comparison lib/Target/X86/X86InstrInfo.cpp @ 0:95c75e76d11b

LLVM 3.4
author Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp>
date Thu, 12 Dec 2013 13:56:28 +0900
parents
children e4204d083e25
comparison
equal deleted inserted replaced
-1:000000000000 0:95c75e76d11b
1 //===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the X86 implementation of the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "X86InstrInfo.h"
15 #include "X86.h"
16 #include "X86InstrBuilder.h"
17 #include "X86MachineFunctionInfo.h"
18 #include "X86Subtarget.h"
19 #include "X86TargetMachine.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/CodeGen/LiveVariables.h"
22 #include "llvm/CodeGen/MachineConstantPool.h"
23 #include "llvm/CodeGen/MachineDominators.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/StackMaps.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/MC/MCAsmInfo.h"
31 #include "llvm/MC/MCInst.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetOptions.h"
37 #include <limits>
38
39 #define GET_INSTRINFO_CTOR_DTOR
40 #include "X86GenInstrInfo.inc"
41
42 using namespace llvm;
43
44 static cl::opt<bool>
45 NoFusing("disable-spill-fusing",
46 cl::desc("Disable fusing of spill code into instructions"));
47 static cl::opt<bool>
48 PrintFailedFusing("print-failed-fuse-candidates",
49 cl::desc("Print instructions that the allocator wants to"
50 " fuse, but the X86 backend currently can't"),
51 cl::Hidden);
52 static cl::opt<bool>
53 ReMatPICStubLoad("remat-pic-stub-load",
54 cl::desc("Re-materialize load from stub in PIC mode"),
55 cl::init(false), cl::Hidden);
56
57 enum {
58 // Select which memory operand is being unfolded.
59 // (stored in bits 0 - 3)
60 TB_INDEX_0 = 0,
61 TB_INDEX_1 = 1,
62 TB_INDEX_2 = 2,
63 TB_INDEX_3 = 3,
64 TB_INDEX_MASK = 0xf,
65
66 // Do not insert the reverse map (MemOp -> RegOp) into the table.
67 // This may be needed because there is a many -> one mapping.
68 TB_NO_REVERSE = 1 << 4,
69
70 // Do not insert the forward map (RegOp -> MemOp) into the table.
71 // This is needed for Native Client, which prohibits branch
72 // instructions from using a memory operand.
73 TB_NO_FORWARD = 1 << 5,
74
75 TB_FOLDED_LOAD = 1 << 6,
76 TB_FOLDED_STORE = 1 << 7,
77
78 // Minimum alignment required for load/store.
79 // Used for RegOp->MemOp conversion.
80 // (stored in bits 8 - 15)
81 TB_ALIGN_SHIFT = 8,
82 TB_ALIGN_NONE = 0 << TB_ALIGN_SHIFT,
83 TB_ALIGN_16 = 16 << TB_ALIGN_SHIFT,
84 TB_ALIGN_32 = 32 << TB_ALIGN_SHIFT,
85 TB_ALIGN_64 = 64 << TB_ALIGN_SHIFT,
86 TB_ALIGN_MASK = 0xff << TB_ALIGN_SHIFT
87 };
88
89 struct X86OpTblEntry {
90 uint16_t RegOp;
91 uint16_t MemOp;
92 uint16_t Flags;
93 };
94
95 // Pin the vtable to this file.
