Mercurial > hg > Members > taiki > EFIKernel
changeset 12:19d073459374
add mach-o header
author | taiki |
---|---|
date | Mon, 21 Jan 2013 23:29:01 +0900 |
parents | e6715e03b87a |
children | 479240de2d64 |
files | Makefile Makefile.def boot/arch.h boot/compact_unwind_encoding.h boot/dyld.h boot/dyld_images.h boot/fat.h boot/getsect.h boot/i386/swap.h boot/ldsyms.h boot/loader.h boot/nlist.h boot/ppc/reloc.h boot/ppc/swap.h boot/ranlib.h boot/reloc.h boot/stab.h boot/swap.h boot/x86_64/reloc.h bootx64.c bootx64.efi |
diffstat | 21 files changed, 4029 insertions(+), 47 deletions(-) [+] |
line wrap: on
line diff
--- a/Makefile Wed Jan 16 01:33:09 2013 +0900 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,34 +0,0 @@ -ARCH =$(shell uname -m |sed s,i[3456789]86,ia32,) -LIB_PATH = /usr/lib64 -EFI_INCLUDE = /usr/include/efi -EFI_INCLUDES = -nostdinc -I$(EFI_INCLUDE) -I$(EFI_INCLUDE)/$(ARCH) -I$(EFI_INCLUDE)/protocol - -EFI_PATH = /usr/lib64/gnuefi -EFI_CRT_OBJS = $(EFI_PATH)/crt0-efi-$(ARCH).o -EFI_LDS = $(EFI_PATH)/elf_$(ARCH)_efi.lds - -CFLAGS = -fno-stack-protector -fpic -fshort-wchar -mno-red-zone $(EFI_INCLUDES) -ifeq ($(ARCH),x86_64) - CFLAGS += -DEFI_FUNCTION_WRAPPER -endif - -LDFLAGS = -nostdlib -znocombreloc -T $(EFI_LDS) -shared -Bsymbolic -L$(EFI_PATH) -L$(LIB_PATH) \ - $(EFI_CRT_OBJS) -lefi -lgnuefi - -TARGET = bootx64.efi -OBJS = bootx64.o -SOURCES = bootx64.c - -all: $(TARGET) - -bootx64.so: $(OBJS) - $(LD) -o $@ $(LDFLAGS) $^ $(EFI_LIBS) - -%.efi: %.so - objcopy -j .text -j .sdata -j .data \ - -j .dynamic -j .dynsym -j .rel \ - -j .rela -j .reloc -j .eh_frame \ - --target=efi-app-$(ARCH) $^ $@ - -clean: - rm -rf $(TARGET) *.o *.so
--- a/Makefile.def Wed Jan 16 01:33:09 2013 +0900 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,4 +0,0 @@ -CC = elf-cbc-gcc-4.6.0 -LD = x86_64-elf-ld -EFI_TOOLS = /Users/taira/cross/EFI_TOOLS/bin -OBJCOPY = x86_64-pc-mingw32-objcopy
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/boot/arch.h Mon Jan 21 23:29:01 2013 +0900 @@ -0,0 +1,105 @@ +/* + * Copyright (c) 1999 Apple Computer, Inc. All rights reserved. + * + * @APPLE_LICENSE_HEADER_START@ + * + * This file contains Original Code and/or Modifications of Original Code + * as defined in and that are subject to the Apple Public Source License + * Version 2.0 (the 'License'). You may not use this file except in + * compliance with the License. Please obtain a copy of the License at + * http://www.opensource.apple.com/apsl/ and read it before using this + * file. + * + * The Original Code and all software distributed under the License are + * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER + * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, + * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. + * Please see the License for the specific language governing rights and + * limitations under the License. + * + * @APPLE_LICENSE_HEADER_END@ + */ +#ifndef _MACH_O_ARCH_H_ +#define _MACH_O_ARCH_H_ +/* + * Copyright (c) 1997 Apple Computer, Inc. + * + * Functions that deal with information about architectures. + * + */ + +#include <stdint.h> +#include <mach/machine.h> +#include <architecture/byte_order.h> + +/* The NXArchInfo structs contain the architectures symbolic name + * (such as "ppc"), its CPU type and CPU subtype as defined in + * mach/machine.h, the byte order for the architecture, and a + * describing string (such as "PowerPC"). + * There will both be entries for specific CPUs (such as ppc604e) as + * well as generic "family" entries (such as ppc). + */ +typedef struct { + const char *name; + cpu_type_t cputype; + cpu_subtype_t cpusubtype; + enum NXByteOrder byteorder; + const char *description; +} NXArchInfo; + +#if __cplusplus +extern "C" { +#endif /* __cplusplus */ + +/* NXGetAllArchInfos() returns a pointer to an array of all known + * NXArchInfo structures. The last NXArchInfo is marked by a NULL name. + */ +extern const NXArchInfo *NXGetAllArchInfos(void); + +/* NXGetLocalArchInfo() returns the NXArchInfo for the local host, or NULL + * if none is known. + */ +extern const NXArchInfo *NXGetLocalArchInfo(void); + +/* NXGetArchInfoFromName() and NXGetArchInfoFromCpuType() return the + * NXArchInfo from the architecture's name or cputype/cpusubtype + * combination. A cpusubtype of CPU_SUBTYPE_MULTIPLE can be used + * to request the most general NXArchInfo known for the given cputype. + * NULL is returned if no matching NXArchInfo can be found. + */ +extern const NXArchInfo *NXGetArchInfoFromName(const char *name); +extern const NXArchInfo *NXGetArchInfoFromCpuType(cpu_type_t cputype, + cpu_subtype_t cpusubtype); + +/* NXFindBestFatArch() is passed a cputype and cpusubtype and a set of + * fat_arch structs and selects the best one that matches (if any) and returns + * a pointer to that fat_arch struct (or NULL). The fat_arch structs must be + * in the host byte order and correct such that the fat_archs really points to + * enough memory for nfat_arch structs. It is possible that this routine could + * fail if new cputypes or cpusubtypes are added and an old version of this + * routine is used. But if there is an exact match between the cputype and + * cpusubtype and one of the fat_arch structs this routine will always succeed. + */ +extern struct fat_arch *NXFindBestFatArch(cpu_type_t cputype, + cpu_subtype_t cpusubtype, + struct fat_arch *fat_archs, + uint32_t nfat_archs); + +/* NXCombineCpuSubtypes() returns the resulting cpusubtype when combining two + * different cpusubtypes for the specified cputype. If the two cpusubtypes + * can't be combined (the specific subtypes are mutually exclusive) -1 is + * returned indicating it is an error to combine them. This can also fail and + * return -1 if new cputypes or cpusubtypes are added and an old version of + * this routine is used. But if the cpusubtypes are the same they can always + * be combined and this routine will return the cpusubtype pass in. + */ +extern cpu_subtype_t NXCombineCpuSubtypes(cpu_type_t cputype, + cpu_subtype_t cpusubtype1, + cpu_subtype_t cpusubtype2); + +#if __cplusplus +} +#endif /* __cplusplus */ + +#endif /* _MACH_O_ARCH_H_ */
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/boot/compact_unwind_encoding.h Mon Jan 21 23:29:01 2013 +0900 @@ -0,0 +1,428 @@ +/* -*- mode: C; c-basic-offset: 4; tab-width: 4 -*- + * + * Copyright (c) 2008-2011 Apple Inc. All rights reserved. + * + * @APPLE_LICENSE_HEADER_START@ + * + * This file contains Original Code and/or Modifications of Original Code + * as defined in and that are subject to the Apple Public Source License + * Version 2.0 (the 'License'). You may not use this file except in + * compliance with the License. Please obtain a copy of the License at + * http://www.opensource.apple.com/apsl/ and read it before using this + * file. + * + * The Original Code and all software distributed under the License are + * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER + * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, + * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. + * Please see the License for the specific language governing rights and + * limitations under the License. + * + * @APPLE_LICENSE_HEADER_END@ + */ + + +#ifndef __COMPACT_UNWIND_ENCODING__ +#define __COMPACT_UNWIND_ENCODING__ + +#include <stdint.h> + + + +// +// Compilers can emit standard Dwarf FDEs in the __TEXT,__eh_frame section +// of object files. Or compilers can emit compact unwind information in +// the __LD,__compact_unwind section. +// +// When the linker creates a final linked image, it will create a +// __TEXT,__unwind_info section. This section is a small and fast way for the +// runtime to access unwind info for any given function. If the compiler emitted +// compact unwind info for the function, that compact unwind info will be encoded +// in the __TEXT,__unwind_info section. If the compiler emitted dwarf unwind info, +// the __TEXT,__unwind_info section will contain the offset of the FDE in the +// __TEXT,__eh_frame section in the final linked image. +// +// Note: Previously, the linker would transform some dwarf unwind infos into +// compact unwind info. But that is fragile and no longer done. + + +// +// The compact unwind endoding is a 32-bit value which encoded in an architecture +// specific way, which registers to restore from where, and how to unwind out +// of the function. +// +typedef uint32_t compact_unwind_encoding_t; + + +// architecture independent bits +enum { + UNWIND_IS_NOT_FUNCTION_START = 0x80000000, + UNWIND_HAS_LSDA = 0x40000000, + UNWIND_PERSONALITY_MASK = 0x30000000, +}; + + + + +// +// x86 +// +// 1-bit: start +// 1-bit: has lsda +// 2-bit: personality index +// +// 4-bits: 0=old, 1=ebp based, 2=stack-imm, 3=stack-ind, 4=dwarf +// ebp based: +// 15-bits (5*3-bits per reg) register permutation +// 8-bits for stack offset +// frameless: +// 8-bits stack size +// 3-bits stack adjust +// 3-bits register count +// 10-bits register permutation +// +enum { + UNWIND_X86_MODE_MASK = 0x0F000000, + UNWIND_X86_MODE_EBP_FRAME = 0x01000000, + UNWIND_X86_MODE_STACK_IMMD = 0x02000000, + UNWIND_X86_MODE_STACK_IND = 0x03000000, + UNWIND_X86_MODE_DWARF = 0x04000000, + + UNWIND_X86_EBP_FRAME_REGISTERS = 0x00007FFF, + UNWIND_X86_EBP_FRAME_OFFSET = 0x00FF0000, + + UNWIND_X86_FRAMELESS_STACK_SIZE = 0x00FF0000, + UNWIND_X86_FRAMELESS_STACK_ADJUST = 0x0000E000, + UNWIND_X86_FRAMELESS_STACK_REG_COUNT = 0x00001C00, + UNWIND_X86_FRAMELESS_STACK_REG_PERMUTATION = 0x000003FF, + + UNWIND_X86_DWARF_SECTION_OFFSET = 0x00FFFFFF, +}; + +enum { + UNWIND_X86_REG_NONE = 0, + UNWIND_X86_REG_EBX = 1, + UNWIND_X86_REG_ECX = 2, + UNWIND_X86_REG_EDX = 3, + UNWIND_X86_REG_EDI = 4, + UNWIND_X86_REG_ESI = 5, + UNWIND_X86_REG_EBP = 6, +}; + +// +// For x86 there are four modes for the compact unwind encoding: +// UNWIND_X86_MODE_EBP_FRAME: +// EBP based frame where EBP is push on stack immediately after return address, +// then ESP is moved to EBP. Thus, to unwind ESP is restored with the current +// EPB value, then EBP is restored by popping off the stack, and the return +// is done by popping the stack once more into the pc. +// All non-volatile registers that need to be restored must have been saved +// in a small range in the stack that starts EBP-4 to EBP-1020. The offset/4 +// is encoded in the UNWIND_X86_EBP_FRAME_OFFSET bits. The registers saved +// are encoded in the UNWIND_X86_EBP_FRAME_REGISTERS bits as five 3-bit entries. +// Each entry contains which register to restore. +// UNWIND_X86_MODE_STACK_IMMD: +// A "frameless" (EBP not used as frame pointer) function with a small +// constant stack size. To return, a constant (encoded in the compact +// unwind encoding) is added to the ESP. Then the return is done by +// popping the stack into the pc. +// All non-volatile registers that need to be restored must have been saved +// on the stack immediately after the return address. The stack_size/4 is +// encoded in the UNWIND_X86_FRAMELESS_STACK_SIZE (max stack size is 1024). +// The number of registers saved is encoded in UNWIND_X86_FRAMELESS_STACK_REG_COUNT. +// UNWIND_X86_FRAMELESS_STACK_REG_PERMUTATION constains which registers were +// saved and their order. +// UNWIND_X86_MODE_STACK_IND: +// A "frameless" (EBP not used as frame pointer) function large constant +// stack size. This case is like the previous, except the stack size is too +// large to encode in the compact unwind encoding. Instead it requires that +// the function contains "subl $nnnnnnnn,ESP" in its prolog. The compact +// encoding contains the offset to the nnnnnnnn value in the function in +// UNWIND_X86_FRAMELESS_STACK_SIZE. +// UNWIND_X86_MODE_DWARF: +// No compact unwind encoding is available. Instead the low 24-bits of the +// compact encoding is the offset of the dwarf FDE in the __eh_frame section. +// This mode is never used in object files. It is only generated by the +// linker in final linked images which have only dwarf unwind info for a +// function. +// +// The following is the algorithm used to create the permutation encoding used +// with frameless stacks. It is passed the number of registers to be saved and +// an array of the register numbers saved. +// +//uint32_t permute_encode(uint32_t registerCount, const uint32_t registers[6]) +//{ +// uint32_t renumregs[6]; +// for (int i=6-registerCount; i < 6; ++i) { +// int countless = 0; +// for (int j=6-registerCount; j < i; ++j) { +// if ( registers[j] < registers[i] ) +// ++countless; +// } +// renumregs[i] = registers[i] - countless -1; +// } +// uint32_t permutationEncoding = 0; +// switch ( registerCount ) { +// case 6: +// permutationEncoding |= (120*renumregs[0] + 24*renumregs[1] +// + 6*renumregs[2] + 2*renumregs[3] +// + renumregs[4]); +// break; +// case 5: +// permutationEncoding |= (120*renumregs[1] + 24*renumregs[2] +// + 6*renumregs[3] + 2*renumregs[4] +// + renumregs[5]); +// break; +// case 4: +// permutationEncoding |= (60*renumregs[2] + 12*renumregs[3] +// + 3*renumregs[4] + renumregs[5]); +// break; +// case 3: +// permutationEncoding |= (20*renumregs[3] + 4*renumregs[4] +// + renumregs[5]); +// break; +// case 2: +// permutationEncoding |= (5*renumregs[4] + renumregs[5]); +// break; +// case 1: +// permutationEncoding |= (renumregs[5]); +// break; +// } +// return permutationEncoding; +//} +// + + + + +// +// x86_64 +// +// 1-bit: start +// 1-bit: has lsda +// 2-bit: personality index +// +// 4-bits: 0=old, 1=rbp based, 2=stack-imm, 3=stack-ind, 4=dwarf +// rbp based: +// 15-bits (5*3-bits per reg) register permutation +// 8-bits for stack offset +// frameless: +// 8-bits stack size +// 3-bits stack adjust +// 3-bits register count +// 10-bits register permutation +// +enum { + UNWIND_X86_64_MODE_MASK = 0x0F000000, + UNWIND_X86_64_MODE_RBP_FRAME = 0x01000000, + UNWIND_X86_64_MODE_STACK_IMMD = 0x02000000, + UNWIND_X86_64_MODE_STACK_IND = 0x03000000, + UNWIND_X86_64_MODE_DWARF = 0x04000000, + + UNWIND_X86_64_RBP_FRAME_REGISTERS = 0x00007FFF, + UNWIND_X86_64_RBP_FRAME_OFFSET = 0x00FF0000, + + UNWIND_X86_64_FRAMELESS_STACK_SIZE = 0x00FF0000, + UNWIND_X86_64_FRAMELESS_STACK_ADJUST = 0x0000E000, + UNWIND_X86_64_FRAMELESS_STACK_REG_COUNT = 0x00001C00, + UNWIND_X86_64_FRAMELESS_STACK_REG_PERMUTATION = 0x000003FF, + + UNWIND_X86_64_DWARF_SECTION_OFFSET = 0x00FFFFFF, +}; + +enum { + UNWIND_X86_64_REG_NONE = 0, + UNWIND_X86_64_REG_RBX = 1, + UNWIND_X86_64_REG_R12 = 2, + UNWIND_X86_64_REG_R13 = 3, + UNWIND_X86_64_REG_R14 = 4, + UNWIND_X86_64_REG_R15 = 5, + UNWIND_X86_64_REG_RBP = 6, +}; +// +// For x86_64 there are four modes for the compact unwind encoding: +// UNWIND_X86_64_MODE_RBP_FRAME: +// RBP based frame where RBP is push on stack immediately after return address, +// then RSP is moved to RBP. Thus, to unwind RSP is restored with the current +// EPB value, then RBP is restored by popping off the stack, and the return +// is done by popping the stack once more into the pc. +// All non-volatile registers that need to be restored must have been saved +// in a small range in the stack that starts RBP-8 to RBP-1020. The offset/4 +// is encoded in the UNWIND_X86_64_RBP_FRAME_OFFSET bits. The registers saved +// are encoded in the UNWIND_X86_64_RBP_FRAME_REGISTERS bits as five 3-bit entries. +// Each entry contains which register to restore. +// UNWIND_X86_64_MODE_STACK_IMMD: +// A "frameless" (RBP not used as frame pointer) function with a small +// constant stack size. To return, a constant (encoded in the compact +// unwind encoding) is added to the RSP. Then the return is done by +// popping the stack into the pc. +// All non-volatile registers that need to be restored must have been saved +// on the stack immediately after the return address. The stack_size/4 is +// encoded in the UNWIND_X86_64_FRAMELESS_STACK_SIZE (max stack size is 1024). +// The number of registers saved is encoded in UNWIND_X86_64_FRAMELESS_STACK_REG_COUNT. +// UNWIND_X86_64_FRAMELESS_STACK_REG_PERMUTATION constains which registers were +// saved and their order. +// UNWIND_X86_64_MODE_STACK_IND: +// A "frameless" (RBP not used as frame pointer) function large constant +// stack size. This case is like the previous, except the stack size is too +// large to encode in the compact unwind encoding. Instead it requires that +// the function contains "subq $nnnnnnnn,RSP" in its prolog. The compact +// encoding contains the offset to the nnnnnnnn value in the function in +// UNWIND_X86_64_FRAMELESS_STACK_SIZE. +// UNWIND_X86_64_MODE_DWARF: +// No compact unwind encoding is available. Instead the low 24-bits of the +// compact encoding is the offset of the dwarf FDE in the __eh_frame section. +// This mode is never used in object files. It is only generated by the +// linker in final linked images which have only dwarf unwind info for a +// function. +// + + + +//////////////////////////////////////////////////////////////////////////////// +// +// Relocatable Object Files: __LD,__compact_unwind +// +//////////////////////////////////////////////////////////////////////////////// + +// +// A compiler can generated compact unwind information for a function by adding +// a "row" to the __LD,__compact_unwind section. This section has the +// S_ATTR_DEBUG bit set, so the section will be ignored by older linkers. +// It is removed by the new linker, so never ends up in final executables. +// This section is a table, initially with one row per function (that needs +// unwind info). The table columns and some conceptual entries are: +// +// range-start pointer to start of function/range +// range-length +// compact-unwind-encoding 32-bit encoding +// personality-function or zero if no personality function +// lsda or zero if no LSDA data +// +// The length and encoding fields are 32-bits. The other are all pointer sized. +// +// In x86_64 assembly, these entry would look like: +// +// .section __LD,__compact_unwind,regular,debug +// +// #compact unwind for _foo +// .quad _foo +// .set L1,LfooEnd-_foo +// .long L1 +// .long 0x01010001 +// .quad 0 +// .quad 0 +// +// #compact unwind for _bar +// .quad _bar +// .set L2,LbarEnd-_bar +// .long L2 +// .long 0x01020011 +// .quad __gxx_personality +// .quad except_tab1 +// +// +// Notes: There is no need for any labels in the the __compact_unwind section. +// The use of the .set directive is to force the evaluation of the +// range-length at assembly time, instead of generating relocations. +// +// To support future compiler optimizations where which non-volatile registers +// are saved changes within a function (e.g. delay saving non-volatiles until +// necessary), there can by multiple lines in the __compact_unwind table for one +// function, each with a different (non-overlapping) range and each with +// different compact unwind encodings that correspond to the non-volatiles +// saved at that range of the function. +// +// If a particular function is so wacky that there is no compact unwind way +// to encode it, then the compiler can emit traditional dwarf unwind info. +// The runtime will use which ever is available. +// +// Runtime support for compact unwind encodings are only available on 10.6 +// and later. So, the compiler should not generate it when targeting pre-10.6. + + + + +//////////////////////////////////////////////////////////////////////////////// +// +// Final Linked Images: __TEXT,__unwind_info +// +//////////////////////////////////////////////////////////////////////////////// + +// +// The __TEXT,__unwind_info section is laid out for an efficient two level lookup. +// The header of the section contains a coarse index that maps function address +// to the page (4096 byte block) containing the unwind info for that function. +// + +#define UNWIND_SECTION_VERSION 1 +struct unwind_info_section_header +{ + uint32_t version; // UNWIND_SECTION_VERSION + uint32_t commonEncodingsArraySectionOffset; + uint32_t commonEncodingsArrayCount; + uint32_t personalityArraySectionOffset; + uint32_t personalityArrayCount; + uint32_t indexSectionOffset; + uint32_t indexCount; + // compact_unwind_encoding_t[] + // uintptr_t personalities[] + // unwind_info_section_header_index_entry[] + // unwind_info_section_header_lsda_index_entry[] +}; + +struct unwind_info_section_header_index_entry +{ + uint32_t functionOffset; + uint32_t secondLevelPagesSectionOffset; // section offset to start of regular or compress page + uint32_t lsdaIndexArraySectionOffset; // section offset to start of lsda_index array for this range +}; + +struct unwind_info_section_header_lsda_index_entry +{ + uint32_t functionOffset; + uint32_t lsdaOffset; +}; + +// +// There are two kinds of second level index pages: regular and compressed. +// A compressed page can hold up to 1021 entries, but it cannot be used +// if too many different encoding types are used. The regular page holds +// 511 entries. +// + +struct unwind_info_regular_second_level_entry +{ + uint32_t functionOffset; + compact_unwind_encoding_t encoding; +}; + +#define UNWIND_SECOND_LEVEL_REGULAR 2 +struct unwind_info_regular_second_level_page_header +{ + uint32_t kind; // UNWIND_SECOND_LEVEL_REGULAR + uint16_t entryPageOffset; + uint16_t entryCount; + // entry array +}; + +#define UNWIND_SECOND_LEVEL_COMPRESSED 3 +struct unwind_info_compressed_second_level_page_header +{ + uint32_t kind; // UNWIND_SECOND_LEVEL_COMPRESSED + uint16_t entryPageOffset; + uint16_t entryCount; + uint16_t encodingsPageOffset; + uint16_t