83
|
1 //=- X86ScheduleBtVer2.td - X86 BtVer2 (Jaguar) Scheduling ---*- tablegen -*-=//
|
|
2 //
|
|
3 // The LLVM Compiler Infrastructure
|
|
4 //
|
|
5 // This file is distributed under the University of Illinois Open Source
|
|
6 // License. See LICENSE.TXT for details.
|
|
7 //
|
|
8 //===----------------------------------------------------------------------===//
|
|
9 //
|
|
10 // This file defines the machine model for AMD btver2 (Jaguar) to support
|
|
11 // instruction scheduling and other instruction cost heuristics. Based off AMD Software
|
|
12 // Optimization Guide for AMD Family 16h Processors & Instruction Latency appendix.
|
|
13 //
|
|
14 //===----------------------------------------------------------------------===//
|
|
15
|
|
16 def BtVer2Model : SchedMachineModel {
|
|
17 // All x86 instructions are modeled as a single micro-op, and btver2 can
|
|
18 // decode 2 instructions per cycle.
|
|
19 let IssueWidth = 2;
|
|
20 let MicroOpBufferSize = 64; // Retire Control Unit
|
|
21 let LoadLatency = 5; // FPU latency (worse case cf Integer 3 cycle latency)
|
|
22 let HighLatency = 25;
|
|
23 let MispredictPenalty = 14; // Minimum branch misdirection penalty
|
|
24 let PostRAScheduler = 1;
|
|
25
|
|
26 // FIXME: SSE4/AVX is unimplemented. This flag is set to allow
|
|
27 // the scheduler to assign a default model to unrecognized opcodes.
|
|
28 let CompleteModel = 0;
|
|
29 }
|
|
30
|
|
31 let SchedModel = BtVer2Model in {
|
|
32
|
|
33 // Jaguar can issue up to 6 micro-ops in one cycle
|
|
34 def JALU0 : ProcResource<1>; // Integer Pipe0: integer ALU0 (also handle FP->INT jam)
|
|
35 def JALU1 : ProcResource<1>; // Integer Pipe1: integer ALU1/MUL/DIV
|
|
36 def JLAGU : ProcResource<1>; // Integer Pipe2: LAGU
|
|
37 def JSAGU : ProcResource<1>; // Integer Pipe3: SAGU (also handles 3-operand LEA)
|
|
38 def JFPU0 : ProcResource<1>; // Vector/FPU Pipe0: VALU0/VIMUL/FPA
|
|
39 def JFPU1 : ProcResource<1>; // Vector/FPU Pipe1: VALU1/STC/FPM
|
|
40
|
|
41 // Any pipe - FIXME we need this until we can discriminate between int/fpu load/store/moves properly
|
|
42 def JAny : ProcResGroup<[JALU0, JALU1, JLAGU, JSAGU, JFPU0, JFPU1]>;
|
|
43
|
|
44 // Integer Pipe Scheduler
|
|
45 def JALU01 : ProcResGroup<[JALU0, JALU1]> {
|
|
46 let BufferSize=20;
|
|
47 }
|
|
48
|
|
49 // AGU Pipe Scheduler
|
|
50 def JLSAGU : ProcResGroup<[JLAGU, JSAGU]> {
|
|
51 let BufferSize=12;
|
|
52 }
|
|
53
|
|
54 // Fpu Pipe Scheduler
|
|
55 def JFPU01 : ProcResGroup<[JFPU0, JFPU1]> {
|
|
56 let BufferSize=18;
|
|
57 }
|
|
58
|
|
59 def JDiv : ProcResource<1>; // integer division
|
|
60 def JMul : ProcResource<1>; // integer multiplication
|
|
61 def JVALU0 : ProcResource<1>; // vector integer
|
|
62 def JVALU1 : ProcResource<1>; // vector integer
|
|
63 def JVIMUL : ProcResource<1>; // vector integer multiplication
|
|
64 def JSTC : ProcResource<1>; // vector store/convert
|
|
65 def JFPM : ProcResource<1>; // FP multiplication
|
|
66 def JFPA : ProcResource<1>; // FP addition
|
|
67
|
|
68 // Integer loads are 3 cycles, so ReadAfterLd registers needn't be available until 3
|
|
69 // cycles after the memory operand.
|
|
70 def : ReadAdvance<ReadAfterLd, 3>;
|
|
71
|
|
72 // Many SchedWrites are defined in pairs with and without a folded load.
|
|
73 // Instructions with folded loads are usually micro-fused, so they only appear
|
|
74 // as two micro-ops when dispatched by the schedulers.
|
|
75 // This multiclass defines the resource usage for variants with and without
|
|
76 // folded loads.