96 void X86InstrInfo::anchor() {}
97
98 X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
99 : X86GenInstrInfo((tm.getSubtarget<X86Subtarget>().is64Bit()
100 ? X86::ADJCALLSTACKDOWN64
101 : X86::ADJCALLSTACKDOWN32),
102 (tm.getSubtarget<X86Subtarget>().is64Bit()
103 ? X86::ADJCALLSTACKUP64
104 : X86::ADJCALLSTACKUP32)),
105 TM(tm), RI(tm) {
106
107 static const X86OpTblEntry OpTbl2Addr[] = {
108 { X86::ADC32ri, X86::ADC32mi, 0 },
109 { X86::ADC32ri8, X86::ADC32mi8, 0 },
110 { X86::ADC32rr, X86::ADC32mr, 0 },
111 { X86::ADC64ri32, X86::ADC64mi32, 0 },
112 { X86::ADC64ri8, X86::ADC64mi8, 0 },
113 { X86::ADC64rr, X86::ADC64mr, 0 },
114 { X86::ADD16ri, X86::ADD16mi, 0 },
115 { X86::ADD16ri8, X86::ADD16mi8, 0 },
116 { X86::ADD16ri_DB, X86::ADD16mi, TB_NO_REVERSE },
117 { X86::ADD16ri8_DB, X86::ADD16mi8, TB_NO_REVERSE },
118 { X86::ADD16rr, X86::ADD16mr, 0 },
119 { X86::ADD16rr_DB, X86::ADD16mr, TB_NO_REVERSE },
120 { X86::ADD32ri, X86::ADD32mi, 0 },
121 { X86::ADD32ri8, X86::ADD32mi8, 0 },
122 { X86::ADD32ri_DB, X86::ADD32mi, TB_NO_REVERSE },
123 { X86::ADD32ri8_DB, X86::ADD32mi8, TB_NO_REVERSE },
124 { X86::ADD32rr, X86::ADD32mr, 0 },
125 { X86::ADD32rr_DB, X86::ADD32mr, TB_NO_REVERSE },
126 { X86::ADD64ri32, X86::ADD64mi32, 0 },
127 { X86::ADD64ri8, X86::ADD64mi8, 0 },
128 { X86::ADD64ri32_DB,X86::ADD64mi32, TB_NO_REVERSE },
129 { X86::ADD64ri8_DB, X86::ADD64mi8, TB_NO_REVERSE },
130 { X86::ADD64rr, X86::ADD64mr, 0 },
131 { X86::ADD64rr_DB, X86::ADD64mr, TB_NO_REVERSE },
132 { X86::ADD8ri, X86::ADD8mi, 0 },
133 { X86::ADD8rr, X86::ADD8mr, 0 },
134 { X86::AND16ri, X86::AND16mi, 0 },
135 { X86::AND16ri8, X86::AND16mi8, 0 },
136 { X86::AND16rr, X86::AND16mr, 0 },
137 { X86::AND32ri, X86::AND32mi, 0 },
138 { X86::AND32ri8, X86::AND32mi8, 0 },
139 { X86::AND32rr, X86::AND32mr, 0 },
140 { X86::AND64ri32, X86::AND64mi32, 0 },
141 { X86::AND64ri8, X86::AND64mi8, 0 },
142 { X86::AND64rr, X86::AND64mr, 0 },
143 { X86::AND8ri, X86::AND8mi, 0 },
144 { X86::AND8rr, X86::AND8mr, 0 },
145 { X86::DEC16r, X86::DEC16m, 0 },
146 { X86::DEC32r, X86::DEC32m, 0 },
147 { X86::DEC64_16r, X86::DEC64_16m, 0 },
148 { X86::DEC64_32r, X86::DEC64_32m, 0 },
149 { X86::DEC64r, X86::DEC64m, 0 },
150 { X86::DEC8r, X86::DEC8m, 0 },
151 { X86::INC16r, X86::INC16m, 0 },
152 { X86::INC32r, X86::INC32m, 0 },
153 { X86::INC64_16r, X86::INC64_16m, 0 },
154 { X86::INC64_32r, X86::INC64_32m, 0 },
155 { X86::INC64r, X86::INC64m, 0 },
156 { X86::INC8r, X86::INC8m, 0 },
157 { X86::NEG16r, X86::NEG16m, 0 },
158 { X86::NEG32r, X86::NEG32m, 0 },
159 { X86::NEG64r, X86::NEG64m, 0 },
160 { X86::NEG8r, X86::NEG8m, 0 },
161 { X86::NOT16r, X86::NOT16m, 0 },
162 { X86::NOT32r, X86::NOT32m, 0 },
163 { X86::NOT64r, X86::NOT64m, 0 },
164 { X86::NOT8r, X86::NOT8m, 0 },
165 { X86::OR16ri, X86::OR16mi, 0 },
