121
|
1 //=== X86CallingConv.cpp - X86 Custom Calling Convention Impl -*- C++ -*-===//
|
|
2 //
|
|
3 // The LLVM Compiler Infrastructure
|
|
4 //
|
|
5 // This file is distributed under the University of Illinois Open Source
|
|
6 // License. See LICENSE.TXT for details.
|
|
7 //
|
|
8 //===----------------------------------------------------------------------===//
|
|
9 //
|
|
10 // This file contains the implementation of custom routines for the X86
|
|
11 // Calling Convention that aren't done by tablegen.
|
|
12 //
|
|
13 //===----------------------------------------------------------------------===//
|
|
14
|
|
15 #include "MCTargetDesc/X86MCTargetDesc.h"
|
|
16 #include "X86Subtarget.h"
|
|
17 #include "llvm/CodeGen/CallingConvLower.h"
|
|
18 #include "llvm/IR/CallingConv.h"
|
|
19
|
|
20 namespace llvm {
|
|
21
|
|
22 bool CC_X86_32_RegCall_Assign2Regs(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
|
|
23 CCValAssign::LocInfo &LocInfo,
|
|
24 ISD::ArgFlagsTy &ArgFlags, CCState &State) {
|
|
25 // List of GPR registers that are available to store values in regcall
|
|
26 // calling convention.
|
|
27 static const MCPhysReg RegList[] = {X86::EAX, X86::ECX, X86::EDX, X86::EDI,
|
|
28 X86::ESI};
|
|
29
|
|
30 // The vector will save all the available registers for allocation.
|
|
31 SmallVector<unsigned, 5> AvailableRegs;
|
|
32
|
|
33 // searching for the available registers.
|
|
34 for (auto Reg : RegList) {
|
|
35 if (!State.isAllocated(Reg))
|
|
36 AvailableRegs.push_back(Reg);
|
|
37 }
|
|
38
|
|
39 const size_t RequiredGprsUponSplit = 2;
|
|
40 if (AvailableRegs.size() < RequiredGprsUponSplit)
|
|
41 return false; // Not enough free registers - continue the search.
|
|
42
|
|
43 // Allocating the available registers.
|
|
44 for (unsigned I = 0; I < RequiredGprsUponSplit; I++) {
|
|
45
|
|
46 // Marking the register as located.
|
|
47 unsigned Reg = State.AllocateReg(AvailableRegs[I]);
|
|
48
|
|
49 // Since we previously made sure that 2 registers are available
|
|
50 // we expect that a real register number will be returned.
|
|
51 assert(Reg && "Expecting a register will be available");
|
|
52
|
|
53 // Assign the value to the allocated register
|
|
54 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
|
|
55 }
|
|
56
|
|
57 // Successful in allocating regsiters - stop scanning next rules.
|
|
58 return true;
|
|
59 }
|
|
60
|
|
61 static ArrayRef<MCPhysReg> CC_X86_VectorCallGetSSEs(const MVT &ValVT) {
|
|
62 if (ValVT.is512BitVector()) {
|
|
63 static const MCPhysReg RegListZMM[] = {X86::ZMM0, X86::ZMM1, X86::ZMM2,
|
|
64 X86::ZMM3, X86::ZMM4, X86::ZMM5};
|
|
65 return makeArrayRef(std::begin(RegListZMM), std::end(RegListZMM));
|
|
66 }
|
|
67
|
|
68 if (ValVT.is256BitVector()) {
|
|
69 static const MCPhysReg RegListYMM[] = {X86::YMM0, X86::YMM1, X86::YMM2,
|
|
70 X86::YMM3, X86::YMM4, X86::YMM5};
|
|
71 return makeArrayRef(std::begin(RegListYMM), std::end(RegListYMM));
|
|
72 }
|
|
73
|
|
74 static const MCPhysReg RegListXMM[] = {X86::XMM0, X86::XMM1, X86::XMM2,
|
|
75 X86::XMM3, X86::XMM4, X86::XMM5};
|
|
76 return makeArrayRef(std::begin(RegListXMM), std::end(RegListXMM));
|
|
77 }
|
|
78
|
|
79 static ArrayRef<MCPhysReg> CC_X86_64_VectorCallGetGPRs() {
|
|
80 static const MCPhysReg RegListGPR[] = {X86::RCX, X86::RDX, X86::R8, X86::R9};
|
|
81 return makeArrayRef(std::begin(RegListGPR), std::end(RegListGPR));
|
|
82 }
|
|
83
|
|
84 static bool CC_X86_VectorCallAssignRegister(unsigned &ValNo, MVT &ValVT,
|
|
85 MVT &LocVT,
|
|
86 CCValAssign::LocInfo &LocInfo,
|
|
87 ISD::ArgFlagsTy &ArgFlags,
|
|
88 CCState &State) {
|
|
89
|
|
90 ArrayRef<MCPhysReg> RegList = CC_X86_VectorCallGetSSEs(ValVT);
|
|
91 bool Is64bit = static_cast<const X86Subtarget &>(
|
|
92 State.getMachineFunction().getSubtarget())
|
|
93 .is64Bit();
|
|
94
|
|
95 for (auto Reg : RegList) {
|
|
96 // If the register is not marked as allocated - assign to it.
