Mercurial > hg > Members > tobaru > cbc > CbC_llvm
comparison lib/Target/X86/X86ScheduleBtVer2.td @ 83:60c9769439b8
LLVM 3.7
author | Tatsuki IHA <e125716@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 18 Feb 2015 14:55:36 +0900 |
parents | |
children | 803732b1fca8 |
comparison
equal
deleted
inserted
replaced
78:af83660cff7b | 83:60c9769439b8 |
---|---|
1 //=- X86ScheduleBtVer2.td - X86 BtVer2 (Jaguar) Scheduling ---*- tablegen -*-=// | |
2 // | |
3 // The LLVM Compiler Infrastructure | |
4 // | |
5 // This file is distributed under the University of Illinois Open Source | |
6 // License. See LICENSE.TXT for details. | |
7 // | |
8 //===----------------------------------------------------------------------===// | |
9 // | |
10 // This file defines the machine model for AMD btver2 (Jaguar) to support | |
11 // instruction scheduling and other instruction cost heuristics. Based off AMD Software | |
12 // Optimization Guide for AMD Family 16h Processors & Instruction Latency appendix. | |
13 // | |
14 //===----------------------------------------------------------------------===// | |
15 | |
16 def BtVer2Model : SchedMachineModel { | |
17 // All x86 instructions are modeled as a single micro-op, and btver2 can | |
18 // decode 2 instructions per cycle. | |
19 let IssueWidth = 2; | |
20 let MicroOpBufferSize = 64; // Retire Control Unit | |
21 let LoadLatency = 5; // FPU latency (worse case cf Integer 3 cycle latency) | |
22 let HighLatency = 25; | |
23 let MispredictPenalty = 14; // Minimum branch misdirection penalty | |
24 let PostRAScheduler = 1; | |
25 | |
26 // FIXME: SSE4/AVX is unimplemented. This flag is set to allow | |
27 // the scheduler to assign a default model to unrecognized opcodes. | |
28 let CompleteModel = 0; | |
29 } | |
30 | |
31 let SchedModel = BtVer2Model in { | |
32 | |
33 // Jaguar can issue up to 6 micro-ops in one cycle | |
34 def JALU0 : ProcResource<1>; // Integer Pipe0: integer ALU0 (also handle FP->INT jam) | |
35 def JALU1 : ProcResource<1>; // Integer Pipe1: integer ALU1/MUL/DIV | |
36 def JLAGU : ProcResource<1>; // Integer Pipe2: LAGU | |
37 def JSAGU : ProcResource<1>; // Integer Pipe3: SAGU (also handles 3-operand LEA) | |
38 def JFPU0 : ProcResource<1>; // Vector/FPU Pipe0: VALU0/VIMUL/FPA | |
39 def JFPU1 : ProcResource<1>; // Vector/FPU Pipe1: VALU1/STC/FPM | |
40 | |
41 // Any pipe - FIXME we need this until we can discriminate between int/fpu load/store/moves properly | |
42 def JAny : ProcResGroup<[JALU0, JALU1, JLAGU, JSAGU, JFPU0, JFPU1]>; | |
43 | |
44 // Integer Pipe Scheduler | |
45 def JALU01 : ProcResGroup<[JALU0, JALU1]> { | |
46 let BufferSize=20; | |
47 } | |
48 | |
49 // AGU Pipe Scheduler | |
50 def JLSAGU : ProcResGroup<[JLAGU, JSAGU]> { | |
51 let BufferSize=12; | |
52 } | |
53 | |
54 // Fpu Pipe Scheduler | |
55 def JFPU01 : ProcResGroup<[JFPU0, JFPU1]> { | |
56 let BufferSize=18; | |
57 } | |
58 | |
59 def JDiv : ProcResource<1>; // integer division | |
60 def JMul : ProcResource<1>; // integer multiplication | |
61 def JVALU0 : ProcResource<1>; // vector integer | |
62 def JVALU1 : ProcResource<1>; // vector integer | |
63 def JVIMUL : ProcResource<1>; // vector integer multiplication | |
64 def JSTC : ProcResource<1>; // vector store/convert | |
65 def JFPM : ProcResource<1>; // FP multiplication | |
66 def JFPA : ProcResource<1>; // FP addition | |
67 | |
68 // Integer loads are 3 cycles, so ReadAfterLd registers needn't be available until 3 | |
69 // cycles after the memory operand. | |