166 { X86::OR16ri8, X86::OR16mi8, 0 },
167 { X86::OR16rr, X86::OR16mr, 0 },
168 { X86::OR32ri, X86::OR32mi, 0 },
169 { X86::OR32ri8, X86::OR32mi8, 0 },
170 { X86::OR32rr, X86::OR32mr, 0 },
171 { X86::OR64ri32, X86::OR64mi32, 0 },
172 { X86::OR64ri8, X86::OR64mi8, 0 },
173 { X86::OR64rr, X86::OR64mr, 0 },
174 { X86::OR8ri, X86::OR8mi, 0 },
175 { X86::OR8rr, X86::OR8mr, 0 },
176 { X86::ROL16r1, X86::ROL16m1, 0 },
177 { X86::ROL16rCL, X86::ROL16mCL, 0 },
178 { X86::ROL16ri, X86::ROL16mi, 0 },
179 { X86::ROL32r1, X86::ROL32m1, 0 },
180 { X86::ROL32rCL, X86::ROL32mCL, 0 },
181 { X86::ROL32ri, X86::ROL32mi, 0 },
182 { X86::ROL64r1, X86::ROL64m1, 0 },
183 { X86::ROL64rCL, X86::ROL64mCL, 0 },
184 { X86::ROL64ri, X86::ROL64mi, 0 },
185 { X86::ROL8r1, X86::ROL8m1, 0 },
186 { X86::ROL8rCL, X86::ROL8mCL, 0 },
187 { X86::ROL8ri, X86::ROL8mi, 0 },
188 { X86::ROR16r1, X86::ROR16m1, 0 },
189 { X86::ROR16rCL, X86::ROR16mCL, 0 },
190 { X86::ROR16ri, X86::ROR16mi, 0 },
191 { X86::ROR32r1, X86::ROR32m1, 0 },
192 { X86::ROR32rCL, X86::ROR32mCL, 0 },
193 { X86::ROR32ri, X86::ROR32mi, 0 },
194 { X86::ROR64r1, X86::ROR64m1, 0 },
195 { X86::ROR64rCL, X86::ROR64mCL, 0 },
196 { X86::ROR64ri, X86::ROR64mi, 0 },
197 { X86::ROR8r1, X86::ROR8m1, 0 },
198 { X86::ROR8rCL, X86::ROR8mCL, 0 },
199 { X86::ROR8ri, X86::ROR8mi, 0 },
200 { X86::SAR16r1, X86::SAR16m1, 0 },
201 { X86::SAR16rCL, X86::SAR16mCL, 0 },
202 { X86::SAR16ri, X86::SAR16mi, 0 },
203 { X86::SAR32r1, X86::SAR32m1, 0 },
204 { X86::SAR32rCL, X86::SAR32mCL, 0 },
205 { X86::SAR32ri, X86::SAR32mi, 0 },
206 { X86::SAR64r1, X86::SAR64m1, 0 },
207 { X86::SAR64rCL, X86::SAR64mCL, 0 },
208 { X86::SAR64ri, X86::SAR64mi, 0 },
209 { X86::SAR8r1, X86::SAR8m1, 0 },
210 { X86::SAR8rCL, X86::SAR8mCL, 0 },
211 { X86::SAR8ri, X86::SAR8mi, 0 },
212 { X86::SBB32ri, X86::SBB32mi, 0 },
213 { X86::SBB32ri8, X86::SBB32mi8, 0 },
214 { X86::SBB32rr, X86::SBB32mr, 0 },
215 { X86::SBB64ri32, X86::SBB64mi32, 0 },
216 { X86::SBB64ri8, X86::SBB64mi8, 0 },
217 { X86::SBB64rr, X86::SBB64mr, 0 },
218 { X86::SHL16rCL, X86::SHL16mCL, 0 },
219 { X86::SHL16ri, X86::SHL16mi, 0 },
220 { X86::SHL32rCL, X86::SHL32mCL, 0 },
221 { X86::SHL32ri, X86::SHL32mi, 0 },
222 { X86::SHL64rCL, X86::SHL64mCL, 0 },
223 { X86::SHL64ri, X86::SHL64mi, 0 },
224 { X86::SHL8rCL, X86::SHL8mCL, 0 },
225 { X86::SHL8ri, X86::SHL8mi, 0 },
226 { X86::SHLD16rrCL, X86::SHLD16mrCL, 0 },
227 { X86::SHLD16rri8, X86::SHLD16mri8, 0 },
228 { X86::SHLD32rrCL, X86::SHLD32mrCL, 0 },
229 { X86::SHLD32rri8, X86::SHLD32mri8, 0 },
230 { X86::SHLD64rrCL, X86::SHLD64mrCL, 0 },
231 { X86::SHLD64rri8, X86::SHLD64mri8, 0 },
232 { X86::SHR16r1, X86::SHR16m1, 0 },
233 { X86::SHR16rCL, X86::SHR16mCL, 0 },
234 { X86::SHR16ri, X86::SHR16mi, 0 },
235 { X86::SHR32r1, X86::SHR32m1, 0 },
236 { X86::SHR32rCL, X86::SHR32mCL, 0 },
