ≡ 0) /\ (varn env ≡ c10 env) → varn env + vari env ≡ c10 env conv1 e record { pi1 = refl ; pi2 = refl } = +zero -- = whileTestPwP (suc c) (λ env s → loopPwP env (conv1 env s) (λ env₁ s₁ → {!!})) data GComm : Set (succ Zero) where Skip : GComm Abort : GComm PComm : Set → GComm -- Seq : GComm → GComm → GComm -- If : whileTestState → GComm → GComm → GComm while : whileTestState → GComm → GComm gearsSem : {l : Level} {t : Set l} → {c10 : ℕ} → Envc → Envc → (Envc → (Envc → t) → t) → Set gearsSem pre post = {!!} unionInf : ∀ {l} -> (ℕ -> Rel Set l) -> Rel Set l unionInf f a b = ∃ (λ (n : ℕ) → f n a b) comp : ∀ {l} → Rel Set l → Rel Set l → Rel Set (succ Zero Level.⊔ l) comp r1 r2 a b = ∃ (λ (a' : Set) → r1 a a' × r2 a' b) -- repeat : ℕ -> rel set zero -> rel set zero -- repeat ℕ.zero r = λ x x₁ → ⊤ -- repeat (ℕ.suc m) r = comp (repeat m r) r GSemComm : {l : Level} {t : Set l} → GComm → Rel whileTestState (Zero) GSemComm Skip = λ x x₁ → ⊤ GSemComm Abort = λ x x₁ → ⊥ GSemComm (PComm x) = λ x₁ x₂ → x -- GSemComm (Seq con con₁ con₃) = λ x₁ x₂ → {!!} -- GSemComm (If x con con₁) = {!!} GSemComm (while x con) = λ x₁ x₂ → unionInf {Zero} (λ (n : ℕ) → {!!}) {!!} {!!} ProofConnect : {l : Level} {t : Set l} → (pr1 : Envc → Set → Set) → (Envc → Set → (Envc → Set → t)) → (Envc → Set → Set) ProofConnect prev f env post = {!!} -- with f env ({!!}) {!!} Proof2 : (env : Envc) → (vari env ≡ c10 env) → vari env ≡ c10 env Proof2 _ refl = refl -- Proof1 : (env : Envc) → (s : varn env + vari env ≡ c10 env) → ((env : Envc) → (vari env ≡ c10 env) → vari env ≡ c10 env) → vari env ≡ c10 env Proof1 : (env : Envc) → (s : varn env + vari env ≡ c10 env) → loopPwP env s ( λ env s → vari env ≡ c10 env ) Proof1 env s = {!!} Proof : (c : ℕ ) → whileTestPCallwP c Proof c = {!!}