|
|
97 if (!State.isAllocated(Reg)) {
|
|
98 unsigned AssigedReg = State.AllocateReg(Reg);
|
|
99 assert(AssigedReg == Reg && "Expecting a valid register allocation");
|
|
100 State.addLoc(
|
|
101 CCValAssign::getReg(ValNo, ValVT, AssigedReg, LocVT, LocInfo));
|
|
102 return true;
|
|
103 }
|
|
104 // If the register is marked as shadow allocated - assign to it.
|
|
105 if (Is64bit && State.IsShadowAllocatedReg(Reg)) {
|
|
106 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
|
|
107 return true;
|
|
108 }
|
|
109 }
|
|
110
|
|
111 llvm_unreachable("Clang should ensure that hva marked vectors will have "
|
|
112 "an available register.");
|
|
113 return false;
|
|
114 }
|
|
115
|
|
116 bool CC_X86_64_VectorCall(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
|
|
117 CCValAssign::LocInfo &LocInfo,
|
|
118 ISD::ArgFlagsTy &ArgFlags, CCState &State) {
|
|
119 // On the second pass, go through the HVAs only.
|
|
120 if (ArgFlags.isSecArgPass()) {
|
|
121 if (ArgFlags.isHva())
|
|
122 return CC_X86_VectorCallAssignRegister(ValNo, ValVT, LocVT, LocInfo,
|
|
123 ArgFlags, State);
|
|
124 return true;
|
|
125 }
|
|
126
|
|
127 // Process only vector types as defined by vectorcall spec:
|
|
128 // "A vector type is either a floating-point type, for example,
|
|
129 // a float or double, or an SIMD vector type, for example, __m128 or __m256".
|
|
130 if (!(ValVT.isFloatingPoint() ||
|
|
131 (ValVT.isVector() && ValVT.getSizeInBits() >= 128))) {
|
|
132 // If R9 was already assigned it means that we are after the fourth element
|
|
133 // and because this is not an HVA / Vector type, we need to allocate
|
|
134 // shadow XMM register.
|
|
135 if (State.isAllocated(X86::R9)) {
|
|
136 // Assign shadow XMM register.
|
|
137 (void)State.AllocateReg(CC_X86_VectorCallGetSSEs(ValVT));
|
|
138 }
|
|
139
|
|
140 return false;
|
|
141 }
|
|
142
|
|
143 if (!ArgFlags.isHva() || ArgFlags.isHvaStart()) {
|
|
144 // Assign shadow GPR register.
|
|
145 (void)State.AllocateReg(CC_X86_64_VectorCallGetGPRs());
|
|
146
|
|
147 // Assign XMM register - (shadow for HVA and non-shadow for non HVA).
|
|
148 if (unsigned Reg = State.AllocateReg(CC_X86_VectorCallGetSSEs(ValVT))) {
|
|
149 // In Vectorcall Calling convention, additional shadow stack can be
|
|
150 // created on top of the basic 32 bytes of win64.
|
|
151 // It can happen if the fifth or sixth argument is vector type or HVA.
|
|
152 // At that case for each argument a shadow stack of 8 bytes is allocated.
|
|
153 if (Reg == X86::XMM4 || Reg == X86::XMM5)
|
|
154 State.AllocateStack(8, 8);
|
|
155
|
|
156 if (!ArgFlags.isHva()) {
|
|
157 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
|
|
158 return true; // Allocated a register - Stop the search.
|
|
159 }
|
|
160 }
|
|
161 }
|
|
162
|
|
163 // If this is an HVA - Stop the search,
|
|
164 // otherwise continue the search.
|
|
165 return ArgFlags.isHva();
|
|
166 }
|
|
167
|
|
168 bool CC_X86_32_VectorCall(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
|
|
169 CCValAssign::LocInfo &LocInfo,
|
|
170 ISD::ArgFlagsTy &ArgFlags, CCState &State) {
|
|
171 // On the second pass, go through the HVAs only.
|
|
172 if (ArgFlags.isSecArgPass()) {
|
|
173 if (ArgFlags.isHva())
|
|
174 return CC_X86_VectorCallAssignRegister(ValNo, ValVT, LocVT, LocInfo,
|
|
175 ArgFlags, State);
|
|
176 return true;
|
|
177 }
|
|
178
|
|
179 // Process only vector types as defined by vectorcall spec:
|
|
180 // "A vector type is either a floating point type, for example,
|
|
181 // a float or double, or an SIMD vector type, for example, __m128 or __m256".
|
|
182 if (!(ValVT.isFloatingPoint() ||
|
|
183 (ValVT.isVector() && ValVT.getSizeInBits() >= 128))) {
|
|
184 return false;
|
|
185 }
|
|
186
|
|
187 if (ArgFlags.isHva())
|
|
188 return true; // If this is an HVA - Stop the search.
|
|
189
|
|
190 // Assign XMM register.
|
|
191 if (unsigned Reg = State.AllocateReg(CC_X86_VectorCallGetSSEs(ValVT))) {
|
|
192 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
|
|
193 return true;
|
|
194 }
|
|
195
|
|
196 // In case we did not find an available XMM register for a vector -
|
|
197 // pass it indirectly.
|
|
198 // It is similar to CCPassIndirect, with the addition of inreg.
|
|
199 if (!ValVT.isFloatingPoint()) {
|
|
200 LocVT = MVT::i32;
|
|
201 LocInfo = CCValAssign::Indirect;
|
|
202 ArgFlags.setInReg();
|
|
203 }
|
|
204
|
|
205 return false; // No register was assigned - Continue the search.
|
|
206 }
|
|
207
|
|
208 } // End llvm namespace
|