encodingsCount; + // 32-bit entry array + // encodings array +}; + +#define UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET(entry) (entry & 0x00FFFFFF) +#define UNWIND_INFO_COMPRESSED_ENTRY_ENCODING_INDEX(entry) ((entry >> 24) & 0xFF) + + + +#endif +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/boot/dyld.h Mon Jan 21 23:29:01 2013 +0900 @@ -0,0 +1,253 @@ +/* + * Copyright (c) 1999-2008 Apple Inc. All rights reserved. + * + * @APPLE_LICENSE_HEADER_START@ + * + * This file contains Original Code and/or Modifications of Original Code + * as defined in and that are subject to the Apple Public Source License + * Version 2.0 (the 'License'). You may not use this file except in + * compliance with the License. Please obtain a copy of the License at + * http://www.opensource.apple.com/apsl/ and read it before using this + * file. + * + * The Original Code and all software distributed under the License are + * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER + * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, + * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. + * Please see the License for the specific language governing rights and + * limitations under the License. + * + * @APPLE_LICENSE_HEADER_END@ + */ +#ifndef _MACH_O_DYLD_H_ +#define _MACH_O_DYLD_H_ + + +#include <stddef.h> +#include <stdint.h> +#include <stdbool.h> + +#include <mach-o/loader.h> +#include <Availability.h> + +#if __cplusplus +extern "C" { +#endif + +/* + * The following functions allow you to iterate through all loaded images. + * This is not a thread safe operation. Another thread can add or remove + * an image during the iteration. + * + * Many uses of these routines can be replace by a call to dladdr() which + * will return the mach_header and name of an image, given an address in + * the image. dladdr() is thread safe. + */ +extern uint32_t _dyld_image_count(void) __OSX_AVAILABLE_STARTING(__MAC_10_1, __IPHONE_2_0); +extern const struct mach_header* _dyld_get_image_header(uint32_t image_index) __OSX_AVAILABLE_STARTING(__MAC_10_1, __IPHONE_2_0); +extern intptr_t _dyld_get_image_vmaddr_slide(uint32_t image_index) __OSX_AVAILABLE_STARTING(__MAC_10_1, __IPHONE_2_0); +extern const char* _dyld_get_image_name(uint32_t image_index) __OSX_AVAILABLE_STARTING(__MAC_10_1, __IPHONE_2_0); + + +/* + * The following functions allow you to install callbacks which will be called + * by dyld whenever an image is loaded or unloaded. During a call to _dyld_register_func_for_add_image() + * the callback func is called for every existing image. Later, it is called as each new image + * is loaded and bound (but initializers not yet run). The callback registered with + * _dyld_register_func_for_remove_image() is called after any terminators in an image are run + * and before the image is un-memory-mapped. + */ +extern void _dyld_register_func_for_add_image(void (*func)(const struct mach_header* mh, intptr_t vmaddr_slide)) __OSX_AVAILABLE_STARTING(__MAC_10_1, __IPHONE_2_0); +extern void _dyld_register_func_for_remove_image(void (*func)(const struct mach_header* mh, intptr_t vmaddr_slide)) __OSX_AVAILABLE_STARTING(__MAC_10_1, __IPHONE_2_0); + + +/* + * NSVersionOfRunTimeLibrary() returns the current_version number of the currently dylib + * specifed by the libraryName. The libraryName parameter would be "bar" for /path/libbar.3.dylib and + * "Foo" for /path/Foo.framework/Versions/A/Foo. It returns -1 if no such library is loaded. + */ +extern int32_t NSVersionOfRunTimeLibrary(const char* libraryName) __OSX_AVAILABLE_STARTING(__MAC_10_1, __IPHONE_2_0); + + +/* + * NSVersionOfRunTimeLibrary() returns the current_version number that the main executable was linked + * against at build time. The libraryName parameter would be "bar" for /path/libbar.3.dylib and + * "Foo" for /path/Foo.framework/Versions/A/Foo. It returns -1 if the main executable did not link + * against the specified library. + */ +extern int32_t NSVersionOfLinkTimeLibrary(const char* libraryName) __OSX_AVAILABLE_STARTING(__MAC_10_1, __IPHONE_2_0); + + +/* + * _NSGetExecutablePath() copies the path of the main executable into the buffer. The bufsize parameter + * should initially be the size of the buffer. The function returns 0 if the path was successfully copied, + * and *bufsize is left unchanged. It returns -1 if the buffer is not large enough, and *bufsize is set + * to the size required. + * + * Note that _NSGetExecutablePath will return "a path" to the executable not a "real path" to the executable. + * That is the path may be a symbolic link and not the real file. With deep directories the total bufsize + * needed could be more than MAXPATHLEN. + */ +extern int _NSGetExecutablePath(char* buf, uint32_t* bufsize) __OSX_AVAILABLE_STARTING(__MAC_10_2, __IPHONE_2_0); + + + +/* + * _dyld_moninit() is a private interface between dyld and libSystem. + */ +extern void _dyld_moninit(void (*monaddition)(char *lowpc, char *highpc)) __OSX_AVAILABLE_STARTING(__MAC_10_1, __IPHONE_2_0); + + + + + +/* + * The following dyld API's are deprecated as of Mac OS X 10.5. They are either + * no longer necessary or are superceeded by dlopen and friends in <dlfcn.h>. + * dlopen/dlsym/dlclose have been available since Mac OS X 10.3 and work with + * dylibs and bundles. + * + * NSAddImage -> dlopen + * NSLookupSymbolInImage -> dlsym + * NSCreateObjectFileImageFromFile -> dlopen + * NSDestroyObjectFileImage -> dlclose + * NSLinkModule -> not needed when dlopen used + * NSUnLinkModule -> not needed when dlclose used + * NSLookupSymbolInModule -> dlsym + * _dyld_image_containing_address -> dladdr + * NSLinkEditError -> dlerror + * + */ + +#ifndef ENUM_DYLD_BOOL +#define ENUM_DYLD_BOOL + #undef FALSE + #undef TRUE + enum DYLD_BOOL { FALSE, TRUE }; +#endif /* ENUM_DYLD_BOOL */ + + +/* Object file image API */ +typedef enum { + NSObjectFileImageFailure, /* for this a message is printed on stderr */ + NSObjectFileImageSuccess, + NSObjectFileImageInappropriateFile, + NSObjectFileImageArch, + NSObjectFileImageFormat, /* for this a message is printed on stderr */ + NSObjectFileImageAccess +} NSObjectFileImageReturnCode; + +typedef struct __NSObjectFileImage* NSObjectFileImage; + +/* NSObjectFileImage can only be used with MH_BUNDLE files */ +extern NSObjectFileImageReturnCode NSCreateObjectFileImageFromFile(const char* pathName, NSObjectFileImage *objectFileImage) __OSX_AVAILABLE_BUT_DEPRECATED(__MAC_10_1,__MAC_10_5,__IPHONE_NA,__IPHONE_NA); +extern NSObjectFileImageReturnCode NSCreateObjectFileImageFromMemory(const void *address, size_t size, NSObjectFileImage *objectFileImage) __OSX_AVAILABLE_BUT_DEPRECATED(__MAC_10_1,__MAC_10_5,__IPHONE_NA,__IPHONE_NA); +extern bool NSDestroyObjectFileImage(NSObjectFileImage objectFileImage) __OSX_AVAILABLE_BUT_DEPRECATED(__MAC_10_1,__MAC_10_5,__IPHONE_NA,__IPHONE_NA); + +extern uint32_t NSSymbolDefinitionCountInObjectFileImage(NSObjectFileImage objectFileImage) __OSX_AVAILABLE_BUT_DEPRECATED(__MAC_10_1,__MAC_10_5,__IPHONE_NA,__IPHONE_NA); +extern const char* NSSymbolDefinitionNameInObjectFileImage(NSObjectFileImage objectFileImage, uint32_t ordinal) __OSX_AVAILABLE_BUT_DEPRECATED(__MAC_10_1,__MAC_10_5,__IPHONE_NA,__IPHONE_NA); +extern uint32_t NSSymbolReferenceCountInObjectFileImage(NSObjectFileImage objectFileImage) __OSX_AVAILABLE_BUT_DEPRECATED(__MAC_10_1,__MAC_10_5,__IPHONE_NA,__IPHONE_NA); +extern const char* NSSymbolReferenceNameInObjectFileImage(NSObjectFileImage objectFileImage, uint32_t ordinal, bool *tentative_definition) __OSX_AVAILABLE_BUT_DEPRECATED(__MAC_10_1,__MAC_10_5,__IPHONE_NA,__IPHONE_NA); +extern bool NSIsSymbolDefinedInObjectFileImage(NSObjectFileImage objectFileImage, const char* symbolName) __OSX_AVAILABLE_BUT_DEPRECATED(__MAC_10_1,__MAC_10_4,__IPHONE_NA,__IPHONE_NA); +extern void* NSGetSectionDataInObjectFileImage(NSObjectFileImage objectFileImage, const char* segmentName, const char* sectionName, size_t *size) __OSX_AVAILABLE_BUT_DEPRECATED(__MAC_10_1,__MAC_10_5,__IPHONE_NA,__IPHONE_NA); +extern bool NSHasModInitObjectFileImage(NSObjectFileImage objectFileImage) __OSX_AVAILABLE_BUT_DEPRECATED(__MAC_10_3,__MAC_10_5,__IPHONE_NA,__IPHONE_NA); + +typedef struct __NSModule* NSModule; +extern const char* NSNameOfModule(NSModule m) __OSX_AVAILABLE_BUT_DEPRECATED(__MAC_10_1,__MAC_10_5,__IPHONE_NA,__IPHONE_NA); +extern const char* NSLibraryNameForModule(NSModule m) __OSX_AVAILABLE_BUT_DEPRECATED(__MAC_10_1,__MAC_10_5,__IPHONE_NA,__IPHONE_NA); + +extern NSModule NSLinkModule(NSObjectFileImage objectFileImage, const char* moduleName, uint32_t options) __OSX_AVAILABLE_BUT_DEPRECATED(__MAC_10_1,__MAC_10_5,__IPHONE_NA,__IPHONE_NA); +#define NSLINKMODULE_OPTION_NONE 0x0 +#define NSLINKMODULE_OPTION_BINDNOW 0x1 +#define NSLINKMODULE_OPTION_PRIVATE 0x2 +#define NSLINKMODULE_OPTION_RETURN_ON_ERROR 0x4 +#define NSLINKMODULE_OPTION_DONT_CALL_MOD_INIT_ROUTINES 0x8 +#define NSLINKMODULE_OPTION_TRAILING_PHYS_NAME 0x10 + +extern bool NSUnLinkModule(NSModule module, uint32_t options) __OSX_AVAILABLE_BUT_DEPRECATED(__MAC_10_1,__MAC_10_5,__IPHONE_NA,__IPHONE_NA); +#define NSUNLINKMODULE_OPTION_NONE 0x0 +#define NSUNLINKMODULE_OPTION_KEEP_MEMORY_MAPPED 0x1 +#define NSUNLINKMODULE_OPTION_RESET_LAZY_REFERENCES 0x2 + +/* symbol API */ +typedef struct __NSSymbol* NSSymbol; +extern bool NSIsSymbolNameDefined(const char* symbolName) __OSX_AVAILABLE_BUT_DEPRECATED(__MAC_10_1,__MAC_10_4,__IPHONE_NA,__IPHONE_NA); +extern bool NSIsSymbolNameDefinedWithHint(const char* symbolName, const char* libraryNameHint) __OSX_AVAILABLE_BUT_DEPRECATED(__MAC_10_1,__MAC_10_4,__IPHONE_NA,__IPHONE_NA); +extern bool NSIsSymbolNameDefinedInImage(const struct mach_header* image, const char* symbolName) __OSX_AVAILABLE_BUT_DEPRECATED(__MAC_10_1,__MAC_10_4,__IPHONE_NA,__IPHONE_NA); +extern NSSymbol NSLookupAndBindSymbol(const char* symbolName) __OSX_AVAILABLE_BUT_DEPRECATED(__MAC_10_1,__MAC_10_4,__IPHONE_NA,__IPHONE_NA); +extern NSSymbol NSLookupAndBindSymbolWithHint(const char* symbolName, const char* libraryNameHint) __OSX_AVAILABLE_BUT_DEPRECATED(__MAC_10_1,__MAC_10_4,__IPHONE_NA,__IPHONE_NA); +extern NSSymbol NSLookupSymbolInModule(NSModule module, const char* symbolName) __OSX_AVAILABLE_BUT_DEPRECATED(__MAC_10_1,__MAC_10_5,__IPHONE_NA,__IPHONE_NA); +extern NSSymbol NSLookupSymbolInImage(const struct mach_header* image, const char* symbolName, uint32_t options) __OSX_AVAILABLE_BUT_DEPRECATED(__MAC_10_1,__MAC_10_5,__IPHONE_NA,__IPHONE_NA); +#define NSLOOKUPSYMBOLINIMAGE_OPTION_BIND 0x0 +#define NSLOOKUPSYMBOLINIMAGE_OPTION_BIND_NOW 0x1 +#define NSLOOKUPSYMBOLINIMAGE_OPTION_BIND_FULLY 0x2 +#define NSLOOKUPSYMBOLINIMAGE_OPTION_RETURN_ON_ERROR 0x4 +extern const char* NSNameOfSymbol(NSSymbol symbol) __OSX_AVAILABLE_BUT_DEPRECATED(__MAC_10_1,__MAC_10_5,__IPHONE_NA,__IPHONE_NA); +extern void * NSAddressOfSymbol(NSSymbol symbol) __OSX_AVAILABLE_BUT_DEPRECATED(__MAC_10_1,__MAC_10_5,__IPHONE_NA,__IPHONE_NA); +extern NSModule NSModuleForSymbol(NSSymbol symbol) __OSX_AVAILABLE_BUT_DEPRECATED(__MAC_10_1,__MAC_10_5,__IPHONE_NA,__IPHONE_NA); + +/* error handling API */ +typedef enum { + NSLinkEditFileAccessError, + NSLinkEditFileFormatError, + NSLinkEditMachResourceError, + NSLinkEditUnixResourceError, + NSLinkEditOtherError, + NSLinkEditWarningError, + NSLinkEditMultiplyDefinedError, + NSLinkEditUndefinedError +} NSLinkEditErrors; + +/* + * For the NSLinkEditErrors value NSLinkEditOtherError these are the values + * passed to the link edit error handler as the errorNumber (what would be an + * errno value for NSLinkEditUnixResourceError or a kern_return_t value for + * NSLinkEditMachResourceError). + */ +typedef enum { + NSOtherErrorRelocation, + NSOtherErrorLazyBind, + NSOtherErrorIndrLoop, + NSOtherErrorLazyInit, + NSOtherErrorInvalidArgs +} NSOtherErrorNumbers; + +extern void NSLinkEditError(NSLinkEditErrors *c, int *errorNumber, const char** fileName, const char** errorString) __OSX_AVAILABLE_BUT_DEPRECATED(__MAC_10_1,__MAC_10_5,__IPHONE_NA,__IPHONE_NA); + +typedef struct { + void (*undefined)(const char* symbolName); + NSModule (*multiple)(NSSymbol s, NSModule oldModule, NSModule newModule); + void (*linkEdit)(NSLinkEditErrors errorClass, int errorNumber, + const char* fileName, const char* errorString); +} NSLinkEditErrorHandlers; + +extern void NSInstallLinkEditErrorHandlers(const NSLinkEditErrorHandlers *handlers) __OSX_AVAILABLE_BUT_DEPRECATED(__MAC_10_1,__MAC_10_5,__IPHONE_NA,__IPHONE_NA); + +extern bool NSAddLibrary(const char* pathName) __OSX_AVAILABLE_BUT_DEPRECATED(__MAC_10_1,__MAC_10_4,__IPHONE_NA,__IPHONE_NA); +extern bool NSAddLibraryWithSearching(const char* pathName) __OSX_AVAILABLE_BUT_DEPRECATED(__MAC_10_1,__MAC_10_4,__IPHONE_NA,__IPHONE_NA); +extern const struct mach_header* NSAddImage(const char* image_name, uint32_t options) __OSX_AVAILABLE_BUT_DEPRECATED(__MAC_10_1,__MAC_10_5,__IPHONE_NA,__IPHONE_NA); +#define NSADDIMAGE_OPTION_NONE 0x0 +#define NSADDIMAGE_OPTION_RETURN_ON_ERROR 0x1 +#define NSADDIMAGE_OPTION_WITH_SEARCHING 0x2 +#define NSADDIMAGE_OPTION_RETURN_ONLY_IF_LOADED 0x4 +#define NSADDIMAGE_OPTION_MATCH_FILENAME_BY_INSTALLNAME 0x8 + +extern bool _dyld_present(void) __OSX_AVAILABLE_BUT_DEPRECATED(__MAC_10_1,__MAC_10_5,__IPHONE_NA,__IPHONE_NA); +extern bool _dyld_launched_prebound(void) __OSX_AVAILABLE_BUT_DEPRECATED(__MAC_10_1,__MAC_10_5,__IPHONE_NA,__IPHONE_NA); +extern bool _dyld_all_twolevel_modules_prebound(void) __OSX_AVAILABLE_BUT_DEPRECATED(__MAC_10_3,__MAC_10_5,__IPHONE_NA,__IPHONE_NA); +extern void _dyld_bind_objc_module(const void* objc_module) __OSX_AVAILABLE_BUT_DEPRECATED(__MAC_10_1,__MAC_10_5,__IPHONE_NA,__IPHONE_NA); +extern bool _dyld_bind_fully_image_containing_address(const void* address) __OSX_AVAILABLE_BUT_DEPRECATED(__MAC_10_1,__MAC_10_5,__IPHONE_NA,__IPHONE_NA); +extern bool _dyld_image_containing_address(const void* address) __OSX_AVAILABLE_BUT_DEPRECATED(__MAC_10_3,__MAC_10_5,__IPHONE_NA,__IPHONE_NA); +extern void _dyld_lookup_and_bind(const char* symbol_name, void **address, NSModule* module) __OSX_AVAILABLE_BUT_DEPRECATED(__MAC_10_1,__MAC_10_4,__IPHONE_NA,__IPHONE_NA); +extern void _dyld_lookup_and_bind_with_hint(const char* symbol_name, const char* library_name_hint, void** address, NSModule* module) __OSX_AVAILABLE_BUT_DEPRECATED(__MAC_10_1,__MAC_10_4,__IPHONE_NA,__IPHONE_NA); +extern void _dyld_lookup_and_bind_fully(const char* symbol_name, void** address, NSModule* module) __OSX_AVAILABLE_BUT_DEPRECATED(__MAC_10_1,__MAC_10_5,__IPHONE_NA,__IPHONE_NA); + +extern const struct mach_header* _dyld_get_image_header_containing_address(const void* address) __OSX_AVAILABLE_BUT_DEPRECATED(__MAC_10_3,__MAC_10_5,__IPHONE_NA,__IPHONE_NA); + + +#if __cplusplus +} +#endif + +#endif /* _MACH_O_DYLD_H_ */
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/boot/dyld_images.h Mon Jan 21 23:29:01 2013 +0900 @@ -0,0 +1,164 @@ +/* + * Copyright (c) 2006-2010 Apple Inc. All rights reserved. + * + * @APPLE_LICENSE_HEADER_START@ + * + * This file contains Original Code and/or Modifications of Original Code + * as defined in and that are subject to the Apple Public Source License + * Version 2.0 (the 'License'). You may not use this file except in + * compliance with the License. Please obtain a copy of the License at + * http://www.opensource.apple.com/apsl/ and read it before using this + * file. + * + * The Original Code and all software distributed under the License are + * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER + * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, + * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. + * Please see the License for the specific language governing rights and + * limitations under the License. + * + * @APPLE_LICENSE_HEADER_END@ + */ +#ifndef _DYLD_IMAGES_ +#define _DYLD_IMAGES_ + +#include <stdbool.h> +#include <unistd.h> +#include <mach/mach.h> + +#ifdef __cplusplus +extern "C" { +#endif + + +/* + * Beginning in Mac OS X 10.4, this is how gdb discovers which mach-o images are loaded in a process. + * + * gdb looks for the symbol "_dyld_all_image_infos" in dyld. It contains the fields below. + * + * For a snashot of what images are currently loaded, the infoArray fields contain a pointer + * to an array of all images. If infoArray is NULL, it means it is being modified, come back later. + * + * To be notified of changes, gdb sets a break point on the address pointed to by the notificationn + * field. The function it points to is called by dyld with an array of information about what images + * have been added (dyld_image_adding) or are about to be removed (dyld_image_removing). + * + * The notification is called after infoArray is updated. This means that if gdb attaches to a process + * and infoArray is NULL, gdb can set a break point on notification and let the proccess continue to + * run until the break point. Then gdb can inspect the full infoArray. + * + * The dyldVersion field always points to a C string that contains the dyld version. For instance, + * in dyld-127.3, dyldVersion would contain a pointer to "127.3". + * + * The errorMessage and terminationFlags fields are normally zero. If dyld terminates a process + * (for instance because a required dylib or symbol is missing), then the errorMessage field will + * be set to point to a C string message buffer containing the reason dyld terminate the process. + * The low bit of the terminationFlags will be set if dyld terminated the process before any user + * code ran, in which case there is no need for the crash log to contain the backtrace. + * + * When dyld terminates a process because some required dylib or symbol cannot be bound, in + * addition to the errorMessage field, it now sets the errorKind field and the corresponding + * fields: errorClientOfDylibPath, errorTargetDylibPath, errorSymbol. + * + */ + +enum dyld_image_mode { dyld_image_adding=0, dyld_image_removing=1 }; + +struct dyld_image_info { + const struct mach_header* imageLoadAddress; /* base address image is mapped into */ + const char* imageFilePath; /* path dyld used to load the image */ + uintptr_t imageFileModDate; /* time_t of image file */ + /* if stat().st_mtime of imageFilePath does not match imageFileModDate, */ + /* then file has been modified since dyld loaded it */ +}; + +struct dyld_uuid_info { + const struct mach_header* imageLoadAddress; /* base address image is mapped into */ + uuid_t imageUUID; /* UUID of image */ +}; + +typedef void (*dyld_image_notifier)(enum dyld_image_mode mode, uint32_t infoCount, const struct dyld_image_info info[]); + +/* for use in dyld_all_image_infos.errorKind field */ +enum { dyld_error_kind_none=0, + dyld_error_kind_dylib_missing=1, + dyld_error_kind_dylib_wrong_arch=2, + dyld_error_kind_dylib_version=3, + dyld_error_kind_symbol_missing=4 + }; + + +struct dyld_all_image_infos { + uint32_t version; /* 1 in Mac OS X 10.4 and 10.5 */ + uint32_t infoArrayCount; + const struct dyld_image_info* infoArray; + dyld_image_notifier notification; + bool processDetachedFromSharedRegion; + /* the following fields are only in version 2 (Mac OS X 10.6, iPhoneOS 2.0) and later */ + bool libSystemInitialized; + const struct mach_header* dyldImageLoadAddress; + /* the following field is only in version 3 (Mac OS X 10.6, iPhoneOS 3.0) and later */ + void* jitInfo; + /* the following fields are only in version 5 (Mac OS X 10.6, iPhoneOS 3.0) and later */ + const char* dyldVersion; + const char* errorMessage; + uintptr_t terminationFlags; + /* the following field is only in version 6 (Mac OS X 10.6, iPhoneOS 3.1) and later */ + void* coreSymbolicationShmPage; + /* the following field is only in version 7 (Mac OS X 10.6, iPhoneOS 3.1) and later */ + uintptr_t systemOrderFlag; + /* the following field is only in version 8 (Mac OS X 10.7, iPhoneOS 3.1) and later */ + uintptr_t uuidArrayCount; + const struct dyld_uuid_info* uuidArray; /* only images not in dyld shared cache */ + /* the following field is only in version 9 (Mac OS X 10.7, iOS 4.0) and later */ + struct dyld_all_image_infos* dyldAllImageInfosAddress; + /* the following field is only in version 10 (Mac OS X 10.7, iOS 4.2) and later */ + uintptr_t initialImageCount; + /* the following field is only in version 11 (Mac OS X 10.7, iOS 4.2) and later */ + uintptr_t errorKind; + const char* errorClientOfDylibPath; + const char* errorTargetDylibPath; + const char* errorSymbol; + /* the following field is only in version 12 (Mac OS X 10.7, iOS 4.3) and later */ + uintptr_t sharedCacheSlide; +}; +extern struct dyld_all_image_infos dyld_all_image_infos; + +/* + * Beginning in Mac OS X 10.6, rather than looking up the symbol "_dyld_all_image_infos" + * in dyld's symbol table, you can add DYLD_ALL_IMAGE_INFOS_OFFSET_OFFSET to the mach_header + * for dyld and read the 32-bit unsigned int at that location. Adding that value to dyld's + * mach_header address gets you the address of dyld_all_image_infos in dyld. + */ +#define DYLD_ALL_IMAGE_INFOS_OFFSET_OFFSET 0x1010 + + + +/* + * Beginning in Mac OS X 10.5, this is how gdb discovers where the shared cache is in a process. + * Images that are in the shared cache have their segments rearranged, so when using imageFilePath + * to load the file from disk, you have to know to adjust addresses based on how their segment + * was rearranged. + * + * gdb looks for the symbol "_dyld_shared_region_ranges" in dyld. + * + * It contains information the count of shared regions used by the process. The count is + * the number of start/length pairs. + */ +struct dyld_shared_cache_ranges { + uintptr_t sharedRegionsCount; /* how many ranges follow */ + struct { + uintptr_t start; + uintptr_t length; + } ranges[4]; /* max regions */ +}; +extern struct dyld_shared_cache_ranges dyld_shared_cache_ranges; + + + +#ifdef __cplusplus +} +#endif + +#endif /* _DYLD_IMAGES_ */