237 { X86::SHR32ri, X86::SHR32mi, 0 },
238 { X86::SHR64r1, X86::SHR64m1, 0 },
239 { X86::SHR64rCL, X86::SHR64mCL, 0 },
240 { X86::SHR64ri, X86::SHR64mi, 0 },
241 { X86::SHR8r1, X86::SHR8m1, 0 },
242 { X86::SHR8rCL, X86::SHR8mCL, 0 },
243 { X86::SHR8ri, X86::SHR8mi, 0 },
244 { X86::SHRD16rrCL, X86::SHRD16mrCL, 0 },
245 { X86::SHRD16rri8, X86::SHRD16mri8, 0 },
246 { X86::SHRD32rrCL, X86::SHRD32mrCL, 0 },
247 { X86::SHRD32rri8, X86::SHRD32mri8, 0 },
248 { X86::SHRD64rrCL, X86::SHRD64mrCL, 0 },
249 { X86::SHRD64rri8, X86::SHRD64mri8, 0 },
250 { X86::SUB16ri, X86::SUB16mi, 0 },
251 { X86::SUB16ri8, X86::SUB16mi8, 0 },
252 { X86::SUB16rr, X86::SUB16mr, 0 },
253 { X86::SUB32ri, X86::SUB32mi, 0 },
254 { X86::SUB32ri8, X86::SUB32mi8, 0 },
255 { X86::SUB32rr, X86::SUB32mr, 0 },
256 { X86::SUB64ri32, X86::SUB64mi32, 0 },
257 { X86::SUB64ri8, X86::SUB64mi8, 0 },
258 { X86::SUB64rr, X86::SUB64mr, 0 },
259 { X86::SUB8ri, X86::SUB8mi, 0 },
260 { X86::SUB8rr, X86::SUB8mr, 0 },
261 { X86::XOR16ri, X86::XOR16mi, 0 },
262 { X86::XOR16ri8, X86::XOR16mi8, 0 },
263 { X86::XOR16rr, X86::XOR16mr, 0 },
264 { X86::XOR32ri, X86::XOR32mi, 0 },
265 { X86::XOR32ri8, X86::XOR32mi8, 0 },
266 { X86::XOR32rr, X86::XOR32mr, 0 },
267 { X86::XOR64ri32, X86::XOR64mi32, 0 },
268 { X86::XOR64ri8, X86::XOR64mi8, 0 },
269 { X86::XOR64rr, X86::XOR64mr, 0 },
270 { X86::XOR8ri, X86::XOR8mi, 0 },
271 { X86::XOR8rr, X86::XOR8mr, 0 }
272 };
273
274 for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
275 unsigned RegOp = OpTbl2Addr[i].RegOp;
276 unsigned MemOp = OpTbl2Addr[i].MemOp;
277 unsigned Flags = OpTbl2Addr[i].Flags;
278 AddTableEntry(RegOp2MemOpTable2Addr, MemOp2RegOpTable,
279 RegOp, MemOp,
280 // Index 0, folded load and store, no alignment requirement.
281 Flags | TB_INDEX_0 | TB_FOLDED_LOAD | TB_FOLDED_STORE);
282 }
283
284 static const X86OpTblEntry OpTbl0[] = {
285 { X86::BT16ri8, X86::BT16mi8, TB_FOLDED_LOAD },
286 { X86::BT32ri8, X86::BT32mi8, TB_FOLDED_LOAD },
287 { X86::BT64ri8, X86::BT64mi8, TB_FOLDED_LOAD },
288 { X86::CALL32r, X86::CALL32m, TB_FOLDED_LOAD },
289 { X86::CALL64r, X86::CALL64m, TB_FOLDED_LOAD },
290 { X86::CMP16ri, X86::CMP16mi, TB_FOLDED_LOAD },
291 { X86::CMP16ri8, X86::CMP16mi8, TB_FOLDED_LOAD },
292 { X86::CMP16rr, X86::CMP16mr, TB_FOLDED_LOAD },
293 { X86::CMP32ri, X86::CMP32mi, TB_FOLDED_LOAD },
294 { X86::CMP32ri8, X86::CMP32mi8, TB_FOLDED_LOAD },
295 { X86::CMP32rr, X86::CMP32mr, TB_FOLDED_LOAD },
296 { X86::CMP64ri32, X86::CMP64mi32, TB_FOLDED_LOAD },
297 { X86::CMP64ri8, X86::CMP64mi8, TB_FOLDED_LOAD },
298 { X86::CMP64rr, X86::CMP64mr, TB_FOLDED_LOAD },
299 { X86::CMP8ri, X86::CMP8mi, TB_FOLDED_LOAD },
300 { X86::CMP8rr, X86::CMP8mr, TB_FOLDED_LOAD },
301 { X86::DIV16r, X86::DIV16m, TB_FOLDED_LOAD },
302 { X86::DIV32r, X86::DIV32m, TB_FOLDED_LOAD },
