Mercurial > hg > Members > ryokka > HoareLogic
changeset 3:6be8ee856666
add simple Hoare logic example
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 14 Dec 2018 16:26:49 +0900 |
parents | b05a4156da01 |
children | 64bd5c236002 |
files | whileTestPrim.agda |
diffstat | 1 files changed, 185 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/whileTestPrim.agda Fri Dec 14 16:26:49 2018 +0900 @@ -0,0 +1,185 @@ +module whileTestPrim where + +open import Function +open import Data.Nat +open import Data.Bool hiding ( _≟_ ) +open import Level renaming ( suc to succ ; zero to Zero ) +open import Relation.Nullary using (¬_; Dec; yes; no) +open import Relation.Binary.Core + + + +record Env : Set where + field + varn : ℕ + vari : ℕ +open Env + +PrimComm : Set +PrimComm = Env → Env + +Cond : Set +Cond = (Env → Bool) + +data Comm : Set where + Skip : Comm + Abort : Comm + PComm : PrimComm -> Comm + Seq : Comm -> Comm -> Comm + If : Cond -> Comm -> Comm -> Comm + While : Cond -> Comm -> Comm + +_-_ : ℕ -> ℕ -> ℕ +x - zero = x +zero - _ = zero +(suc x) - (suc y) = x - y + +lt : ℕ -> ℕ -> Bool +lt x y with (suc x ) ≤? y +lt x y | yes p = true +lt x y | no ¬p = false + +Equal : ℕ -> ℕ -> Bool +Equal x y with x ≟ y +Equal x y | yes p = true +Equal x y | no ¬p = false + +program : Comm +program = + Seq ( PComm (λ env → record env {varn = 10})) + $ Seq ( PComm (λ env → record env {vari = 0})) + $ While (λ env → lt (varn env ) zero ) + (Seq (PComm (λ env → record env {vari = ((vari env) + 1)} )) + $ PComm (λ env → record env {varn = ((varn env) - 1)} )) + +simple : Comm +simple = + Seq ( PComm (λ env → record env {varn = 10})) + $ PComm (λ env → record env {vari = 0}) + +{-# TERMINATING #-} +interpret : Env → Comm → Env +interpret env Skip = env +interpret env Abort = env +interpret env (PComm x) = x env +interpret env (Seq comm comm1) = interpret (interpret env comm) comm1 +interpret env (If x then else) with x env +... | true = interpret env then +... | false = interpret env else +interpret env (While x comm) with x env +... | true = interpret (interpret env comm) (While x comm) +... | false = env + +test1 : Env +test1 = interpret ( record { vari = 0 ; varn = 0 } ) program + + +empty-case : (env : Env) → (( λ e → true ) env ) ≡ true +empty-case _ = refl + +implies : Bool → Bool → Bool +implies false _ = true +implies true true = true +implies true false = false + +Axiom : Cond -> PrimComm -> Cond -> Set +Axiom pre comm post = ∀ (env : Env) → implies (pre env) ( post (comm env)) ≡ true + +Tautology : Cond -> Cond -> Set +Tautology pre post = ∀ (env : Env) → implies (pre env) (post env) ≡ true + +_/\_ : Cond -> Cond -> Cond +x /\ y = λ env → x env ∧ y env + +neg : Cond -> Cond +neg x = λ env → not ( x env ) + +data HTProof : Cond -> Comm -> Cond -> Set where + PrimRule : {bPre : Cond} -> {pcm : PrimComm} -> {bPost : Cond} -> + (pr : Axiom bPre pcm bPost) -> + HTProof bPre (PComm pcm) bPost + SkipRule : (b : Cond) -> HTProof b Skip b + AbortRule : (bPre : Cond) -> (bPost : Cond) -> + HTProof bPre Abort bPost + WeakeningRule : {bPre : Cond} -> {bPre' : Cond} -> {cm : Comm} -> + {bPost' : Cond} -> {bPost : Cond} -> + Tautology bPre bPre' -> + HTProof bPre' cm bPost' -> + Tautology bPost' bPost -> + HTProof bPre cm bPost + SeqRule : {bPre : Cond} -> {cm1 : Comm} -> {bMid : Cond} -> + {cm2 : Comm} -> {bPost : Cond} -> + HTProof bPre cm1 bMid -> + HTProof bMid cm2 bPost -> + HTProof bPre (Seq cm1 cm2) bPost + IfRule : {cmThen : Comm} -> {cmElse : Comm} -> + {bPre : Cond} -> {bPost : Cond} -> + {b : Cond} -> + HTProof (bPre /\ b) cmThen bPost -> + HTProof (bPre /\ neg b) cmElse bPost -> + HTProof bPre (If b cmThen cmElse) bPost + WhileRule : {cm : Comm} -> {bInv : Cond} -> {b : Cond} -> + HTProof (bInv /\ b) cm bInv -> + HTProof bInv (While b cm) (bInv /\ neg b) + +initCond : Cond +initCond env = true + +stmt1Cond : Cond +stmt1Cond env = Equal (varn env) 10 + +stmt2Cond : Cond +stmt2Cond env = (Equal (varn env) 10) ∧ (Equal (vari env) 0) + +whileInv : Cond +whileInv env = Equal ((varn env) + (vari env)) 10 + +whileInv' : Cond +whileInv' env = Equal ((varn env) + (vari env)) 11 + +termCond : Cond +termCond env = Equal (vari env) 10 + +eqlemma : { x y : ℕ } → Equal x y ≡ true → x ≡ y +eqlemma {x} {y} eq with x ≟ y +eqlemma {x} {y} refl | yes refl = refl +eqlemma {x} {y} () | no ¬p + +proofs : HTProof initCond simple stmt2Cond +proofs = + SeqRule {initCond} ( PrimRule empty-case ) + $ PrimRule {stmt1Cond} {_} {stmt2Cond} lemma + where + lemma : Axiom stmt1Cond (λ env → record { varn = varn env ; vari = 0 }) stmt2Cond + lemma env with stmt1Cond env + lemma env | false = refl + lemma env | true = refl + + +proof1 : HTProof initCond program termCond +proof1 = + SeqRule {λ e → true} ( PrimRule empty-case ) + $ SeqRule {λ e → Equal (varn e) 10} ( PrimRule lemma1 ) + $ WeakeningRule {λ e → (Equal (varn e) 10) ∧ (Equal (vari e) 0)} lemma2 ( + WhileRule {_} {λ e → Equal ((varn e) + (vari e)) 10} + $ SeqRule (PrimRule {λ e → whileInv e ∧ lt (varn e) zero } lemma3) + $ PrimRule {whileInv'} {_} {whileInv} lemma4 ) lemma5 + where + lemma1 : Axiom stmt1Cond (λ env → record { varn = varn env ; vari = 0 }) stmt2Cond + lemma1 env with stmt1Cond env + lemma1 env | false = refl + lemma1 env | true = refl + lemma2 : Tautology stmt2Cond whileInv + lemma2 env with stmt2Cond env | Equal (varn env + vari env) 10 + lemma2 env | false | false = refl + lemma2 env | false | true = refl + lemma2 env | true | true = refl + lemma2 env | true | false = {!!} + lemma3 : Axiom (whileInv /\ (λ env → lt (varn env) zero)) (λ env → record { varn = varn env ; vari = vari env + 1 }) whileInv' + lemma3 = {!!} + lemma4 : Axiom whileInv' (λ env → record { varn = varn env - 1 ; vari = vari env }) whileInv + lemma4 = {!!} + lemma5 : Tautology (whileInv /\ neg (λ z → lt (varn z) zero)) termCond + lemma5 = {!!} + +