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~ Statistics is a subject of amazingly many uses and surprisingly |
few effective practitioners. The traditional road to statistical knowl-
edge is blocked, for most, by a formidable wall of mathematics.
Our approach here avoids that wall. The bootstrap is a computer-
based method of statistical inference that can answer many real
statistical questions without formulas. Our goal in this book is to
arm scientists and engineers, as well as statisticians, with compu-
tational techniques that they can use to analyze and understand
complicated data sets.

The word “understand” is an important one in the previous sen-
tence. This is not a statistical cookbook. We aim to give the reader
a good intuitive understanding of statistical inference.

One of the charms of the bootstrap is the direct appreciation it
gives of variance, bias, coverage, and other probabilistic phenom-
ena. What does it mean that a confidence interval contains the
true value with probability .907 The usual textbook answer ap-
pears formidably abstract to most beginning students. Bootstrap
confidence intervals are directly constructed from real data sets,
using a simple computer algorithm. This doesn’t necessarily make
it easy to understand confidence intervals, but at least the diffi-
culties are the appropriate conceptual ones, and not mathematical
muddles.

Bradley Efron, Robert J. Tibshirani: An Introduction to the Bootstrap, Chapman & Hall
(1993) OFELY.

practitioner : EBR

bootstrap : T—bRA LT

statistical inference : HEEHAOHER
variance, bias, coverage : o, RV, %H®

confidence interval : {E#EXH

(1) #THEWHDEZFRE L.
(2) This BAZETHELND L IICBER> TTHREZFIRYE L.
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KDL, OB R BT TN EE>THZET 52 & 2 BRI LEZE [Brains,
Machines, and Mathematics] (Michael A. Arbib#, McGraw-Hill Book Company)
DFEXDLDHEMTHS. ThEFAT, UTORMICEREL

There is a variety of properties—memory, computation, learning, purposiveness®,
reliability despite component malfunction—which it might seem difficult to at-
tribute to “mere mechanisms.” However, herein lies one important reason for our
study: By making mathematical models, we have proved that there do exist purely
electrochemical mechanisms which have the above properties,. In other words, we
have helped to “banish the ghost from the machine.” We may not yet have mod-
eled the mechanisms that the brain employs, but we have at least modeled possible
mechanisms, and that in itself is a great stride forward. ,

There is another reason, for such a study, and it goes much deeper. Many of
the most spectacular advances in physical science have come from the wedding of
the mathematicodeductive? method and the experimental method. The mathemat-
ics of the last 300 years has grown largely out of the needs of physics—applied
mathematics directly, and pure mathematics indirectly by a process of abstrac-
tion from applied mathematics (often for purely esthetic reasons far removed from
any practical considerations). In these pages we coerce what is essentially still the
mathematics of the physicist to help our slowly dawning comprehension of the brain
and its electromechanical analogs,. It is probable that the dim beginnings of biolog-
ical mathematics here discernible will one day happily bloom into new and exciting
systems of pure mathematics.

! purposiveness: HINERDT &.
2 mathematicodeductive: BN ETEED.

(1) THRERO®D [the above properties] &4, HAFETHAE X,
(2) THRER@®D [lanother reason] &I3fAh, HARETHAAE L.
(3) THRAR®ZFIERE L.
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ROEEICBIT B LU FORICE X L. (Barry Cipra, Erik D. Demaine, Martin
L. Demaine, Tom Rodgers &, Tribute to a Mathemagician, A K Peters, 2005 &

b, HEDH—ERZIRE.) |
(1) Figure 2 DF (O, @, @) %, BN (KX, ROER) T& D &I IHED.
RIFRIC B S PEREI IR,

(2) Figure 6 OB (@, ®) %, WEXS (X, HOER, HOK) K85 &5
cHY. RRICHBEXIRERY, RELBEEEANGT L,

(3) Hatori’s operation (07) 2% % T & DFIRZFEITTED.