303 { X86::DIV64r, X86::DIV64m, TB_FOLDED_LOAD },
304 { X86::DIV8r, X86::DIV8m, TB_FOLDED_LOAD },
305 { X86::EXTRACTPSrr, X86::EXTRACTPSmr, TB_FOLDED_STORE },
306 { X86::IDIV16r, X86::IDIV16m, TB_FOLDED_LOAD },
307 { X86::IDIV32r, X86::IDIV32m, TB_FOLDED_LOAD },
308 { X86::IDIV64r, X86::IDIV64m, TB_FOLDED_LOAD },
309 { X86::IDIV8r, X86::IDIV8m, TB_FOLDED_LOAD },
310 { X86::IMUL16r, X86::IMUL16m, TB_FOLDED_LOAD },
311 { X86::IMUL32r, X86::IMUL32m, TB_FOLDED_LOAD },
312 { X86::IMUL64r, X86::IMUL64m, TB_FOLDED_LOAD },
313 { X86::IMUL8r, X86::IMUL8m, TB_FOLDED_LOAD },
314 { X86::JMP32r, X86::JMP32m, TB_FOLDED_LOAD },
315 { X86::JMP64r, X86::JMP64m, TB_FOLDED_LOAD },
316 { X86::MOV16ri, X86::MOV16mi, TB_FOLDED_STORE },
317 { X86::MOV16rr, X86::MOV16mr, TB_FOLDED_STORE },
318 { X86::MOV32ri, X86::MOV32mi, TB_FOLDED_STORE },
319 { X86::MOV32rr, X86::MOV32mr, TB_FOLDED_STORE },
320 { X86::MOV64ri32, X86::MOV64mi32, TB_FOLDED_STORE },
321 { X86::MOV64rr, X86::MOV64mr, TB_FOLDED_STORE },
322 { X86::MOV8ri, X86::MOV8mi, TB_FOLDED_STORE },
323 { X86::MOV8rr, X86::MOV8mr, TB_FOLDED_STORE },
324 { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, TB_FOLDED_STORE },
325 { X86::MOVAPDrr, X86::MOVAPDmr, TB_FOLDED_STORE | TB_ALIGN_16 },
326 { X86::MOVAPSrr, X86::MOVAPSmr, TB_FOLDED_STORE | TB_ALIGN_16 },
327 { X86::MOVDQArr, X86::MOVDQAmr, TB_FOLDED_STORE | TB_ALIGN_16 },
328 { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, TB_FOLDED_STORE },
329 { X86::MOVPQIto64rr,X86::MOVPQI2QImr, TB_FOLDED_STORE },
330 { X86::MOVSDto64rr, X86::MOVSDto64mr, TB_FOLDED_STORE },
331 { X86::MOVSS2DIrr, X86::MOVSS2DImr, TB_FOLDED_STORE },
332 { X86::MOVUPDrr, X86::MOVUPDmr, TB_FOLDED_STORE },
333 { X86::MOVUPSrr, X86::MOVUPSmr, TB_FOLDED_STORE },
334 { X86::MUL16r, X86::MUL16m, TB_FOLDED_LOAD },
335 { X86::MUL32r, X86::MUL32m, TB_FOLDED_LOAD },
336 { X86::MUL64r, X86::MUL64m, TB_FOLDED_LOAD },
337 { X86::MUL8r, X86::MUL8m, TB_FOLDED_LOAD },
338 { X86::SETAEr, X86::SETAEm, TB_FOLDED_STORE },
339 { X86::SETAr, X86::SETAm, TB_FOLDED_STORE },
340 { X86::SETBEr, X86::SETBEm, TB_FOLDED_STORE },
341 { X86::SETBr, X86::SETBm, TB_FOLDED_STORE },
342 { X86::SETEr, X86::SETEm, TB_FOLDED_STORE },
343 { X86::SETGEr, X86::SETGEm, TB_FOLDED_STORE },
344 { X86::SETGr, X86::SETGm, TB_FOLDED_STORE },
345 { X86::SETLEr, X86::SETLEm, TB_FOLDED_STORE },
346 { X86::SETLr, X86::SETLm, TB_FOLDED_STORE },
347 { X86::SETNEr, X86::SETNEm, TB_FOLDED_STORE },
348 { X86::SETNOr, X86::SETNOm, TB_FOLDED_STORE },
349 { X86::SETNPr, X86::SETNPm, TB_FOLDED_STORE },
350 { X86::SETNSr, X86::SETNSm, TB_FOLDED_STORE },
351 { X86::SETOr, X86::SETOm, TB_FOLDED_STORE },
352 { X86::SETPr, X86::SETPm, TB_FOLDED_STORE },
353 { X86::SETSr, X86::SETSm, TB_FOLDED_STORE },
354 { X86::TAILJMPr, X86::TAILJMPm, TB_FOLDED_LOAD },