|
|
77 multiclass JWriteResIntPair<X86FoldableSchedWrite SchedRW,
|
|
78 ProcResourceKind ExePort,
|
|
79 int Lat> {
|
|
80 // Register variant is using a single cycle on ExePort.
|
|
81 def : WriteRes<SchedRW, [ExePort]> { let Latency = Lat; }
|
|
82
|
|
83 // Memory variant also uses a cycle on JLAGU and adds 3 cycles to the
|
|
84 // latency.
|
|
85 def : WriteRes<SchedRW.Folded, [JLAGU, ExePort]> {
|
|
86 let Latency = !add(Lat, 3);
|
|
87 }
|
|
88 }
|
|
89
|
|
90 multiclass JWriteResFpuPair<X86FoldableSchedWrite SchedRW,
|
|
91 ProcResourceKind ExePort,
|
|
92 int Lat> {
|
|
93 // Register variant is using a single cycle on ExePort.
|
|
94 def : WriteRes<SchedRW, [ExePort]> { let Latency = Lat; }
|
|
95
|
|
96 // Memory variant also uses a cycle on JLAGU and adds 5 cycles to the
|
|
97 // latency.
|
|
98 def : WriteRes<SchedRW.Folded, [JLAGU, ExePort]> {
|
|
99 let Latency = !add(Lat, 5);
|
|
100 }
|
|
101 }
|
|
102
|
|
103 // A folded store needs a cycle on the SAGU for the store data.
|
|
104 def : WriteRes<WriteRMW, [JSAGU]>;
|
|
105
|
|
106 ////////////////////////////////////////////////////////////////////////////////
|
|
107 // Arithmetic.
|
|
108 ////////////////////////////////////////////////////////////////////////////////
|
|
109
|
|
110 defm : JWriteResIntPair<WriteALU, JALU01, 1>;
|
|
111 defm : JWriteResIntPair<WriteIMul, JALU1, 3>;
|
|
112
|
|
113 def : WriteRes<WriteIMulH, [JALU1]> {
|
|
114 let Latency = 6;
|
|
115 let ResourceCycles = [4];
|
|
116 }
|
|
117
|
|
118 // FIXME 8/16 bit divisions
|
|
119 def : WriteRes<WriteIDiv, [JALU1, JDiv]> {
|
|
120 let Latency = 25;
|
|
121 let ResourceCycles = [1, 25];
|
|
122 }
|
|
123 def : WriteRes<WriteIDivLd, [JALU1, JLAGU, JDiv]> {
|
|
124 let Latency = 41;
|
|
125 let ResourceCycles = [1, 1, 25];
|
|
126 }
|
|
127
|
|
128 // This is for simple LEAs with one or two input operands.
|
|
129 // FIXME: SAGU 3-operand LEA
|
|
130 def : WriteRes<WriteLEA, [JALU01]>;
|
|
131
|
|
132 ////////////////////////////////////////////////////////////////////////////////
|
|
133 // Integer shifts and rotates.
|
|
134 ////////////////////////////////////////////////////////////////////////////////
|
|
135
|
|
136 defm : JWriteResIntPair<WriteShift, JALU01, 1>;
|
|
137
|
|
138 ////////////////////////////////////////////////////////////////////////////////
|
|
139 // Loads, stores, and moves, not folded with other operations.
|
|
140 // FIXME: Split x86 and SSE load/store/moves
|
|
141 ////////////////////////////////////////////////////////////////////////////////
|
|
142
|
|
143 def : WriteRes<WriteLoad, [JLAGU]> { let Latency = 5; }
|
|
144 def : WriteRes<WriteStore, [JSAGU]>;
|
|
145 def : WriteRes<WriteMove, [JAny]>;
|
|
146
|
|
147 ////////////////////////////////////////////////////////////////////////////////
|
|
148 // Idioms that clear a register, like xorps %xmm0, %xmm0.
|
|
149 // These can often bypass execution ports completely.
|
|
150 ////////////////////////////////////////////////////////////////////////////////
|
|
151
|
|
152 def : WriteRes<WriteZero, []>;
|
|
153
|
|
154 ////////////////////////////////////////////////////////////////////////////////
|
|
155 // Branches don't produce values, so they have no latency, but they still
|
|
156 // consume resources. Indirect branches can fold loads.
|
|
157 ////////////////////////////////////////////////////////////////////////////////
|
|
158
|
|
159 defm : JWriteResIntPair<WriteJump, JALU01, 1>;
|
|
160
|
|
161 ////////////////////////////////////////////////////////////////////////////////
|
|
162 // Floating point. This covers both scalar and vector operations.
|
|
163 // FIXME: should we bother splitting JFPU pipe + unit stages for fast instructions?