Origami, like geometric constructions, has many variations. In the most
common version, one starts with an unmarked square sheet of paper. Only
folding is allowed: no cutting. The goal of origami construction is to pre-
cisely locate one or more points on the paper, often around the edges of the
sheet, but also possibly in the interior. These points, known as reference
points, are then used to define the remaining folds that shape the final ob-
ject. The process of folding the model creates new reference points along
the way, which are generated as intersections of creases with one another
or with the folded edge. In an ideal origami folding sequence—a step-by-
step series of origami instructions—each fold action is precisely defined by
aligning combinations of features of the paper, where those features might
be points, edges, crease lines, or intersections of same.

‘T'wo examples of creating such alignments are shown in Figures 1 and 2.
Figure 1 illustrates folding a sheet of paper in half along its diagonal. The
fold is defined by bringing one corner to the opposite corner and flattening
the paper. When the paper is flattened, a crease is formed that (if the
paper was truly square) connects the other two corners.

Figure 2 illustrates another way of folding the paper in half (“book-
wise”). '

1. Fold the bottom right 2. Unfold. 3,
corner up to the top left.

Figure 1. The sequence for folding a sduare in half diagonally.
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1. Fold the bottom edge up 2. Unfold. 3. The new crease defines
to the top edge. two new points.

Figure 2. The sequence for folding a square in half bookwise.

In both cases, if you unfold the paper back to the original square, you
will find that you have created a new crease on the paper. For the sequence
of Figure 2, you will also have now defined two new points: the midpoints
of the two sides. Each point is precisely defined by the intersection of the
crease with a raw edge of the paper.

These two sequences also illustrate the rules that we will adopt for
origami geometric constructions. The goal of origami geometric construc-
tions is to define one or more points or lines within a square that have a
geometric specification (e.g., lines that bisect or trisect angles) or that have
a quantitative definition (e.g., a point 1/3 of the way along an edge).

_ (F&) ' However, there are several more
ways that a fold line can be defined. For example, we can fold a point to
another point, fold a line to another line (angle bisection), or put a crease
through one or two points, to name a few. Starting in the 1970s, sev-
eral folders began to systematically enumerate the possible combinations
of folds and to study what types of distances were constructible by com-
bining them in various ways. The first systematic study was carried out
by Humiaki Huzita [3-5], who described a set of six basic ways of defining
a single fold by aligning various combinations of existing points, lines, and
the fold line itself. These six operations have become known as “Huzita's
Axioms” (HA). Given a set of points and lines on a sheet of paper, Huzita’s
operations allow one to create new lines; the intersections among old and
new lines define additional points. The expanded set of points and lines
may then be further expanded by repeated application of the operations to
obtain further combinations of points and lines. _

An excellent introduction to “Huzita’s Axioms” is glven by Hull in [6],
and I adopt his notation here. The six operations identified by Huz1ta are
shown in Figure 6.

. Recently, a seventh operation was proposed by Hatori [7], which I will
denote by O7. It is shown in Figure 7.



(01) Given two points p; and p,, e
we can fold a line connecting them. .

(02) Given two points p; and p,, \
we can fold p; onto p,. \

(03) Given two lines I and I,
we can fold |, onto I,.

(O4) Given a pointp, and a

line 1;, we can make a fold @
perpendicular to 1, passing

through the point p,.

(05) Given two points p; and p,

and a line 1, we can make a fold @
that places p; onto 1, and passes

through the point p,.

(O6) Given two points p, and py
and two lines 1;and 1,, we can
make a fold that places p, onto 1
and places p, onto 1.

t
(O7) Given 2 point p; and two P )
lines 1, and l, we can make a fold S~
perpendicular to 1, that places pi
onto line Ij.

[
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Figure 7. Hatori's seventh axiom.

Hatori noted that this operation was not equivalent to any of HA. Ha-
tori’s O7 allows the solution of certain quadratic equations (equivalently,
it can be constructed by compass and straightedge). If we denote the ex-
panded set as the “Huzita-Hatori operations” (HH operations), it can be
shown that this set is complete, that is, these are all of the operations that
define a single fold by alignment of combinations of points and finite line
segments.
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