355 { X86::TAILJMPr64, X86::TAILJMPm64, TB_FOLDED_LOAD },
356 { X86::TEST16ri, X86::TEST16mi, TB_FOLDED_LOAD },
357 { X86::TEST32ri, X86::TEST32mi, TB_FOLDED_LOAD },
358 { X86::TEST64ri32, X86::TEST64mi32, TB_FOLDED_LOAD },
359 { X86::TEST8ri, X86::TEST8mi, TB_FOLDED_LOAD },
360 // AVX 128-bit versions of foldable instructions
361 { X86::VEXTRACTPSrr,X86::VEXTRACTPSmr, TB_FOLDED_STORE },
362 { X86::VEXTRACTF128rr, X86::VEXTRACTF128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
363 { X86::VMOVAPDrr, X86::VMOVAPDmr, TB_FOLDED_STORE | TB_ALIGN_16 },
364 { X86::VMOVAPSrr, X86::VMOVAPSmr, TB_FOLDED_STORE | TB_ALIGN_16 },
365 { X86::VMOVDQArr, X86::VMOVDQAmr, TB_FOLDED_STORE | TB_ALIGN_16 },
366 { X86::VMOVPDI2DIrr,X86::VMOVPDI2DImr, TB_FOLDED_STORE },
367 { X86::VMOVPQIto64rr, X86::VMOVPQI2QImr,TB_FOLDED_STORE },
368 { X86::VMOVSDto64rr,X86::VMOVSDto64mr, TB_FOLDED_STORE },
369 { X86::VMOVSS2DIrr, X86::VMOVSS2DImr, TB_FOLDED_STORE },
370 { X86::VMOVUPDrr, X86::VMOVUPDmr, TB_FOLDED_STORE },
371 { X86::VMOVUPSrr, X86::VMOVUPSmr, TB_FOLDED_STORE },
372 // AVX 256-bit foldable instructions
373 { X86::VEXTRACTI128rr, X86::VEXTRACTI128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
374 { X86::VMOVAPDYrr, X86::VMOVAPDYmr, TB_FOLDED_STORE | TB_ALIGN_32 },
375 { X86::VMOVAPSYrr, X86::VMOVAPSYmr, TB_FOLDED_STORE | TB_ALIGN_32 },
376 { X86::VMOVDQAYrr, X86::VMOVDQAYmr, TB_FOLDED_STORE | TB_ALIGN_32 },
377 { X86::VMOVUPDYrr, X86::VMOVUPDYmr, TB_FOLDED_STORE },
378 { X86::VMOVUPSYrr, X86::VMOVUPSYmr, TB_FOLDED_STORE },
379 // AVX-512 foldable instructions
380 { X86::VMOVPDI2DIZrr,X86::VMOVPDI2DIZmr, TB_FOLDED_STORE }
381 };
382
383 for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
384 unsigned RegOp = OpTbl0[i].RegOp;
385 unsigned MemOp = OpTbl0[i].MemOp;
386 unsigned Flags = OpTbl0[i].Flags;
387 AddTableEntry(RegOp2MemOpTable0, MemOp2RegOpTable,
388 RegOp, MemOp, TB_INDEX_0 | Flags);
389 }
390
391 static const X86OpTblEntry OpTbl1[] = {
392 { X86::CMP16rr, X86::CMP16rm, 0 },
393 { X86::CMP32rr, X86::CMP32rm, 0 },
394 { X86::CMP64rr, X86::CMP64rm, 0 },
395 { X86::CMP8rr, X86::CMP8rm, 0 },
396 { X86::CVTSD2SSrr, X86::CVTSD2SSrm, 0 },
397 { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm, 0 },
398 { X86::CVTSI2SDrr, X86::CVTSI2SDrm, 0 },
399 { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm, 0 },
400 { X86::CVTSI2SSrr, X86::CVTSI2SSrm, 0 },
401 { X86::CVTSS2SDrr, X86::CVTSS2SDrm, 0 },
402 { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm, 0 },
403 { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm, 0 },
404 { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm, 0 },
405 { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm, 0 },
406 { X86::IMUL16rri, X86::IMUL16rmi, 0 },
407 { X86::IMUL16rri8, X86::IMUL16rmi8, 0 },
408 { X86::IMUL32rri, X86::IMUL32rmi, 0 },