70 def : ReadAdvance<ReadAfterLd, 3>; | |
71 | |
72 // Many SchedWrites are defined in pairs with and without a folded load. | |
73 // Instructions with folded loads are usually micro-fused, so they only appear | |
74 // as two micro-ops when dispatched by the schedulers. | |
75 // This multiclass defines the resource usage for variants with and without | |
76 // folded loads. | |
77 multiclass JWriteResIntPair<X86FoldableSchedWrite SchedRW, | |
78 ProcResourceKind ExePort, | |
79 int Lat> { | |
80 // Register variant is using a single cycle on ExePort. | |
81 def : WriteRes<SchedRW, [ExePort]> { let Latency = Lat; } | |
82 | |
83 // Memory variant also uses a cycle on JLAGU and adds 3 cycles to the | |
84 // latency. | |
85 def : WriteRes<SchedRW.Folded, [JLAGU, ExePort]> { | |
86 let Latency = !add(Lat, 3); | |
87 } | |
88 } | |
89 | |
90 multiclass JWriteResFpuPair<X86FoldableSchedWrite SchedRW, | |
91 ProcResourceKind ExePort, | |
92 int Lat> { | |
93 // Register variant is using a single cycle on ExePort. | |
94 def : WriteRes<SchedRW, [ExePort]> { let Latency = Lat; } | |
95 | |
96 // Memory variant also uses a cycle on JLAGU and adds 5 cycles to the | |
97 // latency. | |
98 def : WriteRes<SchedRW.Folded, [JLAGU, ExePort]> { | |
99 let Latency = !add(Lat, 5); | |
100 } | |
101 } | |
102 | |
103 // A folded store needs a cycle on the SAGU for the store data. | |
104 def : WriteRes<WriteRMW, [JSAGU]>; | |
105 | |
106 //////////////////////////////////////////////////////////////////////////////// | |
107 // Arithmetic. | |
108 //////////////////////////////////////////////////////////////////////////////// | |
109 | |
110 defm : JWriteResIntPair<WriteALU, JALU01, 1>; | |
111 defm : JWriteResIntPair<WriteIMul, JALU1, 3>; | |
112 | |
113 def : WriteRes<WriteIMulH, [JALU1]> { | |
114 let Latency = 6; | |
115 let ResourceCycles = [4]; | |
116 } | |
117 | |
118 // FIXME 8/16 bit divisions | |
119 def : WriteRes<WriteIDiv, [JALU1, JDiv]> { | |
120 let Latency = 25; | |
121 let ResourceCycles = [1, 25]; | |
122 } | |
123 def : WriteRes<WriteIDivLd, [JALU1, JLAGU, JDiv]> { | |
124 let Latency = 41; | |
125 let ResourceCycles = [1, 1, 25]; | |
126 } | |
127 | |
128 // This is for simple LEAs with one or two input operands. | |
129 // FIXME: SAGU 3-operand LEA | |
130 def : WriteRes<WriteLEA, [JALU01]>; | |
131 | |
132 //////////////////////////////////////////////////////////////////////////////// | |
133 // Integer shifts and rotates. | |
134 //////////////////////////////////////////////////////////////////////////////// | |
135 | |
136 defm : JWriteResIntPair<WriteShift, JALU01, 1>; | |
137 | |
138 //////////////////////////////////////////////////////////////////////////////// | |
139 // Loads, stores, and moves, not folded with other operations. | |
140 // FIXME: Split x86 and SSE load/store/moves | |
141 //////////////////////////////////////////////////////////////////////////////// | |
142 | |
143 def : WriteRes<WriteLoad, [JLAGU]> { let Latency = 5; } | |
144 def : WriteRes<WriteStore, [JSAGU]>; | |
145 def : WriteRes<WriteMove, [JAny]>; | |
146 | |
147 //////////////////////////////////////////////////////////////////////////////// | |
148 // Idioms that clear a register, like xorps %xmm0, %xmm0. | |
149 // These can often bypass execution ports completely. | |
150 //////////////////////////////////////////////////////////////////////////////// | |
151 | |
152 def : WriteRes<WriteZero, []>; | |
153 | |
