121
|
1 ; Test negated floating-point absolute on z14.
|
|
2 ;
|
|
3 ; RUN: llc < %s -mtriple=s390x-linux-gnu -mcpu=z14 | FileCheck %s
|
|
4
|
|
5 ; Test f32.
|
|
6 declare float @llvm.fabs.f32(float %f)
|
|
7 define float @f1(float %f) {
|
|
8 ; CHECK-LABEL: f1:
|
|
9 ; CHECK: lndfr %f0, %f0
|
|
10 ; CHECK: br %r14
|
|
11 %abs = call float @llvm.fabs.f32(float %f)
|
|
12 %res = fsub float -0.0, %abs
|
|
13 ret float %res
|
|
14 }
|
|
15
|
|
16 ; Test f64.
|
|
17 declare double @llvm.fabs.f64(double %f)
|
|
18 define double @f2(double %f) {
|
|
19 ; CHECK-LABEL: f2:
|
|
20 ; CHECK: lndfr %f0, %f0
|
|
21 ; CHECK: br %r14
|
|
22 %abs = call double @llvm.fabs.f64(double %f)
|
|
23 %res = fsub double -0.0, %abs
|
|
24 ret double %res
|
|
25 }
|
|
26
|
|
27 ; Test f128. With the loads and stores, a pure negative-absolute would
|
|
28 ; probably be better implemented using an OI on the upper byte. Do some
|
|
29 ; extra processing so that using FPRs is unequivocally better.
|
|
30 declare fp128 @llvm.fabs.f128(fp128 %f)
|
|
31 define void @f3(fp128 *%ptr, fp128 *%ptr2) {
|
|
32 ; CHECK-LABEL: f3:
|
|
33 ; CHECK-DAG: vl [[REG1:%v[0-9]+]], 0(%r2)
|
|
34 ; CHECK-DAG: vl [[REG2:%v[0-9]+]], 0(%r3)
|
|
35 ; CHECK-DAG: wflnxb [[NEGREG1:%v[0-9]+]], [[REG1]]
|
|
36 ; CHECK: wfdxb [[RES:%v[0-9]+]], [[NEGREG1]], [[REG2]]
|
|
37 ; CHECK: vst [[RES]], 0(%r2)
|
|
38 ; CHECK: br %r14
|
|
39 %orig = load fp128 , fp128 *%ptr
|
|
40 %abs = call fp128 @llvm.fabs.f128(fp128 %orig)
|
|
41 %negabs = fsub fp128 0xL00000000000000008000000000000000, %abs
|
|
42 %op2 = load fp128 , fp128 *%ptr2
|
|
43 %res = fdiv fp128 %negabs, %op2
|
|
44 store fp128 %res, fp128 *%ptr
|
|
45 ret void
|
|
46 }
|