409 { X86::IMUL32rri8, X86::IMUL32rmi8, 0 },
410 { X86::IMUL64rri32, X86::IMUL64rmi32, 0 },
411 { X86::IMUL64rri8, X86::IMUL64rmi8, 0 },
412 { X86::Int_COMISDrr, X86::Int_COMISDrm, 0 },
413 { X86::Int_COMISSrr, X86::Int_COMISSrm, 0 },
414 { X86::CVTSD2SI64rr, X86::CVTSD2SI64rm, 0 },
415 { X86::CVTSD2SIrr, X86::CVTSD2SIrm, 0 },
416 { X86::CVTSS2SI64rr, X86::CVTSS2SI64rm, 0 },
417 { X86::CVTSS2SIrr, X86::CVTSS2SIrm, 0 },
418 { X86::CVTTPD2DQrr, X86::CVTTPD2DQrm, TB_ALIGN_16 },
419 { X86::CVTTPS2DQrr, X86::CVTTPS2DQrm, TB_ALIGN_16 },
420 { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm, 0 },
421 { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm, 0 },
422 { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm, 0 },
423 { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm, 0 },
424 { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm, 0 },
425 { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm, 0 },
426 { X86::MOV16rr, X86::MOV16rm, 0 },
427 { X86::MOV32rr, X86::MOV32rm, 0 },
428 { X86::MOV64rr, X86::MOV64rm, 0 },
429 { X86::MOV64toPQIrr, X86::MOVQI2PQIrm, 0 },
430 { X86::MOV64toSDrr, X86::MOV64toSDrm, 0 },
431 { X86::MOV8rr, X86::MOV8rm, 0 },
432 { X86::MOVAPDrr, X86::MOVAPDrm, TB_ALIGN_16 },
433 { X86::MOVAPSrr, X86::MOVAPSrm, TB_ALIGN_16 },
434 { X86::MOVDDUPrr, X86::MOVDDUPrm, 0 },
435 { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm, 0 },
436 { X86::MOVDI2SSrr, X86::MOVDI2SSrm, 0 },
437 { X86::MOVDQArr, X86::MOVDQArm, TB_ALIGN_16 },
438 { X86::MOVSHDUPrr, X86::MOVSHDUPrm, TB_ALIGN_16 },
439 { X86::MOVSLDUPrr, X86::MOVSLDUPrm, TB_ALIGN_16 },
440 { X86::MOVSX16rr8, X86::MOVSX16rm8, 0 },
441 { X86::MOVSX32rr16, X86::MOVSX32rm16, 0 },
442 { X86::MOVSX32rr8, X86::MOVSX32rm8, 0 },
443 { X86::MOVSX64rr16, X86::MOVSX64rm16, 0 },
444 { X86::MOVSX64rr32, X86::MOVSX64rm32, 0 },
445 { X86::MOVSX64rr8, X86::MOVSX64rm8, 0 },
446 { X86::MOVUPDrr, X86::MOVUPDrm, TB_ALIGN_16 },
447 { X86::MOVUPSrr, X86::MOVUPSrm, 0 },
448 { X86::MOVZQI2PQIrr, X86::MOVZQI2PQIrm, 0 },
449 { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm, TB_ALIGN_16 },
450 { X86::MOVZX16rr8, X86::MOVZX16rm8, 0 },
451 { X86::MOVZX32rr16, X86::MOVZX32rm16, 0 },
452 { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8, 0 },
453 { X86::MOVZX32rr8, X86::MOVZX32rm8, 0 },
454 { X86::PABSBrr128, X86::PABSBrm128, TB_ALIGN_16 },
455 { X86::PABSDrr128, X86::PABSDrm128, TB_ALIGN_16 },
456 { X86::PABSWrr128, X86::PABSWrm128, TB_ALIGN_16 },
457 { X86::PSHUFDri, X86::PSHUFDmi, TB_ALIGN_16 },
458 { X86::PSHUFHWri, X86::PSHUFHWmi, TB_ALIGN_16 },
459 { X86::PSHUFLWri, X86::PSHUFLWmi, TB_ALIGN_16 },
460 { X86::RCPPSr, X86::RCPPSm, TB_ALIGN_16 },
461 { X86::RCPPSr_Int, X86::RCPPSm_Int, TB_ALIGN_16 },
462 { X86::RSQRTPSr, X86::RSQRTPSm, TB_ALIGN_16 },