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/boot/fat.h Mon Jan 21 23:29:01 2013 +0900 @@ -0,0 +1,64 @@ +/* + * Copyright (c) 1999 Apple Computer, Inc. All rights reserved. + * + * @APPLE_LICENSE_HEADER_START@ + * + * This file contains Original Code and/or Modifications of Original Code + * as defined in and that are subject to the Apple Public Source License + * Version 2.0 (the 'License'). You may not use this file except in + * compliance with the License. Please obtain a copy of the License at + * http://www.opensource.apple.com/apsl/ and read it before using this + * file. + * + * The Original Code and all software distributed under the License are + * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER + * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, + * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. + * Please see the License for the specific language governing rights and + * limitations under the License. + * + * @APPLE_LICENSE_HEADER_END@ + */ +#ifndef _MACH_O_FAT_H_ +#define _MACH_O_FAT_H_ +/* + * This header file describes the structures of the file format for "fat" + * architecture specific file (wrapper design). At the begining of the file + * there is one fat_header structure followed by a number of fat_arch + * structures. For each architecture in the file, specified by a pair of + * cputype and cpusubtype, the fat_header describes the file offset, file + * size and alignment in the file of the architecture specific member. + * The padded bytes in the file to place each member on it's specific alignment + * are defined to be read as zeros and can be left as "holes" if the file system + * can support them as long as they read as zeros. + * + * All structures defined here are always written and read to/from disk + * in big-endian order. + */ + +/* + * <mach/machine.h> is needed here for the cpu_type_t and cpu_subtype_t types + * and contains the constants for the possible values of these types. + */ +#include <stdint.h> +#include <mach/machine.h> +#include <architecture/byte_order.h> + +#define FAT_MAGIC 0xcafebabe +#define FAT_CIGAM 0xbebafeca /* NXSwapLong(FAT_MAGIC) */ + +struct fat_header { + uint32_t magic; /* FAT_MAGIC */ + uint32_t nfat_arch; /* number of structs that follow */ +}; + +struct fat_arch { + cpu_type_t cputype; /* cpu specifier (int) */ + cpu_subtype_t cpusubtype; /* machine specifier (int) */ + uint32_t offset; /* file offset to this object file */ + uint32_t size; /* size of this object file */ + uint32_t align; /* alignment as a power of 2 */ +}; + +#endif /* _MACH_O_FAT_H_ */
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/boot/getsect.h Mon Jan 21 23:29:01 2013 +0900 @@ -0,0 +1,131 @@ +/* + * Copyright (c) 2004 Apple Computer, Inc. All rights reserved. + * + * @APPLE_LICENSE_HEADER_START@ + * + * This file contains Original Code and/or Modifications of Original Code + * as defined in and that are subject to the Apple Public Source License + * Version 2.0 (the 'License'). You may not use this file except in + * compliance with the License. Please obtain a copy of the License at + * http://www.opensource.apple.com/apsl/ and read it before using this + * file. + * + * The Original Code and all software distributed under the License are + * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER + * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, + * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. + * Please see the License for the specific language governing rights and + * limitations under the License. + * + * @APPLE_LICENSE_HEADER_END@ + */ +#ifndef _MACH_O_GETSECT_H_ +#define _MACH_O_GETSECT_H_ + +#include <stdint.h> +#include <mach-o/loader.h> + +#if __cplusplus +extern "C" { +#endif /* __cplusplus */ + +/* + * Runtime interfaces for Mach-O programs. For both 32-bit and 64-bit programs, + * where the sizes returned will be 32-bit or 64-bit based on the size of + * 'unsigned long'. + */ +extern char *getsectdata( + const char *segname, + const char *sectname, + unsigned long *size); + +extern char *getsectdatafromFramework( + const char *FrameworkName, + const char *segname, + const char *sectname, + unsigned long *size); + +extern unsigned long get_end(void); +extern unsigned long get_etext(void); +extern unsigned long get_edata(void); + +#ifndef __LP64__ +/* + * Runtime interfaces for 32-bit Mach-O programs. + */ +extern const struct section *getsectbyname( + const char *segname, + const char *sectname); + +extern uint8_t *getsectiondata( + const struct mach_header *mhp, + const char *segname, + const char *sectname, + unsigned long *size); + +extern const struct segment_command *getsegbyname( + const char *segname); + +extern uint8_t *getsegmentdata( + const struct mach_header *mhp, + const char *segname, + unsigned long *size); + +#else /* defined(__LP64__) */ +/* + * Runtime interfaces for 64-bit Mach-O programs. + */ +extern const struct section_64 *getsectbyname( + const char *segname, + const char *sectname); + +extern uint8_t *getsectiondata( + const struct mach_header_64 *mhp, + const char *segname, + const char *sectname, + unsigned long *size); + +extern const struct segment_command_64 *getsegbyname( + const char *segname); + +extern uint8_t *getsegmentdata( + const struct mach_header_64 *mhp, + const char *segname, + unsigned long *size); + +#endif /* defined(__LP64__) */ + +/* + * Interfaces for tools working with 32-bit Mach-O files. + */ +extern char *getsectdatafromheader( + const struct mach_header *mhp, + const char *segname, + const char *sectname, + uint32_t *size); + +extern const struct section *getsectbynamefromheader( + const struct mach_header *mhp, + const char *segname, + const char *sectname); + +/* + * Interfaces for tools working with 64-bit Mach-O files. + */ +extern char *getsectdatafromheader_64( + const struct mach_header_64 *mhp, + const char *segname, + const char *sectname, + uint64_t *size); + +extern const struct section_64 *getsectbynamefromheader_64( + const struct mach_header_64 *mhp, + const char *segname, + const char *sectname); + +#if __cplusplus +} +#endif /* __cplusplus */ + +#endif /* _MACH_O_GETSECT_H_ */
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/boot/i386/swap.h Mon Jan 21 23:29:01 2013 +0900 @@ -0,0 +1,96 @@ +/* + * Copyright (c) 1999 Apple Computer, Inc. All rights reserved. + * + * @APPLE_LICENSE_HEADER_START@ + * + * This file contains Original Code and/or Modifications of Original Code + * as defined in and that are subject to the Apple Public Source License + * Version 2.0 (the 'License'). You may not use this file except in + * compliance with the License. Please obtain a copy of the License at + * http://www.opensource.apple.com/apsl/ and read it before using this + * file. + * + * The Original Code and all software distributed under the License are + * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER + * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, + * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. + * Please see the License for the specific language governing rights and + * limitations under the License. + * + * @APPLE_LICENSE_HEADER_END@ + */ +#include <architecture/byte_order.h> +#include <mach/i386/thread_status.h> + +extern void swap_i386_thread_state( + i386_thread_state_t *cpu, + enum NXByteOrder target_byte_order); + +/* current i386 thread states */ +#if i386_THREAD_STATE == 1 +extern void swap_i386_float_state( + struct i386_float_state *fpu, + enum NXByteOrder target_byte_order); + +extern void swap_i386_exception_state( + i386_exception_state_t *exc, + enum NXByteOrder target_byte_order); +#endif /* i386_THREAD_STATE == 1 */ + +/* i386 thread states on older releases */ +#if i386_THREAD_STATE == -1 +extern void swap_i386_thread_fpstate( + i386_thread_fpstate_t *fpu, + enum NXByteOrder target_byte_order); + +extern void swap_i386_thread_exceptstate( + i386_thread_exceptstate_t *exc, + enum NXByteOrder target_byte_order); + +extern void swap_i386_thread_cthreadstate( + i386_thread_cthreadstate_t *user, + enum NXByteOrder target_byte_order); +#endif /* i386_THREAD_STATE == -1 */ + +#ifdef x86_THREAD_STATE64 +extern void swap_x86_thread_state64( + x86_thread_state64_t *cpu, + enum NXByteOrder target_byte_order); + +extern void swap_x86_state_hdr( + x86_state_hdr_t *hdr, + enum NXByteOrder target_byte_order); + +extern void swap_x86_float_state64( + x86_float_state64_t *fpu, + enum NXByteOrder target_byte_order); + +extern void swap_x86_exception_state64( + x86_exception_state64_t *exc, + enum NXByteOrder target_byte_order); + +extern void swap_x86_thread_state( + x86_thread_state_t *cpu, + enum NXByteOrder target_byte_order); + +extern void swap_x86_float_state( + x86_float_state_t *fpu, + enum NXByteOrder target_byte_order); + +extern void swap_x86_exception_state( + x86_exception_state_t *exc, + enum NXByteOrder target_byte_order); + +extern void swap_x86_debug_state32( + x86_debug_state32_t *debug, + enum NXByteOrder target_byte_order); + +extern void swap_x86_debug_state64( + x86_debug_state64_t *debug, + enum NXByteOrder target_byte_order); + +extern void swap_x86_debug_state( + x86_debug_state_t *debug, + enum NXByteOrder target_byte_order); +#endif /* x86_THREAD_STATE64 */
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/boot/ldsyms.h Mon Jan 21 23:29:01 2013 +0900 @@ -0,0 +1,133 @@ +/* + * Copyright (c) 1999 Apple Computer, Inc. All rights reserved. + * + * @APPLE_LICENSE_HEADER_START@ + * + * This file contains Original Code and/or Modifications of Original Code + * as defined in and that are subject to the Apple Public Source License + * Version 2.0 (the 'License'). You may not use this file except in + * compliance with the License. Please obtain a copy of the License at + * http://www.opensource.apple.com/apsl/ and read it before using this + * file. + * + * The Original Code and all software distributed under the License are + * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER + * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, + * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. + * Please see the License for the specific language governing rights and + * limitations under the License. + * + * @APPLE_LICENSE_HEADER_END@ + */ + +#ifndef _MACHO_LDSYMS_H_ +#define _MACHO_LDSYMS_H_ + +#include <mach-o/loader.h> + +/* + * This file describes the link editor defined symbols. The semantics of a + * link editor symbol is that it is defined by the link editor only if it is + * referenced and it is an error for the user to define them (see the man page + * ld(1)). The standard UNIX link editor symbols: __end, __etext and __edata + * are not not supported by the Apple Mach-O link editor. These symbols are + * really not meaningful in a Mach-O object file and the link editor symbols + * that are supported (described here) replace them. In the case of the + * standard UNIX link editor symbols the program can use the symbol + * __mh_execute_header and walk the load commands of it's program to determine + * the ending (or beginning) of any section or segment in the program. Note + * that the compiler prepends an underbar to all external symbol names coded + * in a high level language. Thus in 'C' names are coded without an underbar + * and symbol names in the symbol table have an underbar. There are two cpp + * macros for each link editor defined name in this file. The macro with a + * leading underbar is the symbol name and the one without is the name as + * coded in 'C'. + */ + +/* + * The value of the link editor defined symbol _MH_EXECUTE_SYM is the address + * of the mach header in a Mach-O executable file type. It does not appear in + * any file type other than a MH_EXECUTE file type. The type of the symbol is + * absolute as the header is not part of any section. + */ +#define _MH_EXECUTE_SYM "__mh_execute_header" +#define MH_EXECUTE_SYM "_mh_execute_header" +extern const struct +#ifdef __LP64__ +mach_header_64 +#else +mach_header +#endif +_mh_execute_header; + +/* + * The value of the link editor defined symbol _MH_BUNDLE_SYM is the address + * of the mach header in a Mach-O bundle file type. It does not appear in + * any file type other than a MH_BUNDLE file type. The type of the symbol is + * an N_SECT symbol even thought the header is not part of any section. This + * symbol is private to the code in the bundle it is a part of. + */ +#define _MH_BUNDLE_SYM "__mh_bundle_header" +#define MH_BUNDLE_SYM "_mh_bundle_header" +extern const struct +#ifdef __LP64__ +mach_header_64 +#else +mach_header +#endif +_mh_bundle_header; + +/* + * The value of the link editor defined symbol _MH_DYLIB_SYM is the address + * of the mach header in a Mach-O dylib file type. It does not appear in + * any file type other than a MH_DYLIB file type. The type of the symbol is + * an N_SECT symbol even thought the header is not part of any section. This + * symbol is private to the code in the library it is a part of. + */ +#define _MH_DYLIB_SYM "__mh_dylib_header" +#define MH_DYLIB_SYM "_mh_dylib_header" +extern const struct +#ifdef __LP64__ +mach_header_64 +#else +mach_header +#endif +_mh_dylib_header; + +/* + * The value of the link editor defined symbol _MH_DYLINKER_SYM is the address + * of the mach header in a Mach-O dylinker file type. It does not appear in + * any file type other than a MH_DYLINKER file type. The type of the symbol is + * an N_SECT symbol even thought the header is not part of any section. This + * symbol is private to the code in the dynamic linker it is a part of. + */ +#define _MH_DYLINKER_SYM "__mh_dylinker_header" +#define MH_DYLINKER_SYM "_mh_dylinker_header" +extern const struct +#ifdef __LP64__ +mach_header_64 +#else +mach_header +#endif +_mh_dylinker_header; + +/* + * For the MH_PRELOAD file type the headers are not loaded as part of any + * segment so the link editor defines symbols defined for the beginning + * and ending of each segment and each section in each segment. The names for + * the symbols for a segment's beginning and end will have the form: + * __SEGNAME__begin and __SEGNAME__end where __SEGNAME is the name of the + * segment. The names for the symbols for a section's beginning and end will + * have the form: __SEGNAME__sectname__begin and __SEGNAME__sectname__end + * where __sectname is the name of the section and __SEGNAME is the segment it + * is in. + * + * The above symbols' types are those of the section they are referring to. + * This is true even for symbols who's values are end's of a section and + * that value is next address after that section and not really in that + * section. This results in these symbols having types referring to sections + * who's values are not in that section. + */ + +#endif /* _MACHO_LDSYMS_H_ */
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/boot/loader.h Mon Jan 21 23:29:01 2013 +0900 @@ -0,0 +1,1458 @@ +/* + * Copyright (c) 1999-2010 Apple Inc. All Rights Reserved. + * + * @APPLE_LICENSE_HEADER_START@ + * + * This file contains Original Code and/or Modifications of Original Code + * as defined in and that are subject to the Apple Public Source License + * Version 2.0 (the 'License'). You may not use this file except in + * compliance with the License. Please obtain a copy of the License at + * http://www.opensource.apple.com/apsl/ and read it before using this + * file. + * + * The Original Code and all software distributed under the License are + * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER + * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, + * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. + * Please see the License for the specific language governing rights and + * limitations under the License. + * + * @APPLE_LICENSE_HEADER_END@ + */ +#ifndef _MACHO_LOADER_H_ +#define _MACHO_LOADER_H_ + +/* + * This file describes the format of mach object files. + */ +#include <stdint.h> + +/* + * <mach/machine.h> is needed here for the cpu_type_t and cpu_subtype_t types + * and contains the constants for the possible values of these types. + */ +#include <mach/machine.h> + +/* + * <mach/vm_prot.h> is needed here for the vm_prot_t type and contains the + * constants that are or'ed together for the possible values of this type. + */ +#include <mach/vm_prot.h> + +/* + * <machine/thread_status.h> is expected to define the flavors of the thread + * states and the structures of those flavors for each machine. + */ +#include <mach/machine/thread_status.h> +#include <architecture/byte_order.h> + +/* + * The 32-bit mach header appears at the very beginning of the object file for + * 32-bit architectures. + */ +struct mach_header { + uint32_t magic; /* mach magic number identifier */ + cpu_type_t cputype; /* cpu specifier */ + cpu_subtype_t cpusubtype; /* machine specifier */ + uint32_t filetype; /* type of file */ + uint32_t ncmds; /* number of load commands */ + uint32_t sizeofcmds; /* the size of all the load commands */ + uint32_t flags; /* flags */ +}; + +/* Constant for the magic field of the mach_header (32-bit architectures) */ +#define MH_MAGIC 0xfeedface /* the mach magic number */ +#define MH_CIGAM 0xcefaedfe /* NXSwapInt(MH_MAGIC) */ + +/* + * The 64-bit mach header appears at the very beginning of object files for + * 64-bit architectures. + */ +struct mach_header_64 { + uint32_t magic; /* mach magic number identifier */ + cpu_type_t cputype; /* cpu specifier */ + cpu_subtype_t cpusubtype; /* machine specifier */ + uint32_t filetype; /* type of file */ + uint32_t ncmds; /* number of load commands */ + uint32_t sizeofcmds; /* the size of all the load commands */ + uint32_t flags; /* flags */ + uint32_t reserved; /* reserved */ +}; + +/* Constant for the magic field of the mach_header_64 (64-bit architectures) */ +#define MH_MAGIC_64 0xfeedfacf /* the 64-bit mach magic number */ +#define MH_CIGAM_64 0xcffaedfe /* NXSwapInt(MH_MAGIC_64) */ + +/* + * The layout of the file depends on the filetype. For all but the MH_OBJECT + * file type the segments are padded out and aligned on a segment alignment + * boundary for efficient demand pageing. The MH_EXECUTE, MH_FVMLIB, MH_DYLIB, + * MH_DYLINKER and MH_BUNDLE file types also have the headers included as part + * of their first segment. + * + * The file type MH_OBJECT is a compact format intended as output of the + * assembler and input (and possibly output) of the link editor (the .o + * format). All sections are in one unnamed segment with no segment padding. + * This format is used as an executable format when the file is so small the + * segment padding greatly increases its size. + * + * The file type MH_PRELOAD is an executable format intended for things that + * are not executed under the kernel (proms, stand alones, kernels, etc). The + * format can be executed under the kernel but may demand paged it and not + * preload it before execution. + * + * A core file is in MH_CORE format and can be any in an arbritray legal + * Mach-O file. + * + * Constants for the filetype field of the mach_header + */ +#define MH_OBJECT 0x1 /* relocatable object file */ +#define MH_EXECUTE 0x2 /* demand paged executable file */ +#define MH_FVMLIB 0x3 /* fixed VM shared library file */ +#define MH_CORE 0x4 /* core file */ +#define MH_PRELOAD 0x5 /* preloaded executable file */ +#define MH_DYLIB 0x6 /* dynamically bound shared library */ +#define MH_DYLINKER 0x7 /* dynamic link editor */ +#define MH_BUNDLE 0x8 /* dynamically bound bundle file */ +#define MH_DYLIB_STUB 0x9 /* shared library stub for static */ + /* linking only, no section contents */ +#define MH_DSYM 0xa /* companion file with only debug */ + /* sections */ +#define MH_KEXT_BUNDLE 0xb /* x86_64 kexts */ + +/* Constants for the flags field of the mach_header */ +#define MH_NOUNDEFS 0x1 /* the object file has no undefined + references */ +#define MH_INCRLINK 0x2 /* the object file is the output of an + incremental link against a base file + and can't be link edited again */ +#define MH_DYLDLINK 0x4 /* the object file is input for the + dynamic linker and can't be staticly + link edited again */ +#define MH_BINDATLOAD 0x8 /* the object file's undefined + references are bound by the dynamic + linker when loaded. */ +#define MH_PREBOUND 0x10 /* the file has its dynamic undefined + references prebound. */ +#define MH_SPLIT_SEGS 0x20 /* the file has its read-only and + read-write segments split */ +#define MH_LAZY_INIT 0x40 /* the shared library init routine is + to be run lazily via catching memory + faults to its writeable segments + (obsolete) */ +#define MH_TWOLEVEL 0x80 /* the image is using two-level name + space bindings */ +#define MH_FORCE_FLAT 0x100 /* the executable is forcing all images + to use flat name space bindings */ +#define MH_NOMULTIDEFS 0x200 /* this umbrella guarantees no multiple + defintions of symbols in its + sub-images so the two-level namespace + hints can always be used. */ +#define MH_NOFIXPREBINDING 0x400 /* do not have dyld notify the + prebinding agent about this + executable */ +#define MH_PREBINDABLE 0x800 /* the binary is not prebound but can + have its prebinding redone. only used + when MH_PREBOUND is not set. */ +#define MH_ALLMODSBOUND 0x1000 /* indicates that this binary binds to + all two-level namespace modules of + its dependent libraries. only used + when MH_PREBINDABLE and MH_TWOLEVEL + are both set. */ +#define MH_SUBSECTIONS_VIA_SYMBOLS 0x2000/* safe to divide up the sections into + sub-sections via symbols for dead + code stripping */ +#define MH_CANONICAL 0x4000 /* the binary has been canonicalized + via the unprebind operation */ +#define MH_WEAK_DEFINES 0x8000 /* the final linked image contains + external weak symbols */ +#define MH_BINDS_TO_WEAK 0x10000 /* the final linked image uses + weak symbols */ + +#define MH_ALLOW_STACK_EXECUTION 0x20000/* When this bit is set, all stacks + in the task will be given stack + execution privilege. Only used in + MH_EXECUTE filetypes. */ +#define MH_ROOT_SAFE 0x40000 /* When this bit is set, the binary + declares it is safe for use in + processes with uid zero */ + +#define MH_SETUID_SAFE 0x80000 /* When this bit is set, the binary + declares it is safe for use in + processes when issetugid() is true */ + +#define MH_NO_REEXPORTED_DYLIBS 0x100000 /* When this bit is set on a dylib, + the static linker does not need to + examine dependent dylibs to see + if any are re-exported */ +#define MH_PIE 0x200000 /* When this bit is set, the OS will + load the main executable at a + random address. Only used in + MH_EXECUTE filetypes. */ +#define MH_DEAD_STRIPPABLE_DYLIB 0x400000 /* Only for use on dylibs. When + linking against a dylib that + has this bit set, the static linker + will automatically not create a + LC_LOAD_DYLIB load command to the + dylib if no symbols are being + referenced from the dylib. */ +#define MH_HAS_TLV_DESCRIPTORS 0x800000 /* Contains a section of type + S_THREAD_LOCAL_VARIABLES */ + +#define MH_NO_HEAP_EXECUTION 0x1000000 /* When this bit is set, the OS will + run the main executable with + a non-executable heap even on + platforms (e.g. i386) that don't + require it. Only used in MH_EXECUTE + filetypes. */ + +/* + * The load commands directly follow the mach_header. The total size of all + * of the commands is given by the sizeofcmds field in the mach_header. All + * load commands must have as their first two fields cmd and cmdsize. The cmd + * field is filled in with a constant for that command type. Each command type + * has a structure specifically for it. The cmdsize field is the size in bytes + * of the particular load command structure plus anything that follows it that + * is a part of the load command (i.e. section structures, strings, etc.). To + * advance to the next load command the cmdsize can be added to the offset or + * pointer of the current load command. The cmdsize for 32-bit architectures + * MUST be a multiple of 4 bytes and for 64-bit architectures MUST be a multiple + * of 8 bytes (these are forever the maximum alignment of any load commands). + * The padded bytes must be zero. All tables in the object file must also + * follow these rules so the file can be memory mapped. Otherwise the pointers + * to these tables will not work well or at all on some machines. With all + * padding zeroed like objects will compare byte for byte. + */ +struct load_command { + uint32_t cmd; /* type of load command */ + uint32_t cmdsize; /* total size of command in bytes */ +}; + +/* + * After MacOS X 10.1 when a new load command is added that is required to be + * understood by the dynamic linker for the image to execute properly the + * LC_REQ_DYLD bit will be or'ed into the load command constant. If the dynamic + * linker sees such a load command it it does not understand will issue a + * "unknown load command required for execution" error and refuse to use the + * image. Other load commands without this bit that are not understood will + * simply be ignored. + */ +#define LC_REQ_DYLD 0x80000000 + +/* Constants for the cmd field of all load commands, the type */ +#define LC_SEGMENT 0x1 /* segment of this file to be mapped */ +#define LC_SYMTAB 0x2 /* link-edit stab symbol table info */ +#define LC_SYMSEG 0x3 /* link-edit gdb symbol table info (obsolete) */ +#define LC_THREAD 0x4 /* thread */ +#define LC_UNIXTHREAD 0x5 /* unix thread (includes a stack) */ +#define LC_LOADFVMLIB 0x6 /* load a specified fixed VM shared library */ +#define LC_IDFVMLIB 0x7 /* fixed VM shared library identification */ +#define LC_IDENT 0x8 /* object identification info (obsolete) */ +#define LC_FVMFILE 0x9 /* fixed VM file inclusion (internal use) */ +#define LC_PREPAGE 0xa /* prepage command (internal use) */ +#define LC_DYSYMTAB 0xb /* dynamic link-edit symbol table info */ +#define LC_LOAD_DYLIB 0xc /* load a dynamically linked shared library */ +#define LC_ID_DYLIB 0xd /* dynamically linked shared lib ident */ +#define LC_LOAD_DYLINKER 0xe /* load a dynamic linker */ +#define LC_ID_DYLINKER 0xf /* dynamic linker identification */ +#define LC_PREBOUND_DYLIB 0x10 /* modules prebound for a dynamically */ + /* linked shared library */ +#define LC_ROUTINES 0x11 /* image routines */ +#define LC_SUB_FRAMEWORK 0x12 /* sub framework */ +#define LC_SUB_UMBRELLA 0x13 /* sub umbrella */ +#define LC_SUB_CLIENT 0x14 /* sub client */ +#define LC_SUB_LIBRARY 0x15 /* sub library */ +#define LC_TWOLEVEL_HINTS 0x16 /* two-level namespace lookup hints */ +#define LC_PREBIND_CKSUM 0x17 /* prebind checksum */ + +/* + * load a dynamically linked shared library that is allowed to be missing + * (all symbols are weak imported). + */ +#define LC_LOAD_WEAK_DYLIB (0x18 | LC_REQ_DYLD) + +#define LC_SEGMENT_64 0x19 /* 64-bit segment of this file to be + mapped */ +#define LC_ROUTINES_64 0x1a /* 64-bit image routines */ +#define LC_UUID 0x1b /* the uuid */ +#define LC_RPATH (0x1c | LC_REQ_DYLD) /* runpath additions */ +#define LC_CODE_SIGNATURE 0x1d /* local of code signature */ +#define LC_SEGMENT_SPLIT_INFO 0x1e /* local of info to split segments */ +#define LC_REEXPORT_DYLIB (0x1f | LC_REQ_DYLD) /* load and re-export dylib */ +#define LC_LAZY_LOAD_DYLIB 0x20 /* delay load of dylib until first use */ +#define LC_ENCRYPTION_INFO 0x21 /* encrypted segment information */ +#define LC_DYLD_INFO 0x22 /* compressed dyld information */ +#define LC_DYLD_INFO_ONLY (0x22|LC_REQ_DYLD) /* compressed dyld information only */ +#define LC_LOAD_UPWARD_DYLIB (0x23 | LC_REQ_DYLD) /* load upward dylib */ +#define LC_VERSION_MIN_MACOSX 0x24 /* build for MacOSX min OS version */ +#define LC_VERSION_MIN_IPHONEOS 0x25 /* build for iPhoneOS min OS version */ +#define LC_FUNCTION_STARTS 0x26 /* compressed table of function start addresses */ +#define LC_DYLD_ENVIRONMENT 0x27 /* string for dyld to treat + like environment variable */ +#define LC_MAIN (0x28|LC_REQ_DYLD) /* replacement for LC_UNIXTHREAD */ +#define LC_DATA_IN_CODE 0x29 /* table of non-instructions in __text */ +#define LC_SOURCE_VERSION 0x2A /* source version used to build binary */ +#define LC_DYLIB_CODE_SIGN_DRS 0x2B /* Code signing DRs copied from linked dylibs */ + + +/* + * A variable length string in a load command is represented by an lc_str + * union. The strings are stored just after the load command structure and + * the offset is from the start of the load command structure. The size + * of the string is reflected in the cmdsize field of the load command. + * Once again any padded bytes to bring the cmdsize field to a multiple + * of 4 bytes must be zero. + */ +union lc_str { + uint32_t offset; /* offset to the string */ +#ifndef __LP64__ + char *ptr; /* pointer to the string */ +#endif +}; + +/* + * The segment load command indicates that a part of this file is to be + * mapped into the task's address space. The size of this segment in memory, + * vmsize, maybe equal to or larger than the amount to map from this file, + * filesize. The file is mapped starting at fileoff to the beginning of + * the segment in memory, vmaddr. The rest of the memory of the segment, + * if any, is allocated zero fill on demand. The segment's maximum virtual + * memory protection and initial virtual memory protection are specified + * by the maxprot and initprot fields. If the segment has sections then the + * section structures directly follow the segment command and their size is + * reflected in cmdsize. + */ +struct segment_command { /* for 32-bit architectures */ + uint32_t cmd; /* LC_SEGMENT */ + uint32_t cmdsize; /* includes sizeof section structs */ + char segname[16]; /* segment name */ + uint32_t vmaddr; /* memory address of this segment */ + uint32_t vmsize; /* memory size of this segment */ + uint32_t fileoff; /* file offset of this segment */ + uint32_t filesize; /* amount to map from the file */ + vm_prot_t maxprot; /* maximum VM protection */ + vm_prot_t initprot; /* initial VM protection */ + uint32_t nsects; /* number of sections in segment */ + uint32_t flags; /* flags */ +}; + +/* + * The 64-bit segment load command indicates that a part of this file is to be + * mapped into a 64-bit task's address space. If the 64-bit segment has + * sections then section_64 structures directly follow the 64-bit segment + * command and their size is reflected in cmdsize. + */ +struct segment_command_64 { /* for 64-bit architectures */ + uint32_t cmd; /* LC_SEGMENT_64 */ + uint32_t cmdsize; /* includes sizeof section_64 structs */ + char segname[16]; /* segment name */ + uint64_t vmaddr; /* memory address of this segment */ + uint64_t vmsize; /* memory size of this segment */ + uint64_t fileoff; /* file offset of this segment */ + uint64_t filesize; /* amount to map from the file */ + vm_prot_t maxprot; /* maximum VM protection */ + vm_prot_t initprot; /* initial VM protection */ + uint32_t nsects; /* number of sections in segment */ + uint32_t flags; /* flags */ +}; + +/* Constants for the flags field of the segment_command */ +#define SG_HIGHVM 0x1 /* the file contents for this segment is for + the high part of the VM space, the low part + is zero filled (for stacks in core files) */ +#define SG_FVMLIB 0x2 /* this segment is the VM that is allocated by + a fixed VM library, for overlap checking in + the link editor */ +#define SG_NORELOC 0x4 /* this segment has nothing that was relocated + in it and nothing relocated to it, that is + it maybe safely replaced without relocation*/ +#define SG_PROTECTED_VERSION_1 0x8 /* This segment is protected. If the + segment starts at file offset 0, the + first page of the segment is not + protected. All other pages of the + segment are protected. */ + +/* + * A segment is made up of zero or more sections. Non-MH_OBJECT files have + * all of their segments with the proper sections in each, and padded to the + * specified segment alignment when produced by the link editor. The first + * segment of a MH_EXECUTE and MH_FVMLIB format file contains the mach_header + * and load commands of the object file before its first section. The zero + * fill sections are always last in their segment (in all formats). This + * allows the zeroed segment padding to be mapped into memory where zero fill + * sections might be. The gigabyte zero fill sections, those with the section + * type S_GB_ZEROFILL, can only be in a segment with sections of this type. + * These segments are then placed after all other segments. + * + * The MH_OBJECT format has all of its sections in one segment for + * compactness. There is no padding to a specified segment boundary and the + * mach_header and load commands are not part of the segment. + * + * Sections with the same section name, sectname, going into the same segment, + * segname, are combined by the link editor. The resulting section is aligned + * to the maximum alignment of the combined sections and is the new section's + * alignment. The combined sections are aligned to their original alignment in + * the combined section. Any padded bytes to get the specified alignment are + * zeroed. + * + * The format of the relocation entries referenced by the reloff and nreloc + * fields of the section structure for mach object files is described in the + * header file <reloc.h>. + */ +struct section { /* for 32-bit architectures */ + char sectname[16]; /* name of this section */ + char segname[16]; /* segment this section goes in */ + uint32_t addr; /* memory address of this section */ + uint32_t size; /* size in bytes of this section */ + uint32_t offset; /* file offset of this section */ + uint32_t align; /* section alignment (power of 2) */ + uint32_t reloff; /* file offset of relocation entries */ + uint32_t nreloc; /* number of relocation entries */ + uint32_t flags; /* flags (section type and attributes)*/ + uint32_t reserved1; /* reserved (for offset or index) */ + uint32_t reserved2; /* reserved (for count or sizeof) */ +}; + +struct section_64 { /* for 64-bit architectures */ + char sectname[16]; /* name of this section */ + char segname[16]; /* segment this section goes in */ + uint64_t addr; /* memory address of this section */ + uint64_t size; /* size in bytes of this section */ + uint32_t offset; /* file offset of this section */ + uint32_t align; /* section alignment (power of 2) */ + uint32_t reloff; /* file offset of relocation entries */ + uint32_t nreloc; /* number of relocation entries */ + uint32_t flags; /* flags (section type and attributes)*/ + uint32_t reserved1; /* reserved (for offset or index) */ + uint32_t reserved2; /* reserved (for count or sizeof) */ + uint32_t reserved3; /* reserved */ +}; + +/* + * The flags field of a section structure is separated into two parts a section + * type and section attributes. The section types are mutually exclusive (it + * can only have one type) but the section attributes are not (it may have more + * than one attribute). + */ +#define SECTION_TYPE 0x000000ff /* 256 section types */ +#define SECTION_ATTRIBUTES 0xffffff00 /* 24 section attributes */ + +/* Constants for the type of a section */ +#define S_REGULAR 0x0 /* regular section */ +#define S_ZEROFILL 0x1 /* zero fill on demand section */ +#define S_CSTRING_LITERALS 0x2 /* section with only literal C strings*/ +#define S_4BYTE_LITERALS 0x3 /* section with only 4 byte literals */ +#define S_8BYTE_LITERALS 0x4 /* section with only 8 byte literals */ +#define S_LITERAL_POINTERS 0x5 /* section with only pointers to */ + /* literals */ +/* + * For the two types of symbol pointers sections and the symbol stubs section + * they have indirect symbol table entries. For each of the entries in the + * section the indirect symbol table entries, in corresponding order in the + * indirect symbol table, start at the index stored in the reserved1 field + * of the section structure. Since the indirect symbol table entries + * correspond to the entries in the section the number of indirect symbol table + * entries is inferred from the size of the section divided by the size of the + * entries in the section. For symbol pointers sections the size of the entries + * in the section is 4 bytes and for symbol stubs sections the byte size of the + * stubs is stored in the reserved2 field of the section structure. + */ +#define S_NON_LAZY_SYMBOL_POINTERS 0x6 /* section with only non-lazy + symbol pointers */ +#define S_LAZY_SYMBOL_POINTERS 0x7 /* section with only lazy symbol + pointers */ +#define S_SYMBOL_STUBS 0x8 /* section with only symbol + stubs, byte size of stub in + the reserved2 field */ +#define S_MOD_INIT_FUNC_POINTERS 0x9 /* section with only function + pointers for initialization*/ +#define S_MOD_TERM_FUNC_POINTERS 0xa /* section with only function + pointers for termination */ +#define S_COALESCED 0xb /* section contains symbols that + are to be coalesced */ +#define S_GB_ZEROFILL 0xc /* zero fill on demand section + (that can be larger than 4 + gigabytes) */ +#define S_INTERPOSING 0xd /* section with only pairs of + function pointers for + interposing */ +#define S_16BYTE_LITERALS 0xe /* section with only 16 byte + literals */ +#define S_DTRACE_DOF 0xf /* section contains + DTrace Object Format */ +#define S_LAZY_DYLIB_SYMBOL_POINTERS 0x10 /* section with only lazy + symbol pointers to lazy + loaded dylibs */ +/* + * Section types to support thread local variables + */ +#define S_THREAD_LOCAL_REGULAR 0x11 /* template of initial + values for TLVs */ +#define S_THREAD_LOCAL_ZEROFILL 0x12 /* template of initial + values for TLVs */ +#define S_THREAD_LOCAL_VARIABLES 0x13 /* TLV descriptors */ +#define S_THREAD_LOCAL_VARIABLE_POINTERS 0x14 /* pointers to TLV + descriptors */ +#define S_THREAD_LOCAL_INIT_FUNCTION_POINTERS 0x15 /* functions to call + to initialize TLV + values */ + +/* + * Constants for the section attributes part of the flags field of a section + * structure. + */ +#define SECTION_ATTRIBUTES_USR 0xff000000 /* User setable attributes */ +#define S_ATTR_PURE_INSTRUCTIONS 0x80000000 /* section contains only true + machine instructions */ +#define S_ATTR_NO_TOC 0x40000000 /* section contains coalesced + symbols that are not to be + in a ranlib table of + contents */ +#define S_ATTR_STRIP_STATIC_SYMS 0x20000000 /* ok to strip static symbols + in this section in files + with the MH_DYLDLINK flag */ +#define S_ATTR_NO_DEAD_STRIP 0x10000000 /* no dead stripping */ +#define S_ATTR_LIVE_SUPPORT 0x08000000 /* blocks are live if they + reference live blocks */ +#define S_ATTR_SELF_MODIFYING_CODE 0x04000000 /* Used with i386 code stubs + written on by dyld */ +/* + * If a segment contains any sections marked with S_ATTR_DEBUG then all + * sections in that segment must have this attribute. No section other than + * a section marked with this attribute may reference the contents of this + * section. A section with this attribute may contain no symbols and must have + * a section type S_REGULAR. The static linker will not copy section contents + * from sections with this attribute into its output file. These sections + * generally contain DWARF debugging info. + */ +#define S_ATTR_DEBUG 0x02000000 /* a debug section */ +#define SECTION_ATTRIBUTES_SYS 0x00ffff00 /* system setable attributes */ +#define S_ATTR_SOME_INSTRUCTIONS 0x00000400 /* section contains some + machine instructions */ +#define S_ATTR_EXT_RELOC 0x00000200 /* section has external + relocation entries */ +#define S_ATTR_LOC_RELOC 0x00000100 /* section has local + relocation entries */ + + +/* + * The names of segments and sections in them are mostly meaningless to the + * link-editor. But there are few things to support traditional UNIX + * executables that require the link-editor and assembler to use some names + * agreed upon by convention. + * + * The initial protection of the "__TEXT" segment has write protection turned + * off (not writeable). + * + * The link-editor will allocate common symbols at the end of the "__common" + * section in the "__DATA" segment. It will create the section and segment + * if needed. + */ + +/* The currently known segment names and the section names in those segments */ + +#define SEG_PAGEZERO "__PAGEZERO" /* the pagezero segment which has no */ + /* protections and catches NULL */ + /* references for MH_EXECUTE files */ + + +#define SEG_TEXT "__TEXT" /* the tradition UNIX text segment */ +#define SECT_TEXT "__text" /* the real text part of the text */ + /* section no headers, and no padding */ +#define SECT_FVMLIB_INIT0 "__fvmlib_init0" /* the fvmlib initialization */ + /* section */ +#define SECT_FVMLIB_INIT1 "__fvmlib_init1" /* the section following the */ + /* fvmlib initialization */ + /* section */ + +#define SEG_DATA "__DATA" /* the tradition UNIX data segment */ +#define SECT_DATA "__data" /* the real initialized data section */ + /* no padding, no bss overlap */ +#define SECT_BSS "__bss" /* the real uninitialized data section*/ + /* no padding */ +#define SECT_COMMON "__common" /* the section common symbols are */ + /* allocated in by the link editor */ + +#define SEG_OBJC "__OBJC" /* objective-C runtime segment */ +#define SECT_OBJC_SYMBOLS "__symbol_table" /* symbol table */ +#define SECT_OBJC_MODULES "__module_info" /* module information */ +#define SECT_OBJC_STRINGS "__selector_strs" /* string table */ +#define SECT_OBJC_REFS "__selector_refs" /* string table */ + +#define SEG_ICON "__ICON" /* the icon segment */ +#define SECT_ICON_HEADER "__header" /* the icon headers */ +#define SECT_ICON_TIFF "__tiff" /* the icons in tiff format */ + +#define SEG_LINKEDIT "__LINKEDIT" /* the segment containing all structs */ + /* created and maintained by the link */ + /* editor. Created with -seglinkedit */ + /* option to ld(1) for MH_EXECUTE and */ + /* FVMLIB file types only */ + +#define SEG_UNIXSTACK "__UNIXSTACK" /* the unix stack segment */ + +#define SEG_IMPORT "__IMPORT" /* the segment for the self (dyld) */ + /* modifing code stubs that has read, */ + /* write and execute permissions */ + +/* + * Fixed virtual memory shared libraries are identified by two things. The + * target pathname (the name of the library as found for execution), and the + * minor version number. The address of where the headers are loaded is in + * header_addr. (THIS IS OBSOLETE and no longer supported). + */ +struct fvmlib { + union lc_str name; /* library's target pathname */ + uint32_t minor_version; /* library's minor version number */ + uint32_t header_addr; /* library's header address */ +}; + +/* + * A fixed virtual shared library (filetype == MH_FVMLIB in