Mercurial > hg > Members > soto > while_test
diff gearswhilehoare.agda @ 0:f5705a66e9ea default tip
(none)
author | soto@cr.ie.u-ryukyu.ac.jp |
---|---|
date | Tue, 13 Oct 2020 18:01:42 +0900 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/gearswhilehoare.agda Tue Oct 13 18:01:42 2020 +0900 @@ -0,0 +1,239 @@ +module gearswhilehoare where + +open import Level renaming ( suc to succ ; zero to Zero ) +open import Data.Nat +open import Data.Empty +open import Data.Nat.Properties +open import Relation.Nullary using (¬_; Dec; yes; no) + +open import Agda.Builtin.Unit + +open import Relation.Binary +open import utilities +open _/\_ + +open import Relation.Binary.PropositionalEquality + + +record Envc : Set (succ Zero) where + field + c10 : ℕ + varn : ℕ + vari : ℕ +open Envc + +whileTestP : {l : Level} {t : Set l} → (c10 : ℕ) → (Code : Envc → t) → t +whileTestP c10 next = next (record {varn = c10 ; vari = 0 ; c10 = c10 } ) + +-- equivalent of whileLoopP but it looks like an induction on varn +whileLoopP' : {l : Level} {t : Set l} → Envc → (next : Envc → t) → (exit : Envc → t) → t +whileLoopP' env@record { c10 = c10 ; varn = zero ; vari = vari } _ exit = exit env +whileLoopP' record { c10 = c10 ; varn = suc varn1 ; vari = vari } next _ = + next (record {c10 = c10 ; varn = varn1 ; vari = suc vari }) + +-- 停止するループ +loopP’ : {l : Level} {t : Set l} → Envc → (exit : Envc → t) → t +loopP’ record { c10 = c10 ; varn = zero ; vari = vari } exit = + exit (record { c10 = c10 ; varn = zero ; vari = vari }) +loopP’ record { c10 = c10 ; varn = (suc varn1) ; vari = vari } exit = whileLoopP' (record { c10 = c10 ; varn = (suc varn1) ; vari = vari }) (λ env → loopP’ (record { c10 = c10 ; varn = varn1 ; vari = vari }) exit ) exit + +whileTestPCall’ : (c10 : ℕ ) → Envc +whileTestPCall’ c10 = whileTestP {_} {_} c10 (λ env → loopP’ env (λ env → env)) + +-- normal loop without termination +{-# TERMINATING #-} +loopP : {l : Level} {t : Set l} → Envc → (exit : Envc → t) → t +loopP env exit = whileLoopP' env (λ env → loopP env exit ) exit + +whileTestPCall : (c10 : ℕ ) → Envc +whileTestPCall c10 = whileTestP {_} {_} c10 (λ env → loopP env (λ env → env)) + +-- whileTestPCall 10 +-- record { c10 = 10 ; varn = 0 ; vari = 10 } + +record Env : Set (succ Zero) where + field + varn : ℕ + vari : ℕ +open Env + +{-# TERMINATING #-} -- ↓PreCondition(Invaliant) +whileLoop' : {l : Level} {t : Set l} → (env : Env ) → {c10 : ℕ } → ((varn env) + (vari env) ≡ c10) → (Code : Env → t) → t +whileLoop' env proof next with ( suc zero ≤? (varn env) ) +whileLoop' env proof next | no p = next env +whileLoop' env {c10} proof next | yes p = whileLoop' env1 (proof3 p ) next + where + env1 = record env {varn = (varn env) - 1 ; vari = (vari env) + 1} + 1<0 : 1 ≤ zero → ⊥ + 1<0 () + proof3 : (suc zero ≤ (varn env)) → varn env1 + vari env1 ≡ c10 + proof3 (s≤s lt) with varn env + proof3 (s≤s z≤n) | zero = ⊥-elim (1<0 p) + proof3 (s≤s (z≤n {n'}) ) | suc n = let open ≡-Reasoning in + begin + n' + (vari env + 1) + ≡⟨ cong ( λ z → n' + z ) ( +-sym {vari env} {1} ) ⟩ + n' + (1 + vari env ) + ≡⟨ sym ( +-assoc (n') 1 (vari env) ) ⟩ + (n' + 1) + vari env + ≡⟨ cong ( λ z → z + vari env ) +1≡suc ⟩ + (suc n' ) + vari env + ≡⟨⟩ + varn env + vari env + ≡⟨ proof ⟩ + c10 + ∎ + +-- +-- codeGears with states of condition +-- +data whileTestState : Set where + s1 : whileTestState + s2 : whileTestState + sf : whileTestState + +whileTestStateP : whileTestState → Envc → Set +whileTestStateP s1 env = (vari env ≡ 0) /\ (varn env ≡ c10 env) +whileTestStateP s2 env = (varn env + vari env ≡ c10 env) +whileTestStateP sf env = (vari env ≡ c10 env) + +whileTestPwP : {l : Level} {t : Set l} → (c10 : ℕ) → ((env : Envc ) → whileTestStateP s1 env → t) → t +whileTestPwP c10 next = next env record { pi1 = refl ; pi2 = refl } where + env : Envc + env = whileTestP c10 ( λ env → env ) + +whileLoopPwP' : {l : Level} {t : Set l} → (n : ℕ) → (env : Envc ) → (n ≡ varn env) → whileTestStateP s2 env + → (next : (env : Envc ) → (pred n ≡ varn env) → whileTestStateP s2 env → t) + → (exit : (env : Envc ) → whileTestStateP sf env → t) → t +whileLoopPwP' zero env refl refl next exit = exit env refl +whileLoopPwP' (suc n) env refl refl next exit = next (record env {varn = pred (varn env) ; vari = suc (vari env) }) refl (+-suc n (vari env)) + + +loopPwP' : {l : Level} {t : Set l} → (n : ℕ) → (env : Envc ) → (n ≡ varn env) → whileTestStateP s2 env → (exit : (env : Envc ) → whileTestStateP sf env → t) → t +loopPwP' zero env refl refl exit = exit env refl +loopPwP' (suc n) env refl refl exit = whileLoopPwP' (suc n) env refl refl (λ env x y → loopPwP' n env x y exit) exit + +loopHelper : (n : ℕ) → (env : Envc ) → (eq : varn env ≡ n) → (seq : whileTestStateP s2 env) → loopPwP' n env (sym eq) seq λ env₁ x → (vari env₁ ≡ c10 env₁) +loopHelper zero env eq refl rewrite eq = refl +loopHelper (suc n) env eq refl rewrite eq = loopHelper n (record { c10 = suc (n + vari env) ; varn = n ; vari = suc (vari env) }) refl (+-suc n (vari env)) + + + +whileLoopPwP : {l : Level} {t : Set l} → (env : Envc ) → whileTestStateP s2 env + → (next : (env : Envc ) → whileTestStateP s2 env → t) + → (exit : (env : Envc ) → whileTestStateP sf env → t) → t +whileLoopPwP env s next exit with <-cmp 0 (varn env) +whileLoopPwP env s next exit | tri≈ ¬a b ¬c = exit env (lem (sym b) s) + where + lem : (varn env ≡ 0) → (varn env + vari env ≡ c10 env) → vari env ≡ c10 env + lem refl refl = refl +whileLoopPwP env s next exit | tri< a ¬b ¬c = next (record env {varn = (varn env) - 1 ; vari = (vari env) + 1 }) (proof5 a) + where + 1<0 : 1 ≤ zero → ⊥ + 1<0 () + proof5 : (suc zero ≤ (varn env)) → (varn env - 1) + (vari env + 1) ≡ c10 env + proof5 (s≤s lt) with varn env + proof5 (s≤s z≤n) | zero = ⊥-elim (1<0 a) + proof5 (s≤s (z≤n {n'}) ) | suc n = let open ≡-Reasoning in + begin + n' + (vari env + 1) + ≡⟨ cong ( λ z → n' + z ) ( +-sym {vari env} {1} ) ⟩ + n' + (1 + vari env ) + ≡⟨ sym ( +-assoc (n') 1 (vari env) ) ⟩ + (n' + 1) + vari env + ≡⟨ cong ( λ z → z + vari env ) +1≡suc ⟩ + (suc n' ) + vari env + ≡⟨⟩ + varn env + vari env + ≡⟨ s ⟩ + c10 env + ∎ + +{-# TERMINATING #-} +loopPwP : {l : Level} {t : Set l} → (env : Envc ) → whileTestStateP s2 env → (exit : (env : Envc ) → whileTestStateP sf env → t) → t +loopPwP env s exit = whileLoopPwP env s (λ env s → loopPwP env s exit ) exit + +whileTestPCallwP : (c : ℕ ) → Set +whileTestPCallwP c = whileTestPwP {_} {_} c ( λ env s → loopPwP env (conv env s) ( λ env s → vari env ≡ c10 env ) ) where + conv : (env : Envc ) → (vari env ≡ 0) /\ (varn env ≡ c10 env) → varn env + vari env ≡ c10 env + conv e record { pi1 = refl ; pi2 = refl } = +zero + + +whileTestPCallwP' : (c : ℕ ) → Set +whileTestPCallwP' c = whileTestPwP {_} {_} c (λ env s → loopPwP' (varn env) env refl (conv env s) ( λ env s → vari env ≡ c10 env ) ) where + conv : (env : Envc ) → (vari env ≡ 0) /\ (varn env ≡ c10 env) → varn env + vari env ≡ c10 env + conv e record { pi1 = refl ; pi2 = refl } = +zero + +helperCallwP : (c : ℕ) → whileTestPCallwP' c +helperCallwP c = whileTestPwP {_} {_} c (λ env s → loopHelper c (record { c10 = c ; varn = c ; vari = zero }) refl +zero) + + + +-- +-- Using imply relation to make soundness explicit +-- termination is shown by induction on varn +-- + +data _implies_ (A B : Set ) : Set (succ Zero) where + proof : ( A → B ) → A implies B + +implies2p : {A B : Set } → A implies B → A → B +implies2p (proof x) = x + +whileTestPSem : (c : ℕ) → whileTestP c ( λ env → ⊤ implies (whileTestStateP s1 env) ) +whileTestPSem c = proof ( λ _ → record { pi1 = refl ; pi2 = refl } ) + +SemGears : (f : {l : Level } {t : Set l } → (e0 : Envc ) → ((e : Envc) → t) → t ) → Set (succ Zero) +SemGears f = Envc → Envc → Set + +GearsUnitSound : (e0 e1 : Envc) {pre : Envc → Set} {post : Envc → Set} + → (f : {l : Level } {t : Set l } → (e0 : Envc ) → (Envc → t) → t ) + → (fsem : (e0 : Envc ) → f e0 ( λ e1 → (pre e0) implies (post e1))) + → f e0 (λ e1 → pre e0 implies post e1) +GearsUnitSound e0 e1 f fsem = fsem e0 + +whileTestPSemSound : (c : ℕ ) (output : Envc ) → output ≡ whileTestP c (λ e → e) → ⊤ implies ((vari output ≡ 0) /\ (varn output ≡ c)) +whileTestPSemSound c output refl = whileTestPSem c + + +whileConvPSemSound : {l : Level} → (input : Envc) → (whileTestStateP s1 input ) implies (whileTestStateP s2 input) +whileConvPSemSound input = proof λ x → (conv input x) where + conv : (env : Envc ) → (vari env ≡ 0) /\ (varn env ≡ c10 env) → varn env + vari env ≡ c10 env + conv e record { pi1 = refl ; pi2 = refl } = +zero + +loopPP : (n : ℕ) → (input : Envc ) → (n ≡ varn input) → Envc +loopPP zero input refl = input +loopPP (suc n) input refl = + loopPP n (record input { varn = pred (varn input) ; vari = suc (vari input)}) refl + +whileLoopPSem : {l : Level} {t : Set l} → (input : Envc ) → whileTestStateP s2 input + → (next : (output : Envc ) → (whileTestStateP s2 input ) implies (whileTestStateP s2 output) → t) + → (exit : (output : Envc ) → (whileTestStateP s2 input ) implies (whileTestStateP sf output) → t) → t +whileLoopPSem env s next exit with varn env | s +... | zero | _ = exit env (proof (λ z → z)) +... | (suc varn ) | refl = next ( record env { varn = varn ; vari = suc (vari env) } ) (proof λ x → +-suc varn (vari env) ) + +loopPPSem : (input output : Envc ) → output ≡ loopPP (varn input) input refl + → (whileTestStateP s2 input ) → (whileTestStateP s2 input ) implies (whileTestStateP sf output) +loopPPSem input output refl s2p = loopPPSemInduct (varn input) input refl refl s2p + where + lem : (n : ℕ) → (env : Envc) → n + suc (vari env) ≡ suc (n + vari env) + lem n env = +-suc (n) (vari env) + loopPPSemInduct : (n : ℕ) → (current : Envc) → (eq : n ≡ varn current) → (loopeq : output ≡ loopPP n current eq) + → (whileTestStateP s2 current ) → (whileTestStateP s2 current ) implies (whileTestStateP sf output) + loopPPSemInduct zero current refl loopeq refl rewrite loopeq = proof (λ x → refl) + loopPPSemInduct (suc n) current refl loopeq refl rewrite (sym (lem n current)) = + whileLoopPSem current refl + (λ output x → loopPPSemInduct n (record { c10 = n + suc (vari current) ; varn = n ; vari = suc (vari current) }) refl loopeq refl) + (λ output x → loopPPSemInduct n (record { c10 = n + suc (vari current) ; varn = n ; vari = suc (vari current) }) refl loopeq refl) + +whileLoopPSemSound : {l : Level} → (input output : Envc ) + → whileTestStateP s2 input + → output ≡ loopPP (varn input) input refl + → (whileTestStateP s2 input ) implies ( whileTestStateP sf output ) +whileLoopPSemSound {l} input output pre eq = loopPPSem input output eq pre + + + +-- whileTestSound : {l : Level} (c : ℕ) → (output : Envc) → ⊤ → whileTestStateP sf output +-- whileTestSound {l} c record { c10 = c10 ; varn = varn ; vari = vari } top = implies2p (whileLoopPSemSound {l} (record { c10 = c ; varn = c ; vari = zero }) (record { c10 = c10 ; varn = c ; vari = vari}) (+zero) {!!}) (implies2p (whileConvPSemSound {l} (record { c10 = c ; varn = c ; vari = zero })) (implies2p (whileTestPSemSound c (whileTestP c (λ e → e)) refl) top))