|
|
164 // FIXME: Double precision latencies
|
|
165 // FIXME: SS vs PS latencies
|
|
166 // FIXME: ymm latencies
|
|
167 ////////////////////////////////////////////////////////////////////////////////
|
|
168
|
|
169 defm : JWriteResFpuPair<WriteFAdd, JFPU0, 3>;
|
|
170 defm : JWriteResFpuPair<WriteFMul, JFPU1, 2>;
|
|
171 defm : JWriteResFpuPair<WriteFRcp, JFPU1, 2>;
|
|
172 defm : JWriteResFpuPair<WriteFRsqrt, JFPU1, 2>;
|
|
173 defm : JWriteResFpuPair<WriteFShuffle, JFPU01, 1>;
|
|
174 defm : JWriteResFpuPair<WriteFBlend, JFPU01, 1>;
|
|
175 defm : JWriteResFpuPair<WriteFShuffle256, JFPU01, 1>;
|
|
176
|
|
177 def : WriteRes<WriteFSqrt, [JFPU1, JLAGU, JFPM]> {
|
|
178 let Latency = 21;
|
|
179 let ResourceCycles = [1, 1, 21];
|
|
180 }
|
|
181 def : WriteRes<WriteFSqrtLd, [JFPU1, JLAGU, JFPM]> {
|
|
182 let Latency = 26;
|
|
183 let ResourceCycles = [1, 1, 21];
|
|
184 }
|
|
185
|
|
186 def : WriteRes<WriteFDiv, [JFPU1, JLAGU, JFPM]> {
|
|
187 let Latency = 19;
|
|
188 let ResourceCycles = [1, 1, 19];
|
|
189 }
|
|
190 def : WriteRes<WriteFDivLd, [JFPU1, JLAGU, JFPM]> {
|
|
191 let Latency = 24;
|
|
192 let ResourceCycles = [1, 1, 19];
|
|
193 }
|
|
194
|
|
195 // FIXME: integer pipes
|
|
196 defm : JWriteResFpuPair<WriteCvtF2I, JFPU1, 3>; // Float -> Integer.
|
|
197 defm : JWriteResFpuPair<WriteCvtI2F, JFPU1, 3>; // Integer -> Float.
|
|
198 defm : JWriteResFpuPair<WriteCvtF2F, JFPU1, 3>; // Float -> Float size conversion.
|
|
199
|
|
200 def : WriteRes<WriteFVarBlend, [JFPU01]> {
|
|
201 let Latency = 2;
|
|
202 let ResourceCycles = [2];
|
|
203 }
|
|
204 def : WriteRes<WriteFVarBlendLd, [JLAGU, JFPU01]> {
|
|
205 let Latency = 7;
|
|
206 let ResourceCycles = [1, 2];
|
|
207 }
|
|
208
|
|
209 // Vector integer operations.
|
|
210 defm : JWriteResFpuPair<WriteVecALU, JFPU01, 1>;
|
|
211 defm : JWriteResFpuPair<WriteVecShift, JFPU01, 1>;
|
|
212 defm : JWriteResFpuPair<WriteVecIMul, JFPU0, 2>;
|
|
213 defm : JWriteResFpuPair<WriteShuffle, JFPU01, 1>;
|
|
214 defm : JWriteResFpuPair<WriteBlend, JFPU01, 1>;
|
|
215 defm : JWriteResFpuPair<WriteVecLogic, JFPU01, 1>;
|
|
216 defm : JWriteResFpuPair<WriteShuffle256, JFPU01, 1>;
|
|
217
|
|
218 def : WriteRes<WriteVarBlend, [JFPU01]> {
|
|
219 let Latency = 2;
|
|
220 let ResourceCycles = [2];
|
|
221 }
|
|
222 def : WriteRes<WriteVarBlendLd, [JLAGU, JFPU01]> {
|
|
223 let Latency = 7;
|
|
224 let ResourceCycles = [1, 2];
|
|
225 }
|
|
226
|
|
227 // FIXME: why do we need to define AVX2 resource on CPU that doesn't have AVX2?
|
|
228 def : WriteRes<WriteVarVecShift, [JFPU01]> {
|
|
229 let Latency = 1;
|
|
230 let ResourceCycles = [1];
|
|
231 }
|
|
232 def : WriteRes<WriteVarVecShiftLd, [JLAGU, JFPU01]> {
|
|
233 let Latency = 6;
|
|
234 let ResourceCycles = [1, 1];
|
|
235 }
|
|
236
|
|
237 def : WriteRes<WriteMPSAD, [JFPU0]> {
|
|
238 let Latency = 3;
|
|
239 let ResourceCycles = [2];
|
|
240 }
|
|
241 def : WriteRes<WriteMPSADLd, [JLAGU, JFPU0]> {
|
|
242 let Latency = 8;
|
|
243 let ResourceCycles = [1, 2];
|
|
244 }
|
|
245
|
|
246 ////////////////////////////////////////////////////////////////////////////////
|
|
247 // String instructions.