the mach header) + * contains a fvmlib_command (cmd == LC_IDFVMLIB) to identify the library. + * An object that uses a fixed virtual shared library also contains a + * fvmlib_command (cmd == LC_LOADFVMLIB) for each library it uses. + * (THIS IS OBSOLETE and no longer supported). + */ +struct fvmlib_command { + uint32_t cmd; /* LC_IDFVMLIB or LC_LOADFVMLIB */ + uint32_t cmdsize; /* includes pathname string */ + struct fvmlib fvmlib; /* the library identification */ +}; + +/* + * Dynamicly linked shared libraries are identified by two things. The + * pathname (the name of the library as found for execution), and the + * compatibility version number. The pathname must match and the compatibility + * number in the user of the library must be greater than or equal to the + * library being used. The time stamp is used to record the time a library was + * built and copied into user so it can be use to determined if the library used + * at runtime is exactly the same as used to built the program. + */ +struct dylib { + union lc_str name; /* library's path name */ + uint32_t timestamp; /* library's build time stamp */ + uint32_t current_version; /* library's current version number */ + uint32_t compatibility_version; /* library's compatibility vers number*/ +}; + +/* + * A dynamically linked shared library (filetype == MH_DYLIB in the mach header) + * contains a dylib_command (cmd == LC_ID_DYLIB) to identify the library. + * An object that uses a dynamically linked shared library also contains a + * dylib_command (cmd == LC_LOAD_DYLIB, LC_LOAD_WEAK_DYLIB, or + * LC_REEXPORT_DYLIB) for each library it uses. + */ +struct dylib_command { + uint32_t cmd; /* LC_ID_DYLIB, LC_LOAD_{,WEAK_}DYLIB, + LC_REEXPORT_DYLIB */ + uint32_t cmdsize; /* includes pathname string */ + struct dylib dylib; /* the library identification */ +}; + +/* + * A dynamically linked shared library may be a subframework of an umbrella + * framework. If so it will be linked with "-umbrella umbrella_name" where + * Where "umbrella_name" is the name of the umbrella framework. A subframework + * can only be linked against by its umbrella framework or other subframeworks + * that are part of the same umbrella framework. Otherwise the static link + * editor produces an error and states to link against the umbrella framework. + * The name of the umbrella framework for subframeworks is recorded in the + * following structure. + */ +struct sub_framework_command { + uint32_t cmd; /* LC_SUB_FRAMEWORK */ + uint32_t cmdsize; /* includes umbrella string */ + union lc_str umbrella; /* the umbrella framework name */ +}; + +/* + * For dynamically linked shared libraries that are subframework of an umbrella + * framework they can allow clients other than the umbrella framework or other + * subframeworks in the same umbrella framework. To do this the subframework + * is built with "-allowable_client client_name" and an LC_SUB_CLIENT load + * command is created for each -allowable_client flag. The client_name is + * usually a framework name. It can also be a name used for bundles clients + * where the bundle is built with "-client_name client_name". + */ +struct sub_client_command { + uint32_t cmd; /* LC_SUB_CLIENT */ + uint32_t cmdsize; /* includes client string */ + union lc_str client; /* the client name */ +}; + +/* + * A dynamically linked shared library may be a sub_umbrella of an umbrella + * framework. If so it will be linked with "-sub_umbrella umbrella_name" where + * Where "umbrella_name" is the name of the sub_umbrella framework. When + * staticly linking when -twolevel_namespace is in effect a twolevel namespace + * umbrella framework will only cause its subframeworks and those frameworks + * listed as sub_umbrella frameworks to be implicited linked in. Any other + * dependent dynamic libraries will not be linked it when -twolevel_namespace + * is in effect. The primary library recorded by the static linker when + * resolving a symbol in these libraries will be the umbrella framework. + * Zero or more sub_umbrella frameworks may be use by an umbrella framework. + * The name of a sub_umbrella framework is recorded in the following structure. + */ +struct sub_umbrella_command { + uint32_t cmd; /* LC_SUB_UMBRELLA */ + uint32_t cmdsize; /* includes sub_umbrella string */ + union lc_str sub_umbrella; /* the sub_umbrella framework name */ +}; + +/* + * A dynamically linked shared library may be a sub_library of another shared + * library. If so it will be linked with "-sub_library library_name" where + * Where "library_name" is the name of the sub_library shared library. When + * staticly linking when -twolevel_namespace is in effect a twolevel namespace + * shared library will only cause its subframeworks and those frameworks + * listed as sub_umbrella frameworks and libraries listed as sub_libraries to + * be implicited linked in. Any other dependent dynamic libraries will not be + * linked it when -twolevel_namespace is in effect. The primary library + * recorded by the static linker when resolving a symbol in these libraries + * will be the umbrella framework (or dynamic library). Zero or more sub_library + * shared libraries may be use by an umbrella framework or (or dynamic library). + * The name of a sub_library framework is recorded in the following structure. + * For example /usr/lib/libobjc_profile.A.dylib would be recorded as "libobjc". + */ +struct sub_library_command { + uint32_t cmd; /* LC_SUB_LIBRARY */ + uint32_t cmdsize; /* includes sub_library string */ + union lc_str sub_library; /* the sub_library name */ +}; + +/* + * A program (filetype == MH_EXECUTE) that is + * prebound to its dynamic libraries has one of these for each library that + * the static linker used in prebinding. It contains a bit vector for the + * modules in the library. The bits indicate which modules are bound (1) and + * which are not (0) from the library. The bit for module 0 is the low bit + * of the first byte. So the bit for the Nth module is: + * (linked_modules[N/8] >> N%8) & 1 + */ +struct prebound_dylib_command { + uint32_t cmd; /* LC_PREBOUND_DYLIB */ + uint32_t cmdsize; /* includes strings */ + union lc_str name; /* library's path name */ + uint32_t nmodules; /* number of modules in library */ + union lc_str linked_modules; /* bit vector of linked modules */ +}; + +/* + * A program that uses a dynamic linker contains a dylinker_command to identify + * the name of the dynamic linker (LC_LOAD_DYLINKER). And a dynamic linker + * contains a dylinker_command to identify the dynamic linker (LC_ID_DYLINKER). + * A file can have at most one of these. + * This struct is also used for the LC_DYLD_ENVIRONMENT load command and + * contains string for dyld to treat like environment variable. + */ +struct dylinker_command { + uint32_t cmd; /* LC_ID_DYLINKER, LC_LOAD_DYLINKER or + LC_DYLD_ENVIRONMENT */ + uint32_t cmdsize; /* includes pathname string */ + union lc_str name; /* dynamic linker's path name */ +}; + +/* + * Thread commands contain machine-specific data structures suitable for + * use in the thread state primitives. The machine specific data structures + * follow the struct thread_command as follows. + * Each flavor of machine specific data structure is preceded by an unsigned + * long constant for the flavor of that data structure, an uint32_t + * that is the count of longs of the size of the state data structure and then + * the state data structure follows. This triple may be repeated for many + * flavors. The constants for the flavors, counts and state data structure + * definitions are expected to be in the header file <machine/thread_status.h>. + * These machine specific data structures sizes must be multiples of + * 4 bytes The cmdsize reflects the total size of the thread_command + * and all of the sizes of the constants for the flavors, counts and state + * data structures. + * + * For executable objects that are unix processes there will be one + * thread_command (cmd == LC_UNIXTHREAD) created for it by the link-editor. + * This is the same as a LC_THREAD, except that a stack is automatically + * created (based on the shell's limit for the stack size). Command arguments + * and environment variables are copied onto that stack. + */ +struct thread_command { + uint32_t cmd; /* LC_THREAD or LC_UNIXTHREAD */ + uint32_t cmdsize; /* total size of this command */ + /* uint32_t flavor flavor of thread state */ + /* uint32_t count count of longs in thread state */ + /* struct XXX_thread_state state thread state for this flavor */ + /* ... */ +}; + +/* + * The routines command contains the address of the dynamic shared library + * initialization routine and an index into the module table for the module + * that defines the routine. Before any modules are used from the library the + * dynamic linker fully binds the module that defines the initialization routine + * and then calls it. This gets called before any module initialization + * routines (used for C++ static constructors) in the library. + */ +struct routines_command { /* for 32-bit architectures */ + uint32_t cmd; /* LC_ROUTINES */ + uint32_t cmdsize; /* total size of this command */ + uint32_t init_address; /* address of initialization routine */ + uint32_t init_module; /* index into the module table that */ + /* the init routine is defined in */ + uint32_t reserved1; + uint32_t reserved2; + uint32_t reserved3; + uint32_t reserved4; + uint32_t reserved5; + uint32_t reserved6; +}; + +/* + * The 64-bit routines command. Same use as above. + */ +struct routines_command_64 { /* for 64-bit architectures */ + uint32_t cmd; /* LC_ROUTINES_64 */ + uint32_t cmdsize; /* total size of this command */ + uint64_t init_address; /* address of initialization routine */ + uint64_t init_module; /* index into the module table that */ + /* the init routine is defined in */ + uint64_t reserved1; + uint64_t reserved2; + uint64_t reserved3; + uint64_t reserved4; + uint64_t reserved5; + uint64_t reserved6; +}; + +/* + * The symtab_command contains the offsets and sizes of the link-edit 4.3BSD + * "stab" style symbol table information as described in the header files + * <nlist.h> and <stab.h>. + */ +struct symtab_command { + uint32_t cmd; /* LC_SYMTAB */ + uint32_t cmdsize; /* sizeof(struct symtab_command) */ + uint32_t symoff; /* symbol table offset */ + uint32_t nsyms; /* number of symbol table entries */ + uint32_t stroff; /* string table offset */ + uint32_t strsize; /* string table size in bytes */ +}; + +/* + * This is the second set of the symbolic information which is used to support + * the data structures for the dynamically link editor. + * + * The original set of symbolic information in the symtab_command which contains + * the symbol and string tables must also be present when this load command is + * present. When this load command is present the symbol table is organized + * into three groups of symbols: + * local symbols (static and debugging symbols) - grouped by module + * defined external symbols - grouped by module (sorted by name if not lib) + * undefined external symbols (sorted by name if MH_BINDATLOAD is not set, + * and in order the were seen by the static + * linker if MH_BINDATLOAD is set) + * In this load command there are offsets and counts to each of the three groups + * of symbols. + * + * This load command contains a the offsets and sizes of the following new + * symbolic information tables: + * table of contents + * module table + * reference symbol table + * indirect symbol table + * The first three tables above (the table of contents, module table and + * reference symbol table) are only present if the file is a dynamically linked + * shared library. For executable and object modules, which are files + * containing only one module, the information that would be in these three + * tables is determined as follows: + * table of contents - the defined external symbols are sorted by name + * module table - the file contains only one module so everything in the + * file is part of the module. + * reference symbol table - is the defined and undefined external symbols + * + * For dynamically linked shared library files this load command also contains + * offsets and sizes to the pool of relocation entries for all sections + * separated into two groups: + * external relocation entries + * local relocation entries + * For executable and object modules the relocation entries continue to hang + * off the section structures. + */ +struct dysymtab_command { + uint32_t cmd; /* LC_DYSYMTAB */ + uint32_t cmdsize; /* sizeof(struct dysymtab_command) */ + + /* + * The symbols indicated by symoff and nsyms of the LC_SYMTAB load command + * are grouped into the following three groups: + * local symbols (further grouped by the module they are from) + * defined external symbols (further grouped by the module they are from) + * undefined symbols + * + * The local symbols are used only for debugging. The dynamic binding + * process may have to use them to indicate to the debugger the local + * symbols for a module that is being bound. + * + * The last two groups are used by the dynamic binding process to do the + * binding (indirectly through the module table and the reference symbol + * table when this is a dynamically linked shared library file). + */ + uint32_t ilocalsym; /* index to local symbols */ + uint32_t nlocalsym; /* number of local symbols */ + + uint32_t iextdefsym;/* index to externally defined symbols */ + uint32_t nextdefsym;/* number of externally defined symbols */ + + uint32_t iundefsym; /* index to undefined symbols */ + uint32_t nundefsym; /* number of undefined symbols */ + + /* + * For the for the dynamic binding process to find which module a symbol + * is defined in the table of contents is used (analogous to the ranlib + * structure in an archive) which maps defined external symbols to modules + * they are defined in. This exists only in a dynamically linked shared + * library file. For executable and object modules the defined external + * symbols are sorted by name and is use as the table of contents. + */ + uint32_t tocoff; /* file offset to table of contents */ + uint32_t ntoc; /* number of entries in table of contents */ + + /* + * To support dynamic binding of "modules" (whole object files) the symbol + * table must reflect the modules that the file was created from. This is + * done by having a module table that has indexes and counts into the merged + * tables for each module. The module structure that these two entries + * refer to is described below. This exists only in a dynamically linked + * shared library file. For executable and object modules the file only + * contains one module so everything in the file belongs to the module. + */ + uint32_t modtaboff; /* file offset to module table */ + uint32_t nmodtab; /* number of module table entries */ + + /* + * To support dynamic module binding the module structure for each module + * indicates the external references (defined and undefined) each module + * makes. For each module there is an offset and a count into the + * reference symbol table for the symbols that the module references. + * This exists only in a dynamically linked shared library file. For + * executable and object modules the defined external symbols and the + * undefined external symbols indicates the external references. + */ + uint32_t extrefsymoff; /* offset to referenced symbol table */ + uint32_t nextrefsyms; /* number of referenced symbol table entries */ + + /* + * The sections that contain "symbol pointers" and "routine stubs" have + * indexes and (implied counts based on the size of the section and fixed + * size of the entry) into the "indirect symbol" table for each pointer + * and stub. For every section of these two types the index into the + * indirect symbol table is stored in the section header in the field + * reserved1. An indirect symbol table entry is simply a 32bit index into + * the symbol table to the symbol that the pointer or stub is referring to. + * The indirect symbol table is ordered to match the entries in the section. + */ + uint32_t indirectsymoff; /* file offset to the indirect symbol table */ + uint32_t nindirectsyms; /* number of indirect symbol table entries */ + + /* + * To support relocating an individual module in a library file quickly the + * external relocation entries for each module in the library need to be + * accessed efficiently. Since the relocation entries can't be accessed + * through the section headers for a library file they are separated into + * groups of local and external entries further grouped by module. In this + * case the presents of this load command who's extreloff, nextrel, + * locreloff and nlocrel fields are non-zero indicates that the relocation + * entries of non-merged sections are not referenced through the section + * structures (and the reloff and nreloc fields in the section headers are + * set to zero). + * + * Since the relocation entries are not accessed through the section headers + * this requires the r_address field to be something other than a section + * offset to identify the item to be relocated. In this case r_address is + * set to the offset from the vmaddr of the first LC_SEGMENT command. + * For MH_SPLIT_SEGS images r_address is set to the the offset from the + * vmaddr of the first read-write LC_SEGMENT command. + * + * The relocation entries are grouped by module and the module table + * entries have indexes and counts into them for the group of external + * relocation entries for that the module. + * + * For sections that are merged across modules there must not be any + * remaining external relocation entries for them (for merged sections + * remaining relocation entries must be local). + */ + uint32_t extreloff; /* offset to external relocation entries */ + uint32_t nextrel; /* number of external relocation entries */ + + /* + * All the local relocation entries are grouped together (they are not + * grouped by their module since they are only used if the object is moved + * from it staticly link edited address). + */ + uint32_t locreloff; /* offset to local relocation entries */ + uint32_t nlocrel; /* number of local relocation entries */ + +}; + +/* + * An indirect symbol table entry is simply a 32bit index into the symbol table + * to the symbol that the pointer or stub is refering to. Unless it is for a + * non-lazy symbol pointer section for a defined symbol which strip(1) as + * removed. In which case it has the value INDIRECT_SYMBOL_LOCAL. If the + * symbol was also absolute INDIRECT_SYMBOL_ABS is or'ed with that. + */ +#define INDIRECT_SYMBOL_LOCAL 0x80000000 +#define INDIRECT_SYMBOL_ABS 0x40000000 + + +/* a table of contents entry */ +struct dylib_table_of_contents { + uint32_t symbol_index; /* the defined external symbol + (index into the symbol table) */ + uint32_t module_index; /* index into the module table this symbol + is defined in */ +}; + +/* a module table entry */ +struct dylib_module { + uint32_t module_name; /* the module name (index into string table) */ + + uint32_t iextdefsym; /* index into externally defined symbols */ + uint32_t nextdefsym; /* number of externally defined symbols */ + uint32_t irefsym; /* index into reference symbol table */ + uint32_t nrefsym; /* number of reference symbol table entries */ + uint32_t ilocalsym; /* index into symbols for local symbols */ + uint32_t nlocalsym; /* number of local symbols */ + + uint32_t iextrel; /* index into external relocation entries */ + uint32_t nextrel; /* number of external relocation entries */ + + uint32_t iinit_iterm; /* low 16 bits are the index into the init + section, high 16 bits are the index into + the term section */ + uint32_t ninit_nterm; /* low 16 bits are the number of init section + entries, high 16 bits are the number of + term section entries */ + + uint32_t /* for this module address of the start of */ + objc_module_info_addr; /* the (__OBJC,__module_info) section */ + uint32_t /* for this module size of */ + objc_module_info_size; /* the (__OBJC,__module_info) section */ +}; + +/* a 64-bit module table entry */ +struct dylib_module_64 { + uint32_t module_name; /* the module name (index into string table) */ + + uint32_t iextdefsym; /* index into externally defined symbols */ + uint32_t nextdefsym; /* number of externally defined symbols */ + uint32_t irefsym; /* index into reference symbol table */ + uint32_t nrefsym; /* number of reference symbol table entries */ + uint32_t ilocalsym; /* index into symbols for local symbols */ + uint32_t nlocalsym; /* number of local symbols */ + + uint32_t iextrel; /* index into external relocation entries */ + uint32_t nextrel; /* number of external relocation entries */ + + uint32_t iinit_iterm; /* low 16 bits are the index into the init + section, high 16 bits are the index into + the term section */ + uint32_t ninit_nterm; /* low 16 bits are the number of init section + entries, high 16 bits are the number of + term section entries */ + + uint32_t /* for this module size of */ + objc_module_info_size; /* the (__OBJC,__module_info) section */ + uint64_t /* for this module address of the start of */ + objc_module_info_addr; /* the (__OBJC,__module_info) section */ +}; + +/* + * The entries in the reference symbol table are used when loading the module + * (both by the static and dynamic link editors) and if the module is unloaded + * or replaced. Therefore all external symbols (defined and undefined) are + * listed in the module's reference table. The flags describe the type of + * reference that is being made. The constants for the flags are defined in + * <mach-o/nlist.h> as they are also used for symbol table entries. + */ +struct dylib_reference { + uint32_t isym:24, /* index into the symbol table */ + flags:8; /* flags to indicate the type of reference */ +}; + +/* + * The twolevel_hints_command contains the offset and number of hints in the + * two-level namespace lookup hints table. + */ +struct twolevel_hints_command { + uint32_t cmd; /* LC_TWOLEVEL_HINTS */ + uint32_t cmdsize; /* sizeof(struct twolevel_hints_command) */ + uint32_t offset; /* offset to the hint table */ + uint32_t nhints; /* number of hints in the hint table */ +}; + +/* + * The entries in the two-level namespace lookup hints table are twolevel_hint + * structs. These provide hints to the dynamic link editor where to start + * looking for an undefined symbol in a two-level namespace image. The + * isub_image field is an index into the sub-images (sub-frameworks and + * sub-umbrellas list) that made up the two-level image that the undefined + * symbol was found in when it was built by the static link editor. If + * isub-image is 0 the the symbol is expected to be defined in library and not + * in the sub-images. If isub-image is non-zero it is an index into the array + * of sub-images for the umbrella with the first index in the sub-images being + * 1. The array of sub-images is the ordered list of sub-images of the umbrella + * that would be searched for a symbol that has the umbrella recorded as its + * primary library. The table of contents index is an index into the + * library's table of contents. This is used as the starting point of the + * binary search or a directed linear search. + */ +struct twolevel_hint { + uint32_t + isub_image:8, /* index into the sub images */ + itoc:24; /* index into the table of contents */ +}; + +/* + * The prebind_cksum_command contains the value of the original check sum for + * prebound files or zero. When a prebound file is first created or modified + * for other than updating its prebinding information the value of the check sum + * is set to zero. When the file has it prebinding re-done and if the value of + * the check sum is zero the original check sum is calculated and stored in + * cksum field of this load command in the output file. If when the prebinding + * is re-done and the cksum field is non-zero it is left unchanged from the + * input file. + */ +struct prebind_cksum_command { + uint32_t cmd; /* LC_PREBIND_CKSUM */ + uint32_t cmdsize; /* sizeof(struct prebind_cksum_command) */ + uint32_t cksum; /* the check sum or zero */ +}; + +/* + * The uuid load command contains a single 128-bit unique random number that + * identifies an object produced by the static link editor. + */ +struct uuid_command { + uint32_t cmd; /* LC_UUID */ + uint32_t cmdsize; /* sizeof(struct uuid_command) */ + uint8_t uuid[16]; /* the 128-bit uuid */ +}; + +/* + * The rpath_command contains a path which at runtime should be added to + * the current run path used to find @rpath prefixed dylibs. + */ +struct rpath_command { + uint32_t cmd; /* LC_RPATH */ + uint32_t cmdsize; /* includes string */ + union lc_str path; /* path to add to run path */ +}; + +/* + * The linkedit_data_command contains the offsets and sizes of a blob + * of data in the __LINKEDIT segment. + */ +struct linkedit_data_command { + uint32_t cmd; /* LC_CODE_SIGNATURE, LC_SEGMENT_SPLIT_INFO, + LC_FUNCTION_STARTS, LC_DATA_IN_CODE, + or LC_DYLIB_CODE_SIGN_DRS */ + uint32_t cmdsize; /* sizeof(struct linkedit_data_command) */ + uint32_t dataoff; /* file offset of data in __LINKEDIT segment */ + uint32_t datasize; /* file size of data in __LINKEDIT segment */ +}; + +/* + * The encryption_info_command contains the file offset and size of an + * of an encrypted segment. + */ +struct encryption_info_command { + uint32_t cmd; /* LC_ENCRYPTION_INFO */ + uint32_t cmdsize; /* sizeof(struct encryption_info_command) */ + uint32_t cryptoff; /* file offset of encrypted range */ + uint32_t cryptsize; /* file size of encrypted range */ + uint32_t cryptid; /* which enryption system, + 0 means not-encrypted yet */ +}; + +/* + * The version_min_command contains the min OS version on which this + * binary was built to run. + */ +struct version_min_command { + uint32_t cmd; /* LC_VERSION_MIN_MACOSX or + LC_VERSION_MIN_IPHONEOS */ + uint32_t cmdsize; /* sizeof(struct min_version_command) */ + uint32_t version; /* X.Y.Z is encoded in nibbles xxxx.yy.zz */ + uint32_t sdk; /* X.Y.Z is encoded in nibbles xxxx.yy.zz */ +}; + +/* + * The dyld_info_command contains the file offsets and sizes of + * the new compressed form of the information dyld needs to + * load the image. This information is used by dyld on Mac OS X + * 10.6 and later. All information pointed to by this command + * is encoded using byte streams, so no endian swapping is needed + * to interpret it. + */ +struct dyld_info_command { + uint32_t cmd; /* LC_DYLD_INFO or LC_DYLD_INFO_ONLY */ + uint32_t cmdsize; /* sizeof(struct dyld_info_command) */ + + /* + * Dyld rebases an image whenever dyld loads it at an address different + * from its preferred address. The rebase information is a stream + * of byte sized opcodes whose symbolic names start with REBASE_OPCODE_. + * Conceptually the rebase information is a table of tuples: + * <seg-index, seg-offset, type> + * The opcodes are a compressed way to encode the table by only + * encoding when a column changes. In addition simple patterns + * like "every n'th offset for m times" can be encoded in a few + * bytes. + */ + uint32_t rebase_off; /* file offset to rebase info */ + uint32_t rebase_size; /* size of rebase info */ + + /* + * Dyld binds an image during the loading process, if the image + * requires any pointers to be initialized to symbols in other images. + * The bind information is a stream of byte sized + * opcodes whose symbolic names start with BIND_OPCODE_. + * Conceptually the bind information is a table of tuples: + * <seg-index, seg-offset, type, symbol-library-ordinal, symbol-name, addend> + * The opcodes are a compressed way to encode the table by only + * encoding when a column changes. In addition simple patterns + * like for runs of pointers initialzed to the same value can be + * encoded in a few bytes. + */ + uint32_t bind_off; /* file offset to binding info */ + uint32_t bind_size; /* size of binding info */ + + /* + * Some C++ programs require dyld to unique symbols so that all + * images in the process use the same copy of some code/data. + * This step is done after binding. The content of the weak_bind + * info is an opcode stream like the bind_info. But it is sorted + * alphabetically by symbol name. This enable dyld to walk + * all images with weak binding information in order and look + * for collisions. If there are no collisions, dyld does + * no updating. That means that some fixups are also encoded + * in the bind_info. For instance, all calls to "operator new" + * are first bound to libstdc++.dylib using the information + * in bind_info. Then if some image overrides operator new + * that is detected when the weak_bind information is processed + * and the call to operator new is then rebound. + */ + uint32_t weak_bind_off; /* file offset to weak binding info */ + uint32_t weak_bind_size; /* size of weak binding info */ + + /* + * Some uses of external symbols do not need to be bound immediately. + * Instead they can be lazily bound on first use. The lazy_bind + * are contains a stream of BIND opcodes to bind all lazy symbols. + * Normal use is that dyld ignores the lazy_bind section when + * loading an image. Instead the static linker arranged for the + * lazy pointer to initially point to a helper function which + * pushes the offset into the lazy_bind area for the symbol + * needing to be bound, then jumps to dyld which simply adds + * the offset to lazy_bind_off to get the information on what + * to bind. + */ + uint32_t lazy_bind_off; /* file offset to lazy binding info */ + uint32_t lazy_bind_size; /* size of lazy binding infs */ + + /* + * The symbols exported by a dylib are encoded in a trie. This + * is a compact representation that factors out common prefixes. + * It also reduces LINKEDIT pages in RAM because it encodes all + * information (name, address, flags) in one small, contiguous range. + * The export area is a stream of nodes. The first node sequentially + * is the start node for the trie. + * + * Nodes for a symbol start with a uleb128 that is the length of + * the exported symbol information for the string so far. + * If there is no exported symbol, the node starts with a zero byte. + * If there is exported info, it follows the length. + * + * First is a uleb128 containing flags. Normally, it is followed by + * a uleb128 encoded offset which is location of the content named + * by the symbol from the mach_header for the image. If the flags + * is EXPORT_SYMBOL_FLAGS_REEXPORT, then following the flags is + * a uleb128 encoded library ordinal, then a zero terminated + * UTF8 string. If the string is zero length, then the symbol + * is re-export from the specified dylib with the same name. + * If the flags is EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER, then following + * the flags is two uleb128s: the stub offset and the resolver offset. + * The stub is used by non-lazy pointers. The resolver is used + * by lazy pointers and must be called to get the actual address to use. + * + * After the optional exported symbol information is a byte of + * how many edges (0-255) that this node has leaving it, + * followed by each edge. + * Each edge is a zero terminated UTF8 of the addition chars + * in the symbol, followed by a uleb128 offset for the node that + * edge points to. + * + */ + uint32_t export_off; /* file offset to lazy binding info */ + uint32_t export_size; /* size of lazy binding infs */ +}; + +/* + * The following are used to encode rebasing information + */ +#define REBASE_TYPE_POINTER 1 +#define REBASE_TYPE_TEXT_ABSOLUTE32 2 +#define REBASE_TYPE_TEXT_PCREL32 3 + +#define REBASE_OPCODE_MASK 0xF0 +#define REBASE_IMMEDIATE_MASK 0x0F +#define REBASE_OPCODE_DONE 0x00 +#define REBASE_OPCODE_SET_TYPE_IMM 0x10 +#define REBASE_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB 0x20 +#define REBASE_OPCODE_ADD_ADDR_ULEB 0x30 +#define REBASE_OPCODE_ADD_ADDR_IMM_SCALED 0x40 +#define REBASE_OPCODE_DO_REBASE_IMM_TIMES 0x50 +#define REBASE_OPCODE_DO_REBASE_ULEB_TIMES 0x60 +#define REBASE_OPCODE_DO_REBASE_ADD_ADDR_ULEB 0x70 +#define REBASE_OPCODE_DO_REBASE_ULEB_TIMES_SKIPPING_ULEB 0x80 + + +/* + * The following are used to encode binding information + */ +#define BIND_TYPE_POINTER 1 +#define BIND_TYPE_TEXT_ABSOLUTE32 2 +#define BIND_TYPE_TEXT_PCREL32 3 + +#define BIND_SPECIAL_DYLIB_SELF 0 +#define BIND_SPECIAL_DYLIB_MAIN_EXECUTABLE -1 +#define BIND_SPECIAL_DYLIB_FLAT_LOOKUP -2 + +#define BIND_SYMBOL_FLAGS_WEAK_IMPORT 0x1 +#define BIND_SYMBOL_FLAGS_NON_WEAK_DEFINITION 0x8 + +#define BIND_OPCODE_MASK 0xF0 +#define BIND_IMMEDIATE_MASK 0x0F +#define BIND_OPCODE_DONE 0x00 +#define BIND_OPCODE_SET_DYLIB_ORDINAL_IMM 0x10 +#define BIND_OPCODE_SET_DYLIB_ORDINAL_ULEB 0x20 +#define BIND_OPCODE_SET_DYLIB_SPECIAL_IMM 0x30 +#define BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM 0x40 +#define BIND_OPCODE_SET_TYPE_IMM 0x50 +#define BIND_OPCODE_SET_ADDEND_SLEB 0x60 +#define BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB 0x70 +#define BIND_OPCODE_ADD_ADDR_ULEB 0x80 +#define BIND_OPCODE_DO_BIND 0x90 +#define BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB 0xA0 +#define BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED 0xB0 +#define BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB 0xC0 + + +/* + * The following are used on the flags byte of a terminal node + * in the export information. + */ +#define EXPORT_SYMBOL_FLAGS_KIND_MASK 0x03 +#define EXPORT_SYMBOL_FLAGS_KIND_REGULAR 0x00 +#define EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL 0x01 +#define EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION 0x04 +#define EXPORT_SYMBOL_FLAGS_REEXPORT 0x08 +#define EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER 0x10 + +/* + * The symseg_command contains the offset and size of the GNU style + * symbol table information as described in the header file <symseg.h>. + * The symbol roots of the symbol segments must also be aligned properly + * in the file. So the requirement of keeping the offsets aligned to a + * multiple of a 4 bytes translates to the length field of the symbol + * roots also being a multiple of a long. Also the padding must again be + * zeroed. (THIS IS OBSOLETE and no longer supported). + */ +struct symseg_command { + uint32_t cmd; /* LC_SYMSEG */ + uint32_t cmdsize; /* sizeof(struct symseg_command) */ + uint32_t offset; /* symbol segment offset */ + uint32_t size; /* symbol segment size in bytes */ +}; + +/* + * The ident_command contains a free format string table following the + * ident_command structure. The strings are null terminated and the size of + * the command is padded out with zero bytes to a multiple of 4 bytes/ + * (THIS IS OBSOLETE and no longer supported). + */ +struct ident_command { + uint32_t cmd; /* LC_IDENT */ + uint32_t cmdsize; /* strings that follow this command */ +}; + +/* + * The fvmfile_command contains a reference to a file to be loaded at the + * specified virtual address. (Presently, this command is reserved for + * internal use. The kernel ignores this command when loading a program into + * memory). + */ +struct fvmfile_command { + uint32_t cmd; /* LC_FVMFILE */ + uint32_t cmdsize; /* includes pathname string */ + union lc_str name; /* files pathname */ + uint32_t header_addr; /* files virtual address */ +}; + + +/* + * The entry_point_command is a replacement for thread_command. + * It is used for main executables to specify the location (file offset) + * of main(). If -stack_size was used at link time, the stacksize + * field will contain the stack size need for the main thread. + */ +struct entry_point_command { + uint32_t cmd; /* LC_MAIN only used in MH_EXECUTE filetypes */ + uint32_t cmdsize; /* 24 */ + uint64_t entryoff; /* file (__TEXT) offset of main() */ + uint64_t stacksize;/* if not zero, initial stack size */ +}; + + +/* + * The source_version_command is an optional load command containing + * the version of the sources used to build the binary. + */ +struct source_version_command { + uint32_t cmd; /* LC_SOURCE_VERSION */ + uint32_t cmdsize; /* 16 */ + uint64_t version; /* A.B.C.D.E packed as a24.b10.c10.d10.e10 */ +}; + + +/* + * The LC_DATA_IN_CODE load commands uses a linkedit_data_command + * to point to an array of data_in_code_entry entries. Each entry + * describes a range of data in a code section. This load command + * is only used in final linked images. + */ +struct data_in_code_entry { + uint32_t offset; /* from mach_header to start of data range*/ + uint16_t length; /* number of bytes in data range */ + uint16_t kind; /* a DICE_KIND_* value */ +}; +#define DICE_KIND_DATA 0x0001 /* L$start$data$... label */ +#define DICE_KIND_JUMP_TABLE8 0x0002 /* L$start$jt8$... label */ +#define DICE_KIND_JUMP_TABLE16 0x0003 /* L$start$jt16$... label */ +#define DICE_KIND_JUMP_TABLE32 0x0004 /* L$start$jt32$... label */ +#define DICE_KIND_ABS_JUMP_TABLE32 0x0005 /* L$start$jta32$... label */ + + + +/* + * Sections of type S_THREAD_LOCAL_VARIABLES contain an array + * of tlv_descriptor structures. + */ +struct tlv_descriptor +{ + void* (*thunk)(struct tlv_descriptor*); + unsigned long key; + unsigned long offset; +}; + +#endif /* _MACHO_LOADER_H_ */
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/boot/nlist.h Mon Jan 21 23:29:01 2013 +0900 @@ -0,0 +1,312 @@ +/* + * Copyright (c) 1999-2003 Apple Computer, Inc. All Rights Reserved. + * + * @APPLE_LICENSE_HEADER_START@ + * + * This file contains Original Code and/or Modifications of Original Code + * as defined in and that are subject to the Apple Public Source License + * Version 2.0 (the 'License'). You may not use this file except in + * compliance with the License. Please obtain a copy of the License at + * http://www.opensource.apple.com/apsl/ and read it before using this + * file. + * + * The Original Code and all software distributed under the License are + * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER + * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, + * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. + * Please see the License for the specific language governing rights and + * limitations under the License. + * + * @APPLE_LICENSE_HEADER_END@ + */ +#ifndef _MACHO_NLIST_H_ +#define _MACHO_NLIST_H_ +/* $NetBSD: nlist.h,v 1.5 1994/10/26 00:56:11 cgd Exp $ */ + +/*- + * Copyright (c) 1991, 1993 + * The Regents of the University of California. All rights reserved. + * (c) UNIX System Laboratories, Inc. + * All or some portions of this file are derived from material licensed + * to the University of California by American Telephone and Telegraph + * Co. or Unix System Laboratories, Inc. and are reproduced herein with + * the permission of UNIX System Laboratories, Inc. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. All advertising materials mentioning features or use of this software + * must display the following acknowledgement: + * This product includes software developed by the University of + * California, Berkeley and its contributors. + * 4. Neither the name of the University nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + * + * @(#)nlist.h 8.2 (Berkeley) 1/21/94 + */ +#include <stdint.h> + +/* + * Format of a symbol table entry of a Mach-O file for 32-bit architectures. + * Modified from the BSD format. The modifications from the original format + * were changing n_other (an unused field) to n_sect and the addition of the + * N_SECT type. These modifications are required to support symbols in a larger + * number of sections not just the three sections (text, data and bss) in a BSD + * file. + */ +struct nlist { + union { +#ifndef __LP64__ + char *n_name; /* for use when in-core */ +#endif + uint32_t n_strx; /* index into the string table */ + } n_un; + uint8_t n_type; /* type flag, see below */ + uint8_t n_sect; /* section number or NO_SECT */ + int16_t n_desc; /* see <mach-o/stab.h> */ + uint32_t n_value; /* value of this symbol (or stab offset) */ +}; + +/* + * This is the symbol table entry structure for 64-bit architectures. + */ +struct nlist_64 { + union { + uint32_t n_strx; /* index into the string table */ + } n_un; + uint8_t n_type; /* type flag, see below */ + uint8_t n_sect; /* section number or NO_SECT */ + uint16_t n_desc; /* see <mach-o/stab.h> */ + uint64_t n_value; /* value of this symbol (or stab offset) */ +}; + +/* + * Symbols with a index into the string table of zero (n_un.n_strx == 0) are + * defined to have a null, "", name. Therefore all string indexes to non null + * names must not have a zero string index. This is bit historical information + * that has never been well documented. + */ + +/* + * The n_type field really contains four fields: + * unsigned char N_STAB:3, + * N_PEXT:1, + * N_TYPE:3, + * N_EXT:1; + * which are used via the following masks. + */ +#define N_STAB 0xe0 /* if any of these bits set, a symbolic debugging entry */ +#define N_PEXT 0x10 /* private external symbol bit */ +#define N_TYPE 0x0e /* mask for the type bits */ +#define N_EXT 0x01 /* external symbol bit, set for external symbols */ + +/* + * Only symbolic debugging entries have some of the N_STAB bits set and if any + * of these bits are set then it is a symbolic debugging entry (a stab). In + * which case then the values of the n_type field (the entire field) are given + * in <mach-o/stab.h> + */ + +/* + * Values for N_TYPE bits of the n_type field. + */ +#define N_UNDF 0x0 /* undefined, n_sect == NO_SECT */ +#define N_ABS 0x2 /* absolute, n_sect == NO_SECT */ +#define N_SECT 0xe /* defined in section number n_sect */ +#define N_PBUD 0xc /* prebound undefined (defined in a dylib) */ +#define N_INDR 0xa /* indirect */ + +/* + * If the type is N_INDR then the symbol is defined to be the same as another + * symbol. In this case the n_value field is an index into the string table + * of the other symbol's name. When the other symbol is defined then they both + * take on the defined type and value. + */ + +/* + * If the type is N_SECT then the n_sect field contains an ordinal of the + * section the symbol is defined in. The sections are numbered from 1 and + * refer to sections in order they appear in the load commands for the file + * they are in. This means the same ordinal may very well refer to different + * sections in different files. + * + * The n_value field for all symbol table entries (including N_STAB's) gets + * updated by the link editor based on the value of it's n_sect field and where + * the section n_sect references gets relocated. If the value of the n_sect + * field is NO_SECT then it's n_value field is not changed by the link editor. + */ +#define NO_SECT 0 /* symbol is not in any section */ +#define MAX_SECT 255 /* 1 thru 255 inclusive */ + +/* + * Common symbols are represented by undefined (N_UNDF) external (N_EXT) types + * who's values (n_value) are non-zero. In which case the value of the n_value + * field is the size (in bytes) of the common symbol. The n_sect field is set + * to NO_SECT. The alignment of a common symbol may be set as a power of 2 + * between 2^1 and 2^15 as part of the n_desc field using the macros below. If + * the alignment is not set (a value of zero) then natural alignment based on + * the size is used. + */ +#define GET_COMM_ALIGN(n_desc) (((n_desc) >> 8) & 0x0f) +#define SET_COMM_ALIGN(n_desc,align) \ + (n_desc) = (((n_desc) & 0xf0ff) | (((align) & 0x0f) << 8)) + +/* + * To support the lazy binding of undefined symbols in the dynamic link-editor, + * the undefined symbols in the symbol table (the nlist structures) are marked + * with the indication if the undefined reference is a lazy reference or + * non-lazy reference. If both a non-lazy reference and a lazy reference is + * made to the same symbol the non-lazy reference takes precedence. A reference + * is lazy only when all references to that symbol are made through a symbol + * pointer in a lazy symbol pointer section. + * + * The implementation of marking nlist structures in the symbol table for + * undefined symbols will be to use some of the bits of the n_desc field as a + * reference type. The mask REFERENCE_TYPE will be applied to the n_desc field + * of an nlist structure for an undefined symbol to determine the type of + * undefined reference (lazy or non-lazy). + * + * The constants for the REFERENCE FLAGS are propagated to the reference table + * in a shared library file. In that case the constant for a defined symbol, + * REFERENCE_FLAG_DEFINED, is also used. + */ +/* Reference type bits of the n_desc field of undefined symbols */ +#define REFERENCE_TYPE 0x7 +/* types of references */ +#define REFERENCE_FLAG_UNDEFINED_NON_LAZY 0 +#define REFERENCE_FLAG_UNDEFINED_LAZY 1 +#define REFERENCE_FLAG_DEFINED 2 +#define REFERENCE_FLAG_PRIVATE_DEFINED 3 +#define REFERENCE_FLAG_PRIVATE_UNDEFINED_NON_LAZY 4 +#define REFERENCE_FLAG_PRIVATE_UNDEFINED_LAZY 5 + +/* + * To simplify stripping of objects that use are used with the dynamic link + * editor, the static link editor marks the symbols defined an object that are + * referenced by a dynamicly bound object (dynamic shared libraries, bundles). + * With this marking strip knows not to strip these symbols. + */ +#define REFERENCED_DYNAMICALLY 0x0010 + +/* + * For images created by the static link editor with the -twolevel_namespace + * option in effect the flags field of the mach header is marked with + * MH_TWOLEVEL. And the binding of the undefined references of the image are + * determined by the static link editor. Which library an undefined symbol is + * bound to is recorded by the static linker in the high 8 bits of the n_desc + * field using the SET_LIBRARY_ORDINAL macro below. The ordinal recorded + * references the libraries listed in the Mach-O's LC_LOAD_DYLIB, + * LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB, LC_LOAD_UPWARD_DYLIB, and + * LC_LAZY_LOAD_DYLIB, etc. load commands in the order they appear in the + * headers. The library ordinals start from 1. + * For a dynamic library that is built as a two-level namespace image the + * undefined references from module defined in another use the same nlist struct + * an in that case SELF_LIBRARY_ORDINAL is used as the library ordinal. For + * defined symbols in all images they also must have the library ordinal set to + * SELF_LIBRARY_ORDINAL. The EXECUTABLE_ORDINAL refers to the executable + * image for references from plugins that refer to the executable that loads + * them. + * + * The DYNAMIC_LOOKUP_ORDINAL is for undefined symbols in a two-level namespace + * image that are looked up by the dynamic linker with flat namespace semantics. + * This ordinal was added as a feature in Mac OS X 10.3 by reducing the + * value of MAX_LIBRARY_ORDINAL by one. So it is legal for existing binaries + * or binaries built with older tools to have 0xfe (254) dynamic libraries. In + * this case the ordinal value 0xfe (254) must be treated as a library ordinal + * for compatibility. + */ +#define GET_LIBRARY_ORDINAL(n_desc) (((n_desc) >> 8) & 0xff) +#define SET_LIBRARY_ORDINAL(n_desc,ordinal) \ + (n_desc) = (((n_desc) & 0x00ff) | (((ordinal) & 0xff) << 8)) +#define SELF_LIBRARY_ORDINAL 0x0 +#define MAX_LIBRARY_ORDINAL 0xfd +#define DYNAMIC_LOOKUP_ORDINAL 0xfe +#define EXECUTABLE_ORDINAL 0xff + +/* + * The bit 0x0020 of the n_desc field is used for two non-overlapping purposes + * and has two different symbolic names, N_NO_DEAD_STRIP and N_DESC_DISCARDED. + */ + +/* + * The N_NO_DEAD_STRIP bit of the n_desc field only ever appears in a + * relocatable .o file (MH_OBJECT filetype). And is used to indicate to the + * static link editor it is never to dead strip the symbol. + */ +#define N_NO_DEAD_STRIP 0x0020 /* symbol is not to be dead stripped */ + +/* + * The N_DESC_DISCARDED bit of the n_desc field never appears in linked image. + * But is used in very rare cases by the dynamic link editor to mark an in + * memory symbol as discared and longer used for linking. + */ +#define N_DESC_DISCARDED 0x0020 /* symbol is discarded */ + +/* + * The N_WEAK_REF bit of the n_desc field indicates to the dynamic linker that + * the undefined symbol is allowed to be missing and is to have the address of + * zero when missing. + */ +#define N_WEAK_REF 0x0040 /* symbol is weak referenced */ + +/* + * The N_WEAK_DEF bit of the n_desc field indicates to the static and dynamic + * linkers that the symbol definition is weak, allowing a non-weak symbol to + * also be used which causes the weak definition to be discared. Currently this + * is only supported for symbols in coalesed sections. + */ +#define N_WEAK_DEF 0x0080 /* coalesed symbol is a weak definition */ + +/* + * The N_REF_TO_WEAK bit of the n_desc field indicates to the dynamic linker + * that the undefined symbol should be resolved using flat namespace searching. + */ +#define N_REF_TO_WEAK 0x0080 /* reference to a weak symbol */ + +/* + * The N_ARM_THUMB_DEF bit of the n_desc field indicates that the symbol is + * a defintion of a Thumb function. + */ +#define N_ARM_THUMB_DEF 0x0008 /* symbol is a Thumb function (ARM) */ + +/* + * The N_SYMBOL_RESOLVER bit of the n_desc field indicates that the + * that the function is actually a resolver function and should + * be called to get the address of the real function to use. + * This bit is only available in .o files (MH_OBJECT filetype) + */ +#define N_SYMBOL_RESOLVER 0x0100 + +#ifndef __STRICT_BSD__ +#if __cplusplus +extern "C" { +#endif /* __cplusplus */ +/* + * The function nlist(3) from the C library. + */ +extern int nlist (const char *filename, struct nlist *list); +#if __cplusplus +} +#endif /* __cplusplus */ +#endif /* __STRICT_BSD__ */ + +#endif /* _MACHO_LIST_H_ */
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/boot/ppc/reloc.h Mon Jan 21 23:29:01 2013 +0900 @@ -0,0 +1,65 @@ +/* + * Copyright (c) 1999 Apple Computer, Inc. All rights reserved. + * + * @APPLE_LICENSE_HEADER_START@ + * + * This file contains Original Code and/or Modifications of Original Code + * as defined in and that are subject to the Apple Public Source License + * Version 2.0 (the 'License'). You may not use this file except in + * compliance with the License. Please obtain a copy of the License at + * http://www.opensource.apple.com/apsl/ and read it before using this + * file. + * + * The Original Code and all software distributed under the License are + * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER + * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, + * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. + * Please see the License for the specific language governing rights and + * limitations under the License. + * + * @APPLE_LICENSE_HEADER_END@ + */ +/* + * Relocation types used in the ppc implementation. Relocation entries for + * things other than instructions use the same generic relocation as discribed + * above and their r_type is RELOC_VANILLA. The rest of the relocation types + * are for instructions. Since they are for instructions the r_address field + * indicates the 32 bit instruction that the relocation is to be preformed on. + * The fields r_pcrel and r_length are ignored for non-RELOC_VANILLA r_types + * except for PPC_RELOC_BR14. + * + * For PPC_RELOC_BR14 if the r_length is the unused value 3, then the branch was + * statically predicted setting or clearing the Y-bit based on the sign of the + * displacement or the opcode. If this is the case the static linker must flip + * the value of the Y-bit if the sign of the displacement changes for non-branch + * always conditions. + */ +enum reloc_type_ppc +{ + PPC_RELOC_VANILLA, /* generic relocation as discribed above */ + PPC_RELOC_PAIR, /* the second relocation entry of a pair */ + PPC_RELOC_BR14, /* 14 bit branch displacement (to a word address) */ + PPC_RELOC_BR24, /* 24 bit branch displacement (to a word address) */ + PPC_RELOC_HI16, /* a PAIR follows with the low half */ + PPC_RELOC_LO16, /* a PAIR follows with the high half */ + PPC_RELOC_HA16, /* Same as the RELOC_HI16 except the low 16 bits and the + * high 16 bits are added together with the low 16 bits + * sign extened first. This means if bit 15 of the low + * 16 bits is set the high 16 bits stored in the + * instruction will be adjusted. + */ + PPC_RELOC_LO14, /* Same as the LO16 except that the low 2 bits are not + * stored in the instruction and are always zero. This + * is used in double word load/store instructions. + */ + PPC_RELOC_SECTDIFF, /* a PAIR follows with subtract symbol value */ + PPC_RELOC_PB_LA_PTR,/* prebound lazy pointer */ + PPC_RELOC_HI16_SECTDIFF, /* section difference forms of above. a PAIR */ + PPC_RELOC_LO16_SECTDIFF, /* follows these with subtract symbol value */ + PPC_RELOC_HA16_SECTDIFF, + PPC_RELOC_JBSR, + PPC_RELOC_LO14_SECTDIFF, + PPC_RELOC_LOCAL_SECTDIFF /* like PPC_RELOC_SECTDIFF, but the symbol + referenced was local. */ +};
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/boot/ppc/swap.h Mon Jan 21 23:29:01 2013 +0900 @@ -0,0 +1,36 @@ +/* + * Copyright (c) 1999 Apple Computer, Inc. All rights reserved. + * + * @APPLE_LICENSE_HEADER_START@ + * + * This file contains Original Code and/or Modifications of Original Code + * as defined in and that are subject to the Apple Public Source License + * Version 2.0 (the 'License'). You may not use this file except in + * compliance with the License. Please obtain a copy of the License at + * http://www.opensource.apple.com/apsl/ and read it before using this + * file. + * + * The Original Code and all software distributed under the License are + * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER + * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, + * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. + * Please see the License for the specific language governing rights and + * limitations under the License. + * + * @APPLE_LICENSE_HEADER_END@ + */ +#include <architecture/byte_order.h> +#include <mach/ppc/thread_status.h> + +extern void swap_ppc_thread_state_t( + ppc_thread_state_t *cpu, + enum NXByteOrder target_byte_sex); + +extern void swap_ppc_float_state_t( + ppc_float_state_t *fpu, + enum NXByteOrder target_byte_sex); + +extern void swap_ppc_exception_state_t( + ppc_exception_state_t *state, + enum NXByteOrder target_byte_sex);
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/boot/ranlib.h Mon Jan 21 23:29:01 2013 +0900 @@ -0,0 +1,67 @@ +/* + * Copyright (c) 1999 Apple Computer, Inc. All rights reserved. + * + * @APPLE_LICENSE_HEADER_START@ + * + * This file contains Original Code and/or Modifications of Original Code + * as defined in and that are subject to the Apple Public Source License + * Version 2.0 (the 'License'). You may not use this file except in + * compliance with the License. Please obtain a copy of the License at + * http://www.opensource.apple.com/apsl/ and read it before using this + * file. + * + * The Original Code and all software distributed under the License are + * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER + * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, + * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. + * Please see the License for the specific language governing rights and + * limitations under the License. + * + * @APPLE_LICENSE_HEADER_END@ + */ +/* ranlib.h 4.1 83/05/03 */ +#ifndef _MACH_O_RANLIB_H_ +#define _MACH_O_RANLIB_H_ + +#include <stdint.h> +#include <sys/types.h> /* off_t */ + +/* + * There are two known orders of table of contents for archives. The first is + * the order ranlib(1) originally produced and still produces without any + * options. This table of contents has the archive member name "__.SYMDEF" + * This order has the ranlib structures in the order the objects appear in the + * archive and the symbol names of those objects in the order of symbol table. + * The second know order is sorted by symbol name and is produced with the -s + * option to ranlib(1). This table of contents has the archive member name + * "__.SYMDEF SORTED" and many programs (notably the 1.0 version of ld(1) can't + * tell the difference between names because of the imbedded blank in the name + * and works with either table of contents). This second order is used by the + * post 1.0 link editor to produce faster linking. The original 1.0 version of + * ranlib(1) gets confused when it is run on a archive with the second type of + * table of contents because it and ar(1) which it uses use different ways to + * determined the member name (ar(1) treats all blanks in the name as + * significant and ranlib(1) only checks for the first one). + */ +#define SYMDEF "__.SYMDEF" +#define SYMDEF_SORTED "__.SYMDEF SORTED" + +/* + * Structure of the __.SYMDEF table of contents for an archive. + * __.SYMDEF begins with a long giving the size in bytes of the ranlib + * structures which immediately follow, and then continues with a string + * table consisting of a long giving the number of bytes of strings which + * follow and then the strings themselves. The ran_strx fields index the + * string table whose first byte is numbered 0. + */ +struct ranlib { + union { + uint32_t ran_strx; /* string table index of */ +#ifndef __LP64__ + char *ran_name; /* symbol defined by */ +#endif + } ran_un; + uint32_t ran_off; /* library member at this offset */ +}; +#endif /* _MACH_O_RANLIB_H_ */
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/boot/reloc.h Mon Jan 21 23:29:01 2013 +0900 @@ -0,0 +1,203 @@ +/* + * Copyright (c) 1999 Apple Computer, Inc. All rights reserved. + * + * @APPLE_LICENSE_HEADER_START@ + * + * This file contains Original Code and/or Modifications of Original Code + * as defined in and that are subject to the Apple Public Source License + * Version 2.0 (the 'License'). You may not use this file except in + * compliance with the License. Please obtain a copy of the License at + * http://www.opensource.apple.com/apsl/ and read it before using this + * file. + * + * The Original Code and all software distributed under the License are + * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER + * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, + * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. + * Please see the License for the specific language governing rights and + * limitations under the License. + * + * @APPLE_LICENSE_HEADER_END@ + */ +/* $NetBSD: exec.h,v 1.6 1994/10/27 04:16:05 cgd Exp $ */ + +/* + * Copyright (c) 1993 Christopher G. Demetriou + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. The name of the author may not be used to endorse or promote products + * derived from this software without specific prior written permission + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + +#ifndef _MACHO_RELOC_H_ +#define _MACHO_RELOC_H_ +#include <stdint.h> + +/* + * Format of a relocation entry of a Mach-O file. Modified from the 4.3BSD + * format. The modifications from the original format were changing the value + * of the r_symbolnum field for "local" (r_extern == 0) relocation entries. + * This modification is required to support symbols in an arbitrary number of + * sections not just the three sections (text, data and bss) in a 4.3BSD file. + * Also the last 4 bits have had the r_type tag added to them. + */ +struct relocation_info { + int32_t r_address; /* offset in the section to what is being + relocated */ + uint32_t r_symbolnum:24, /* symbol index if r_extern == 1 or section + ordinal if r_extern == 0 */ + r_pcrel:1, /* was relocated pc relative already */ + r_length:2, /* 0=byte, 1=word, 2=long, 3=quad */ + r_extern:1, /* does not include value of sym referenced */ + r_type:4; /* if not 0, machine specific relocation type */ +}; +#define R_ABS 0 /* absolute relocation type for Mach-O files */ + +/* + * The r_address is not really the address as it's name indicates but an offset. + * In 4.3BSD a.out objects this offset is from the start of the "segment" for + * which relocation entry is for (text or data). For Mach-O object files it is + * also an offset but from the start of the "section" for which the relocation + * entry is for. See comments in <mach-o/loader.h> about the r_address feild + * in images for used with the dynamic linker. + * + * In 4.3BSD a.out objects if r_extern is zero then r_symbolnum is an ordinal + * for the segment the symbol being relocated is in. These ordinals are the + * symbol types N_TEXT, N_DATA, N_BSS or N_ABS. In Mach-O object files these + * ordinals refer to the sections in the object file in the order their section + * structures appear in the headers of the object file they are in. The first + * section has the ordinal 1, the second 2, and so on. This means that the + * same ordinal in two different object files could refer to two different + * sections. And further could have still different ordinals when combined + * by the link-editor. The value R_ABS is used for relocation entries for + * absolute symbols which need no further relocation. + */ + +/* + * For RISC machines some of the references are split across two instructions + * and the instruction does not contain the complete value of the reference. + * In these cases a second, or paired relocation entry, follows each of these + * relocation entries, using a PAIR r_type, which contains the other part of the + * reference not contained in the instruction. This other part is stored in the + * pair's r_address field. The exact number of bits of the other part of the + * reference store in the r_address field is dependent on the particular + * relocation type for the particular architecture. + */ + +/* + * To make scattered loading by the link editor work correctly "local" + * relocation entries can't be used when the item to be relocated is the value + * of a symbol plus an offset (where the resulting expresion is outside the + * block the link editor is moving, a blocks are divided at symbol addresses). + * In this case. where the item is a symbol value plus offset, the link editor + * needs to know more than just the section the symbol was defined. What is + * needed is the actual value of the symbol without the offset so it can do the + * relocation correctly based on where the value of the symbol got relocated to + * not the value of the expression (with the offset added to the symbol value). + * So for the NeXT 2.0 release no "local" relocation entries are ever used when + * there is a non-zero offset added to a symbol. The "external" and "local" + * relocation entries remain unchanged. + * + * The implemention is quite messy given the compatibility with the existing + * relocation entry format. The ASSUMPTION is that a section will never be + * bigger than 2**24 - 1 (0x00ffffff or 16,777,215) bytes. This assumption + * allows the r_address (which is really an offset) to fit in 24 bits and high + * bit of the r_address field in the relocation_info structure to indicate + * it is really a scattered_relocation_info structure. Since these are only + * used in places where "local" relocation entries are used and not where + * "external" relocation entries are used the r_extern field has been removed. + * + * For scattered loading to work on a RISC machine where some of the references + * are split across two instructions the link editor needs to be assured that + * each reference has a unique 32 bit reference (that more than one reference is + * NOT sharing the same high 16 bits for example) so it move each referenced + * item independent of each other. Some compilers guarantees this but the + * compilers don't so scattered loading can be done on those that do guarantee + * this. + */ +#if defined(__BIG_ENDIAN__) || defined(__LITTLE_ENDIAN__) +/* + * The reason for the ifdef's of __BIG_ENDIAN__ and __LITTLE_ENDIAN__ are that + * when stattered relocation entries were added the mistake of using a mask + * against a structure that is made up of bit fields was used. To make this + * design work this structure must be laid out in memory the same way so the + * mask can be applied can check the same bit each time (r_scattered). + */ +#endif /* defined(__BIG_ENDIAN__) || defined(__LITTLE_ENDIAN__) */ +#define R_SCATTERED 0x80000000 /* mask to be applied to the r_address field + of a relocation_info structure to tell that + is is really a scattered_relocation_info + stucture */ +struct scattered_relocation_info { +#ifdef __BIG_ENDIAN__ + uint32_t r_scattered:1, /* 1=scattered, 0=non-scattered (see above) */ + r_pcrel:1, /* was relocated pc relative already */ + r_length:2, /* 0=byte, 1=word, 2=long, 3=quad */ + r_type:4, /* if not 0, machine specific relocation type */ + r_address:24; /* offset in the section to what is being + relocated */ + int32_t r_value; /* the value the item to be relocated is + refering to (without any offset added) */ +#endif /* __BIG_ENDIAN__ */ +#ifdef __LITTLE_ENDIAN__ + uint32_t + r_address:24, /* offset in the section to what is being + relocated */ + r_type:4, /* if not 0, machine specific relocation type */ + r_length:2, /* 0=byte, 1=word, 2=long, 3=quad */ + r_pcrel:1, /* was relocated pc relative already */ + r_scattered:1; /* 1=scattered, 0=non-scattered (see above) */ + int32_t r_value; /* the value the item to be relocated is + refering to (without any offset added) */ +#endif /* __LITTLE_ENDIAN__ */ +}; + +/* + * Relocation types used in a generic implementation. Relocation entries for + * normal things use the generic relocation as discribed above and their r_type + * is GENERIC_RELOC_VANILLA (a value of zero). + * + * Another type of generic relocation, GENERIC_RELOC_SECTDIFF, is to support + * the difference of two symbols defined in different sections. That is the + * expression "symbol1 - symbol2 + constant" is a relocatable expression when + * both symbols are defined in some section. For this type of relocation the + * both relocations entries are scattered relocation entries. The value of + * symbol1 is stored in the first relocation entry's r_value field and the + * value of symbol2 is stored in the pair's r_value field. + * + * A special case for a prebound lazy pointer is needed to beable to set the + * value of the lazy pointer back to its non-prebound state. This is done + * using the GENERIC_RELOC_PB_LA_PTR r_type. This is a scattered relocation + * entry where the r_value feild is the value of the lazy pointer not prebound. + */ +enum reloc_type_generic +{ + GENERIC_RELOC_VANILLA, /* generic relocation as discribed above */ + GENERIC_RELOC_PAIR, /* Only follows a GENERIC_RELOC_SECTDIFF */ + GENERIC_RELOC_SECTDIFF, + GENERIC_RELOC_PB_LA_PTR, /* prebound lazy pointer */ + GENERIC_RELOC_LOCAL_SECTDIFF, + GENERIC_RELOC_TLV /* thread local variables */ +}; + +#endif /* _MACHO_RELOC_H_ */