154 //////////////////////////////////////////////////////////////////////////////// | |
155 // Branches don't produce values, so they have no latency, but they still | |
156 // consume resources. Indirect branches can fold loads. | |
157 //////////////////////////////////////////////////////////////////////////////// | |
158 | |
159 defm : JWriteResIntPair<WriteJump, JALU01, 1>; | |
160 | |
161 //////////////////////////////////////////////////////////////////////////////// | |
162 // Floating point. This covers both scalar and vector operations. | |
163 // FIXME: should we bother splitting JFPU pipe + unit stages for fast instructions? | |
164 // FIXME: Double precision latencies | |
165 // FIXME: SS vs PS latencies | |
166 // FIXME: ymm latencies | |
167 //////////////////////////////////////////////////////////////////////////////// | |
168 | |
169 defm : JWriteResFpuPair<WriteFAdd, JFPU0, 3>; | |
170 defm : JWriteResFpuPair<WriteFMul, JFPU1, 2>; | |
171 defm : JWriteResFpuPair<WriteFRcp, JFPU1, 2>; | |
172 defm : JWriteResFpuPair<WriteFRsqrt, JFPU1, 2>; | |
173 defm : JWriteResFpuPair<WriteFShuffle, JFPU01, 1>; | |
174 defm : JWriteResFpuPair<WriteFBlend, JFPU01, 1>; | |
175 defm : JWriteResFpuPair<WriteFShuffle256, JFPU01, 1>; | |
176 | |
177 def : WriteRes<WriteFSqrt, [JFPU1, JLAGU, JFPM]> { | |
178 let Latency = 21; | |
179 let ResourceCycles = [1, 1, 21]; | |
180 } | |
181 def : WriteRes<WriteFSqrtLd, [JFPU1, JLAGU, JFPM]> { | |
182 let Latency = 26; | |
183 let ResourceCycles = [1, 1, 21]; | |
184 } | |
185 | |
186 def : WriteRes<WriteFDiv, [JFPU1, JLAGU, JFPM]> { | |
187 let Latency = 19; | |
188 let ResourceCycles = [1, 1, 19]; | |
189 } | |
190 def : WriteRes<WriteFDivLd, [JFPU1, JLAGU, JFPM]> { | |
191 let Latency = 24; | |
192 let ResourceCycles = [1, 1, 19]; | |
193 } | |
194 | |
195 // FIXME: integer pipes | |
196 defm : JWriteResFpuPair<WriteCvtF2I, JFPU1, 3>; // Float -> Integer. | |
197 defm : JWriteResFpuPair<WriteCvtI2F, JFPU1, 3>; // Integer -> Float. | |
198 defm : JWriteResFpuPair<WriteCvtF2F, JFPU1, 3>; // Float -> Float size conversion. | |
199 | |
200 def : WriteRes<WriteFVarBlend, [JFPU01]> { | |
201 let Latency = 2; | |
202 let ResourceCycles = [2]; | |
203 } | |
204 def : WriteRes<WriteFVarBlendLd, [JLAGU, JFPU01]> { | |
205 let Latency = 7; | |
206 let ResourceCycles = [1, 2]; | |
207 } | |
208 | |
209 // Vector integer operations. | |
210 defm : JWriteResFpuPair<WriteVecALU, JFPU01, 1>; | |
211 defm : JWriteResFpuPair<WriteVecShift, JFPU01, 1>; | |
212 defm : JWriteResFpuPair<WriteVecIMul, JFPU0, 2>; | |
213 defm : JWriteResFpuPair<WriteShuffle, JFPU01, 1>; | |
214 defm : JWriteResFpuPair<WriteBlend, JFPU01, 1>; | |
215 defm : JWriteResFpuPair<WriteVecLogic, JFPU01, 1>; | |
216 defm : JWriteResFpuPair<WriteShuffle256, JFPU01, 1>; | |
217 | |
218 def : WriteRes<WriteVarBlend, [JFPU01]> { | |
219 let Latency = 2; | |
220 let ResourceCycles = [2]; | |
221 } | |
222 def : WriteRes<WriteVarBlendLd, [JLAGU, JFPU01]> { | |
223 let Latency = 7; | |
224 let ResourceCycles = [1, 2]; | |
225 } | |
226 | |
227 // FIXME: why do we need to define AVX2 resource on CPU that doesn't have AVX2? | |
228 def : WriteRes<WriteVarVecShift, [JFPU01]> { | |
229 let Latency = 1; | |
230 let ResourceCycles = [1]; | |
231 } | |
232 def : WriteRes<WriteVarVecShiftLd, [JLAGU, JFPU01]> { | |
233 let Latency = 6; | |
234 let ResourceCycles = [1, 1]; | |
235 } | |
236 | |
237 def : WriteRes<WriteMPSAD, [JFPU0]> { | |
238 let Latency = 3; | |
239 let ResourceCycles = [2]; | |
240 } | |