|
|
248 // Packed Compare Implicit Length Strings, Return Mask
|
|
249 // FIXME: approximate latencies + pipe dependencies
|
|
250 ////////////////////////////////////////////////////////////////////////////////
|
|
251
|
|
252 def : WriteRes<WritePCmpIStrM, [JFPU01]> {
|
|
253 let Latency = 7;
|
|
254 let ResourceCycles = [2];
|
|
255 }
|
|
256 def : WriteRes<WritePCmpIStrMLd, [JLAGU, JFPU01]> {
|
|
257 let Latency = 12;
|
|
258 let ResourceCycles = [1, 2];
|
|
259 }
|
|
260
|
|
261 // Packed Compare Explicit Length Strings, Return Mask
|
|
262 def : WriteRes<WritePCmpEStrM, [JFPU01]> {
|
|
263 let Latency = 13;
|
|
264 let ResourceCycles = [5];
|
|
265 }
|
|
266 def : WriteRes<WritePCmpEStrMLd, [JLAGU, JFPU01]> {
|
|
267 let Latency = 18;
|
|
268 let ResourceCycles = [1, 5];
|
|
269 }
|
|
270
|
|
271 // Packed Compare Implicit Length Strings, Return Index
|
|
272 def : WriteRes<WritePCmpIStrI, [JFPU01]> {
|
|
273 let Latency = 6;
|
|
274 let ResourceCycles = [2];
|
|
275 }
|
|
276 def : WriteRes<WritePCmpIStrILd, [JLAGU, JFPU01]> {
|
|
277 let Latency = 11;
|
|
278 let ResourceCycles = [1, 2];
|
|
279 }
|
|
280
|
|
281 // Packed Compare Explicit Length Strings, Return Index
|
|
282 def : WriteRes<WritePCmpEStrI, [JFPU01]> {
|
|
283 let Latency = 13;
|
|
284 let ResourceCycles = [5];
|
|
285 }
|
|
286 def : WriteRes<WritePCmpEStrILd, [JLAGU, JFPU01]> {
|
|
287 let Latency = 18;
|
|
288 let ResourceCycles = [1, 5];
|
|
289 }
|
|
290
|
|
291 ////////////////////////////////////////////////////////////////////////////////
|
|
292 // AES Instructions.
|
|
293 ////////////////////////////////////////////////////////////////////////////////
|
|
294
|
|
295 def : WriteRes<WriteAESDecEnc, [JFPU01, JVIMUL]> {
|
|
296 let Latency = 3;
|
|
297 let ResourceCycles = [1, 1];
|
|
298 }
|
|
299 def : WriteRes<WriteAESDecEncLd, [JFPU01, JLAGU, JVIMUL]> {
|
|
300 let Latency = 8;
|
|
301 let ResourceCycles = [1, 1, 1];
|
|
302 }
|
|
303
|
|
304 def : WriteRes<WriteAESIMC, [JVIMUL]> {
|
|
305 let Latency = 2;
|
|
306 let ResourceCycles = [1];
|
|
307 }
|
|
308 def : WriteRes<WriteAESIMCLd, [JLAGU, JVIMUL]> {
|
|
309 let Latency = 7;
|
|
310 let ResourceCycles = [1, 1];
|
|
311 }
|
|
312
|
|
313 def : WriteRes<WriteAESKeyGen, [JVIMUL]> {
|
|
314 let Latency = 2;
|
|
315 let ResourceCycles = [1];
|
|
316 }
|
|
317 def : WriteRes<WriteAESKeyGenLd, [JLAGU, JVIMUL]> {
|
|
318 let Latency = 7;
|
|
319 let ResourceCycles = [1, 1];
|
|
320 }
|
|
321
|
|
322 ////////////////////////////////////////////////////////////////////////////////
|
|
323 // Carry-less multiplication instructions.
|
|
324 ////////////////////////////////////////////////////////////////////////////////
|
|
325
|
|
326 def : WriteRes<WriteCLMul, [JVIMUL]> {
|
|
327 let Latency = 2;
|
|
328 let ResourceCycles = [1];
|
|
329 }
|
|
330 def : WriteRes<WriteCLMulLd, [JLAGU, JVIMUL]> {
|
|
331 let Latency = 7;
|
|
332 let ResourceCycles = [1, 1];
|
|
333 }
|
|
334
|
|
335 // FIXME: pipe for system/microcode?
|
|
336 def : WriteRes<WriteSystem, [JAny]> { let Latency = 100; }
|
|
337 def : WriteRes<WriteMicrocoded, [JAny]> { let Latency = 100; }
|
|
338 def : WriteRes<WriteFence, [JSAGU]>;
|
|
339 def : WriteRes<WriteNop, []>;
|
|
340 } // SchedModel
|
|
341
|