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/boot/stab.h Mon Jan 21 23:29:01 2013 +0900 @@ -0,0 +1,122 @@ +/* + * Copyright (c) 1999 Apple Computer, Inc. All rights reserved. + * + * @APPLE_LICENSE_HEADER_START@ + * + * This file contains Original Code and/or Modifications of Original Code + * as defined in and that are subject to the Apple Public Source License + * Version 2.0 (the 'License'). You may not use this file except in + * compliance with the License. Please obtain a copy of the License at + * http://www.opensource.apple.com/apsl/ and read it before using this + * file. + * + * The Original Code and all software distributed under the License are + * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER + * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, + * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. + * Please see the License for the specific language governing rights and + * limitations under the License. + * + * @APPLE_LICENSE_HEADER_END@ + */ +#ifndef _MACHO_STAB_H_ +#define _MACHO_STAB_H_ +/* $NetBSD: stab.h,v 1.4 1994/10/26 00:56:25 cgd Exp $ */ + +/*- + * Copyright (c) 1991 The Regents of the University of California. + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. All advertising materials mentioning features or use of this software + * must display the following acknowledgement: + * This product includes software developed by the University of + * California, Berkeley and its contributors. + * 4. Neither the name of the University nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + * + * @(#)stab.h 5.2 (Berkeley) 4/4/91 + */ + +/* + * This file gives definitions supplementing <nlist.h> for permanent symbol + * table entries of Mach-O files. Modified from the BSD definitions. The + * modifications from the original definitions were changing what the values of + * what was the n_other field (an unused field) which is now the n_sect field. + * These modifications are required to support symbols in an arbitrary number of + * sections not just the three sections (text, data and bss) in a BSD file. + * The values of the defined constants have NOT been changed. + * + * These must have one of the N_STAB bits on. The n_value fields are subject + * to relocation according to the value of their n_sect field. So for types + * that refer to things in sections the n_sect field must be filled in with the + * proper section ordinal. For types that are not to have their n_value field + * relocatated the n_sect field must be NO_SECT. + */ + +/* + * Symbolic debugger symbols. The comments give the conventional use for + * + * .stabs "n_name", n_type, n_sect, n_desc, n_value + * + * where n_type is the defined constant and not listed in the comment. Other + * fields not listed are zero. n_sect is the section ordinal the entry is + * refering to. + */ +#define N_GSYM 0x20 /* global symbol: name,,NO_SECT,type,0 */ +#define N_FNAME 0x22 /* procedure name (f77 kludge): name,,NO_SECT,0,0 */ +#define N_FUN 0x24 /* procedure: name,,n_sect,linenumber,address */ +#define N_STSYM 0x26 /* static symbol: name,,n_sect,type,address */ +#define N_LCSYM 0x28 /* .lcomm symbol: name,,n_sect,type,address */ +#define N_BNSYM 0x2e /* begin nsect sym: 0,,n_sect,0,address */ +#define N_OPT 0x3c /* emitted with gcc2_compiled and in gcc source */ +#define N_RSYM 0x40 /* register sym: name,,NO_SECT,type,register */ +#define N_SLINE 0x44 /* src line: 0,,n_sect,linenumber,address */ +#define N_ENSYM 0x4e /* end nsect sym: 0,,n_sect,0,address */ +#define N_SSYM 0x60 /* structure elt: name,,NO_SECT,type,struct_offset */ +#define N_SO 0x64 /* source file name: name,,n_sect,0,address */ +#define N_OSO 0x66 /* object file name: name,,0,0,st_mtime */ +#define N_LSYM 0x80 /* local sym: name,,NO_SECT,type,offset */ +#define N_BINCL 0x82 /* include file beginning: name,,NO_SECT,0,sum */ +#define N_SOL 0x84 /* #included file name: name,,n_sect,0,address */ +#define N_PARAMS 0x86 /* compiler parameters: name,,NO_SECT,0,0 */ +#define N_VERSION 0x88 /* compiler version: name,,NO_SECT,0,0 */ +#define N_OLEVEL 0x8A /* compiler -O level: name,,NO_SECT,0,0 */ +#define N_PSYM 0xa0 /* parameter: name,,NO_SECT,type,offset */ +#define N_EINCL 0xa2 /* include file end: name,,NO_SECT,0,0 */ +#define N_ENTRY 0xa4 /* alternate entry: name,,n_sect,linenumber,address */ +#define N_LBRAC 0xc0 /* left bracket: 0,,NO_SECT,nesting level,address */ +#define N_EXCL 0xc2 /* deleted include file: name,,NO_SECT,0,sum */ +#define N_RBRAC 0xe0 /* right bracket: 0,,NO_SECT,nesting level,address */ +#define N_BCOMM 0xe2 /* begin common: name,,NO_SECT,0,0 */ +#define N_ECOMM 0xe4 /* end common: name,,n_sect,0,0 */ +#define N_ECOML 0xe8 /* end common (local name): 0,,n_sect,0,address */ +#define N_LENG 0xfe /* second stab entry with length information */ + +/* + * for the berkeley pascal compiler, pc(1): + */ +#define N_PC 0x30 /* global pascal symbol: name,,NO_SECT,subtype,line */ + +#endif /* _MACHO_STAB_H_ */
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/boot/swap.h Mon Jan 21 23:29:01 2013 +0900 @@ -0,0 +1,207 @@ +/* + * Copyright (c) 1999 Apple Computer, Inc. All rights reserved. + * + * @APPLE_LICENSE_HEADER_START@ + * + * This file contains Original Code and/or Modifications of Original Code + * as defined in and that are subject to the Apple Public Source License + * Version 2.0 (the 'License'). You may not use this file except in + * compliance with the License. Please obtain a copy of the License at + * http://www.opensource.apple.com/apsl/ and read it before using this + * file. + * + * The Original Code and all software distributed under the License are + * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER + * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, + * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. + * Please see the License for the specific language governing rights and + * limitations under the License. + * + * @APPLE_LICENSE_HEADER_END@ + */ +#ifndef _MACH_O_SWAP_H_ +#define _MACH_O_SWAP_H_ + +#include <stdint.h> +#include <architecture/byte_order.h> +#include <mach-o/fat.h> +#include <mach-o/loader.h> +#include <mach-o/nlist.h> +#include <mach-o/reloc.h> +#include <mach-o/ranlib.h> + +#if __cplusplus +extern "C" { +#endif /* __cplusplus */ + +extern void swap_fat_header( + struct fat_header *fat_header, + enum NXByteOrder target_byte_order); + +extern void swap_fat_arch( + struct fat_arch *fat_archs, + uint32_t nfat_arch, + enum NXByteOrder target_byte_order); + +extern void swap_mach_header( + struct mach_header *mh, + enum NXByteOrder target_byte_order); + +extern void swap_mach_header_64( + struct mach_header_64 *mh, + enum NXByteOrder target_byte_order); + +extern void swap_load_command( + struct load_command *lc, + enum NXByteOrder target_byte_order); + +extern void swap_segment_command( + struct segment_command *sg, + enum NXByteOrder target_byte_order); + +extern void swap_segment_command_64( + struct segment_command_64 *sg, + enum NXByteOrder target_byte_order); + +extern void swap_section( + struct section *s, + uint32_t nsects, + enum NXByteOrder target_byte_order); + +extern void swap_section_64( + struct section_64 *s, + uint32_t nsects, + enum NXByteOrder target_byte_order); + +extern void swap_symtab_command( + struct symtab_command *st, + enum NXByteOrder target_byte_order); + +extern void swap_dysymtab_command( + struct dysymtab_command *dyst, + enum NXByteOrder target_byte_sex); + +extern void swap_symseg_command( + struct symseg_command *ss, + enum NXByteOrder target_byte_order); + +extern void swap_fvmlib_command( + struct fvmlib_command *fl, + enum NXByteOrder target_byte_order); + +extern void swap_dylib_command( + struct dylib_command *dl, + enum NXByteOrder target_byte_sex); + +extern void swap_sub_framework_command( + struct sub_framework_command *sub, + enum NXByteOrder target_byte_sex); + +extern void swap_sub_umbrella_command( + struct sub_umbrella_command *usub, + enum NXByteOrder target_byte_sex); + +extern void swap_sub_library_command( + struct sub_library_command *lsub, + enum NXByteOrder target_byte_sex); + +extern void swap_sub_client_command( + struct sub_client_command *csub, + enum NXByteOrder target_byte_sex); + +extern void swap_prebound_dylib_command( + struct prebound_dylib_command *pbdylib, + enum NXByteOrder target_byte_sex); + +extern void swap_dylinker_command( + struct dylinker_command *dyld, + enum NXByteOrder target_byte_sex); + +extern void swap_fvmfile_command( + struct fvmfile_command *ff, + enum NXByteOrder target_byte_order); + +extern void swap_thread_command( + struct thread_command *ut, + enum NXByteOrder target_byte_order); + +extern void swap_ident_command( + struct ident_command *ident, + enum NXByteOrder target_byte_order); + +extern void swap_routines_command( + struct routines_command *r_cmd, + enum NXByteOrder target_byte_sex); + +extern void swap_routines_command_64( + struct routines_command_64 *r_cmd, + enum NXByteOrder target_byte_sex); + +extern void swap_twolevel_hints_command( + struct twolevel_hints_command *hints_cmd, + enum NXByteOrder target_byte_sex); + +extern void swap_prebind_cksum_command( + struct prebind_cksum_command *cksum_cmd, + enum NXByteOrder target_byte_sex); + +extern void swap_uuid_command( + struct uuid_command *uuid_cmd, + enum NXByteOrder target_byte_sex); + +extern void swap_twolevel_hint( + struct twolevel_hint *hints, + uint32_t nhints, + enum NXByteOrder target_byte_sex); + +extern void swap_nlist( + struct nlist *symbols, + uint32_t nsymbols, + enum NXByteOrder target_byte_order); + +extern void swap_nlist_64( + struct nlist_64 *symbols, + uint32_t nsymbols, + enum NXByteOrder target_byte_order); + +extern void swap_ranlib( + struct ranlib *ranlibs, + uint32_t nranlibs, + enum NXByteOrder target_byte_order); + +extern void swap_relocation_info( + struct relocation_info *relocs, + uint32_t nrelocs, + enum NXByteOrder target_byte_order); + +extern void swap_indirect_symbols( + uint32_t *indirect_symbols, + uint32_t nindirect_symbols, + enum NXByteOrder target_byte_sex); + +extern void swap_dylib_reference( + struct dylib_reference *refs, + uint32_t nrefs, + enum NXByteOrder target_byte_sex); + +extern void swap_dylib_module( + struct dylib_module *mods, + uint32_t nmods, + enum NXByteOrder target_byte_sex); + +extern void swap_dylib_module_64( + struct dylib_module_64 *mods, + uint32_t nmods, + enum NXByteOrder target_byte_sex); + +extern void swap_dylib_table_of_contents( + struct dylib_table_of_contents *tocs, + uint32_t ntocs, + enum NXByteOrder target_byte_sex); + +#if __cplusplus +} +#endif /* __cplusplus */ + +#endif /* _MACH_O_SWAP_H_ */
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/boot/x86_64/reloc.h Mon Jan 21 23:29:01 2013 +0900 @@ -0,0 +1,185 @@ +/* + * Copyright (c) 2006 Apple Computer, Inc. All rights reserved. + * + * @APPLE_LICENSE_HEADER_START@ + * + * This file contains Original Code and/or Modifications of Original Code + * as defined in and that are subject to the Apple Public Source License + * Version 2.0 (the 'License'). You may not use this file except in + * compliance with the License. Please obtain a copy of the License at + * http://www.opensource.apple.com/apsl/ and read it before using this + * file. + * + * The Original Code and all software distributed under the License are + * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER + * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, + * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. + * Please see the License for the specific language governing rights and + * limitations under the License. + * + * @APPLE_LICENSE_HEADER_END@ + */ +/* + * Relocations for x86_64 are a bit different than for other architectures in + * Mach-O: Scattered relocations are not used. Almost all relocations produced + * by the compiler are external relocations. An external relocation has the + * r_extern bit set to 1 and the r_symbolnum field contains the symbol table + * index of the target label. + * + * When the assembler is generating relocations, if the target label is a local + * label (begins with 'L'), then the previous non-local label in the same + * section is used as the target of the external relocation. An addend is used + * with the distance from that non-local label to the target label. Only when + * there is no previous non-local label in the section is an internal + * relocation used. + * + * The addend (i.e. the 4 in _foo+4) is encoded in the instruction (Mach-O does + * not have RELA relocations). For PC-relative relocations, the addend is + * stored directly in the instruction. This is different from other Mach-O + * architectures, which encode the addend minus the current section offset. + * + * The relocation types are: + * + * X86_64_RELOC_UNSIGNED // for absolute addresses + * X86_64_RELOC_SIGNED // for signed 32-bit displacement + * X86_64_RELOC_BRANCH // a CALL/JMP instruction with 32-bit displacement + * X86_64_RELOC_GOT_LOAD // a MOVQ load of a GOT entry + * X86_64_RELOC_GOT // other GOT references + * X86_64_RELOC_SUBTRACTOR // must be followed by a X86_64_RELOC_UNSIGNED + * + * The following are sample assembly instructions, followed by the relocation + * and section content they generate in an object file: + * + * call _foo + * r_type=X86_64_RELOC_BRANCH, r_length=2, r_extern=1, r_pcrel=1, r_symbolnum=_foo + * E8 00 00 00 00 + * + * call _foo+4 + * r_type=X86_64_RELOC_BRANCH, r_length=2, r_extern=1, r_pcrel=1, r_symbolnum=_foo + * E8 04 00 00 00 + * + * movq _foo@GOTPCREL(%rip), %rax + * r_type=X86_64_RELOC_GOT_LOAD, r_length=2, r_extern=1, r_pcrel=1, r_symbolnum=_foo + * 48 8B 05 00 00 00 00 + * + * pushq _foo@GOTPCREL(%rip) + * r_type=X86_64_RELOC_GOT, r_length=2, r_extern=1, r_pcrel=1, r_symbolnum=_foo + * FF 35 00 00 00 00 + * + * movl _foo(%rip), %eax + * r_type=X86_64_RELOC_SIGNED, r_length=2, r_extern=1, r_pcrel=1, r_symbolnum=_foo + * 8B 05 00 00 00 00 + * + * movl _foo+4(%rip), %eax + * r_type=X86_64_RELOC_SIGNED, r_length=2, r_extern=1, r_pcrel=1, r_symbolnum=_foo + * 8B 05 04 00 00 00 + * + * movb $0x12, _foo(%rip) + * r_type=X86_64_RELOC_SIGNED, r_length=2, r_extern=1, r_pcrel=1, r_symbolnum=_foo + * C6 05 FF FF FF FF 12 + * + * movl $0x12345678, _foo(%rip) + * r_type=X86_64_RELOC_SIGNED, r_length=2, r_extern=1, r_pcrel=1, r_symbolnum=_foo + * C7 05 FC FF FF FF 78 56 34 12 + * + * .quad _foo + * r_type=X86_64_RELOC_UNSIGNED, r_length=3, r_extern=1, r_pcrel=0, r_symbolnum=_foo + * 00 00 00 00 00 00 00 00 + * + * .quad _foo+4 + * r_type=X86_64_RELOC_UNSIGNED, r_length=3, r_extern=1, r_pcrel=0, r_symbolnum=_foo + * 04 00 00 00 00 00 00 00 + * + * .quad _foo - _bar + * r_type=X86_64_RELOC_SUBTRACTOR, r_length=3, r_extern=1, r_pcrel=0, r_symbolnum=_bar + * r_type=X86_64_RELOC_UNSIGNED, r_length=3, r_extern=1, r_pcrel=0, r_symbolnum=_foo + * 00 00 00 00 00 00 00 00 + * + * .quad _foo - _bar + 4 + * r_type=X86_64_RELOC_SUBTRACTOR, r_length=3, r_extern=1, r_pcrel=0, r_symbolnum=_bar + * r_type=X86_64_RELOC_UNSIGNED, r_length=3, r_extern=1, r_pcrel=0, r_symbolnum=_foo + * 04 00 00 00 00 00 00 00 + * + * .long _foo - _bar + * r_type=X86_64_RELOC_SUBTRACTOR, r_length=2, r_extern=1, r_pcrel=0, r_symbolnum=_bar + * r_type=X86_64_RELOC_UNSIGNED, r_length=2, r_extern=1, r_pcrel=0, r_symbolnum=_foo + * 00 00 00 00 + * + * lea L1(%rip), %rax + * r_type=X86_64_RELOC_SIGNED, r_length=2, r_extern=1, r_pcrel=1, r_symbolnum=_prev + * 48 8d 05 12 00 00 00 + * // assumes _prev is the first non-local label 0x12 bytes before L1 + * + * lea L0(%rip), %rax + * r_type=X86_64_RELOC_SIGNED, r_length=2, r_extern=0, r_pcrel=1, r_symbolnum=3 + * 48 8d 05 56 00 00 00 + * // assumes L0 is in third section and there is no previous non-local label. + * // The rip-relative-offset of 0x00000056 is L0-address_of_next_instruction. + * // address_of_next_instruction is the address of the relocation + 4. + * + * add $6,L0(%rip) + * r_type=X86_64_RELOC_SIGNED_1, r_length=2, r_extern=0, r_pcrel=1, r_symbolnum=3 + * 83 05 18 00 00 00 06 + * // assumes L0 is in third section and there is no previous non-local label. + * // The rip-relative-offset of 0x00000018 is L0-address_of_next_instruction. + * // address_of_next_instruction is the address of the relocation + 4 + 1. + * // The +1 comes from SIGNED_1. This is used because the relocation is not + * // at the end of the instruction. + * + * .quad L1 + * r_type=X86_64_RELOC_UNSIGNED, r_length=3, r_extern=1, r_pcrel=0, r_symbolnum=_prev + * 12 00 00 00 00 00 00 00 + * // assumes _prev is the first non-local label 0x12 bytes before L1 + * + * .quad L0 + * r_type=X86_64_RELOC_UNSIGNED, r_length=3, r_extern=0, r_pcrel=0, r_symbolnum=3 + * 56 00 00 00 00 00 00 00 + * // assumes L0 is in third section, has an address of 0x00000056 in .o + * // file, and there is no previous non-local label + * + * .quad _foo - . + * r_type=X86_64_RELOC_SUBTRACTOR, r_length=3, r_extern=1, r_pcrel=0, r_symbolnum=_prev + * r_type=X86_64_RELOC_UNSIGNED, r_length=3, r_extern=1, r_pcrel=0, r_symbolnum=_foo + * EE FF FF FF FF FF FF FF + * // assumes _prev is the first non-local label 0x12 bytes before this + * // .quad + * + * .quad _foo - L1 + * r_type=X86_64_RELOC_SUBTRACTOR, r_length=3, r_extern=1, r_pcrel=0, r_symbolnum=_prev + * r_type=X86_64_RELOC_UNSIGNED, r_length=3, r_extern=1, r_pcrel=0, r_symbolnum=_foo + * EE FF FF FF FF FF FF FF + * // assumes _prev is the first non-local label 0x12 bytes before L1 + * + * .quad L1 - _prev + * // No relocations. This is an assembly time constant. + * 12 00 00 00 00 00 00 00 + * // assumes _prev is the first non-local label 0x12 bytes before L1 + * + * + * + * In final linked images, there are only two valid relocation kinds: + * + * r_type=X86_64_RELOC_UNSIGNED, r_length=3, r_pcrel=0, r_extern=1, r_symbolnum=sym_index + * This tells dyld to add the address of a symbol to a pointer sized (8-byte) + * piece of data (i.e on disk the 8-byte piece of data contains the addend). The + * r_symbolnum contains the index into the symbol table of the target symbol. + * + * r_type=X86_64_RELOC_UNSIGNED, r_length=3, r_pcrel=0, r_extern=0, r_symbolnum=0 + * This tells dyld to adjust the pointer sized (8-byte) piece of data by the amount + * the containing image was loaded from its base address (e.g. slide). + * + */ +enum reloc_type_x86_64 +{ + X86_64_RELOC_UNSIGNED, // for absolute addresses + X86_64_RELOC_SIGNED, // for signed 32-bit displacement + X86_64_RELOC_BRANCH, // a CALL/JMP instruction with 32-bit displacement + X86_64_RELOC_GOT_LOAD, // a MOVQ load of a GOT entry + X86_64_RELOC_GOT, // other GOT references + X86_64_RELOC_SUBTRACTOR, // must be followed by a X86_64_RELOC_UNSIGNED + X86_64_RELOC_SIGNED_1, // for signed 32-bit displacement with a -1 addend + X86_64_RELOC_SIGNED_2, // for signed 32-bit displacement with a -2 addend + X86_64_RELOC_SIGNED_4, // for signed 32-bit displacement with a -4 addend + X86_64_RELOC_TLV, // for thread local variables +};