241 def : WriteRes<WriteMPSADLd, [JLAGU, JFPU0]> { | |
242 let Latency = 8; | |
243 let ResourceCycles = [1, 2]; | |
244 } | |
245 | |
246 //////////////////////////////////////////////////////////////////////////////// | |
247 // String instructions. | |
248 // Packed Compare Implicit Length Strings, Return Mask | |
249 // FIXME: approximate latencies + pipe dependencies | |
250 //////////////////////////////////////////////////////////////////////////////// | |
251 | |
252 def : WriteRes<WritePCmpIStrM, [JFPU01]> { | |
253 let Latency = 7; | |
254 let ResourceCycles = [2]; | |
255 } | |
256 def : WriteRes<WritePCmpIStrMLd, [JLAGU, JFPU01]> { | |
257 let Latency = 12; | |
258 let ResourceCycles = [1, 2]; | |
259 } | |
260 | |
261 // Packed Compare Explicit Length Strings, Return Mask | |
262 def : WriteRes<WritePCmpEStrM, [JFPU01]> { | |
263 let Latency = 13; | |
264 let ResourceCycles = [5]; | |
265 } | |
266 def : WriteRes<WritePCmpEStrMLd, [JLAGU, JFPU01]> { | |
267 let Latency = 18; | |
268 let ResourceCycles = [1, 5]; | |
269 } | |
270 | |
271 // Packed Compare Implicit Length Strings, Return Index | |
272 def : WriteRes<WritePCmpIStrI, [JFPU01]> { | |
273 let Latency = 6; | |
274 let ResourceCycles = [2]; | |
275 } | |
276 def : WriteRes<WritePCmpIStrILd, [JLAGU, JFPU01]> { | |
277 let Latency = 11; | |
278 let ResourceCycles = [1, 2]; | |
279 } | |
280 | |
281 // Packed Compare Explicit Length Strings, Return Index | |
282 def : WriteRes<WritePCmpEStrI, [JFPU01]> { | |
283 let Latency = 13; | |
284 let ResourceCycles = [5]; | |
285 } | |
286 def : WriteRes<WritePCmpEStrILd, [JLAGU, JFPU01]> { | |
287 let Latency = 18; | |
288 let ResourceCycles = [1, 5]; | |
289 } | |
290 | |
291 //////////////////////////////////////////////////////////////////////////////// | |
292 // AES Instructions. | |
293 //////////////////////////////////////////////////////////////////////////////// | |
294 | |
295 def : WriteRes<WriteAESDecEnc, [JFPU01, JVIMUL]> { | |
296 let Latency = 3; | |
297 let ResourceCycles = [1, 1]; | |
298 } | |
299 def : WriteRes<WriteAESDecEncLd, [JFPU01, JLAGU, JVIMUL]> { | |
300 let Latency = 8; | |
301 let ResourceCycles = [1, 1, 1]; | |
302 } | |
303 | |
304 def : WriteRes<WriteAESIMC, [JVIMUL]> { | |
305 let Latency = 2; | |
306 let ResourceCycles = [1]; | |
307 } | |
308 def : WriteRes<WriteAESIMCLd, [JLAGU, JVIMUL]> { | |
309 let Latency = 7; | |
310 let ResourceCycles = [1, 1]; | |
311 } | |
312 | |
313 def : WriteRes<WriteAESKeyGen, [JVIMUL]> { | |
314 let Latency = 2; | |
315 let ResourceCycles = [1]; | |
316 } | |
317 def : WriteRes<WriteAESKeyGenLd, [JLAGU, JVIMUL]> { | |
318 let Latency = 7; | |
319 let ResourceCycles = [1, 1]; | |
320 } | |
321 | |
322 //////////////////////////////////////////////////////////////////////////////// | |
323 // Carry-less multiplication instructions. | |
324 //////////////////////////////////////////////////////////////////////////////// | |
325 | |
326 def : WriteRes<WriteCLMul, [JVIMUL]> { | |
327 let Latency = 2; | |
328 let ResourceCycles = [1]; | |
329 } | |
330 def : WriteRes<WriteCLMulLd, [JLAGU, JVIMUL]> { | |
331 let Latency = 7; | |
332 let ResourceCycles = [1, 1]; | |
333 } | |
334 | |
335 // FIXME: pipe for system/microcode? | |
336 def : WriteRes<WriteSystem, [JAny]> { let Latency = 100; } | |
337 def : WriteRes<WriteMicrocoded, [JAny]> { let Latency = 100; } | |
338 def : WriteRes<WriteFence, [JSAGU]>; | |
339 def : WriteRes<WriteNop, []>; | |
340 } // SchedModel | |
341 |