463 { X86::RSQRTPSr_Int, X86::RSQRTPSm_Int, TB_ALIGN_16 },
464 { X86::RSQRTSSr, X86::RSQRTSSm, 0 },
465 { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int, 0 },
466 { X86::SQRTPDr, X86::SQRTPDm, TB_ALIGN_16 },
467 { X86::SQRTPSr, X86::SQRTPSm, TB_ALIGN_16 },
468 { X86::SQRTSDr, X86::SQRTSDm, 0 },
469 { X86::SQRTSDr_Int, X86::SQRTSDm_Int, 0 },
470 { X86::SQRTSSr, X86::SQRTSSm, 0 },
471 { X86::SQRTSSr_Int, X86::SQRTSSm_Int, 0 },
472 { X86::TEST16rr, X86::TEST16rm, 0 },
473 { X86::TEST32rr, X86::TEST32rm, 0 },
474 { X86::TEST64rr, X86::TEST64rm, 0 },
475 { X86::TEST8rr, X86::TEST8rm, 0 },
476 // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
477 { X86::UCOMISDrr, X86::UCOMISDrm, 0 },
478 { X86::UCOMISSrr, X86::UCOMISSrm, 0 },
479 // AVX 128-bit versions of foldable instructions
480 { X86::Int_VCOMISDrr, X86::Int_VCOMISDrm, 0 },
481 { X86::Int_VCOMISSrr, X86::Int_VCOMISSrm, 0 },
482 { X86::Int_VUCOMISDrr, X86::Int_VUCOMISDrm, 0 },
483 { X86::Int_VUCOMISSrr, X86::Int_VUCOMISSrm, 0 },
484 { X86::VCVTTSD2SI64rr, X86::VCVTTSD2SI64rm, 0 },
485 { X86::Int_VCVTTSD2SI64rr,X86::Int_VCVTTSD2SI64rm,0 },
486 { X86::VCVTTSD2SIrr, X86::VCVTTSD2SIrm, 0 },
487 { X86::Int_VCVTTSD2SIrr,X86::Int_VCVTTSD2SIrm, 0 },
488 { X86::VCVTTSS2SI64rr, X86::VCVTTSS2SI64rm, 0 },
489 { X86::Int_VCVTTSS2SI64rr,X86::Int_VCVTTSS2SI64rm,0 },
490 { X86::VCVTTSS2SIrr, X86::VCVTTSS2SIrm, 0 },
491 { X86::Int_VCVTTSS2SIrr,X86::Int_VCVTTSS2SIrm, 0 },
492 { X86::VCVTSD2SI64rr, X86::VCVTSD2SI64rm, 0 },
493 { X86::VCVTSD2SIrr, X86::VCVTSD2SIrm, 0 },
494 { X86::VCVTSS2SI64rr, X86::VCVTSS2SI64rm, 0 },
495 { X86::VCVTSS2SIrr, X86::VCVTSS2SIrm, 0 },
496 { X86::VMOV64toPQIrr, X86::VMOVQI2PQIrm, 0 },
497 { X86::VMOV64toSDrr, X86::VMOV64toSDrm, 0 },
498 { X86::VMOVAPDrr, X86::VMOVAPDrm, TB_ALIGN_16 },
499 { X86::VMOVAPSrr, X86::VMOVAPSrm, TB_ALIGN_16 },
500 { X86::VMOVDDUPrr, X86::VMOVDDUPrm, 0 },
501 { X86::VMOVDI2PDIrr, X86::VMOVDI2PDIrm, 0 },
502 { X86::VMOVDI2SSrr, X86::VMOVDI2SSrm, 0 },
503 { X86::VMOVDQArr, X86::VMOVDQArm, TB_ALIGN_16 },
504 { X86::VMOVSLDUPrr, X86::VMOVSLDUPrm, TB_ALIGN_16 },
505 { X86::VMOVSHDUPrr, X86::VMOVSHDUPrm, TB_ALIGN_16 },
506 { X86::VMOVUPDrr, X86::VMOVUPDrm, 0 },
507 { X86::VMOVUPSrr, X86::VMOVUPSrm, 0 },
508 { X86::VMOVZQI2PQIrr, X86::VMOVZQI2PQIrm, 0 },
509 { X86::VMOVZPQILo2PQIrr,X86::VMOVZPQILo2PQIrm, TB_ALIGN_16 },
510 { X86::VPABSBrr128, X86::VPABSBrm128, 0 },
511 { X86::VPABSDrr128, X86::VPABSDrm128, 0 },
512 { X86::VPABSWrr128, X86::VPABSWrm128, 0 },
513 { X86::VPERMILPDri, X86::VPERMILPDmi, 0 },
514 { X86::VPERMILPSri, X86::VPERMILPSmi, 0 },
515 { X86::VPSHUFDri, X86::VPSHUFDmi, 0 },
516 { X86::VPSHUFHWri, X86::VPSHUFHWmi, 0 },
517 { X86::VPSHUFLWri, X86::VPSHUFLWmi, 0 },
518 { X86::VRCPPSr, X86::VRCPPSm, 0 },
519 { X86::VRCPPSr_Int, X86::VRCPPSm_Int, 0 },
520 { X86::VRSQRTPSr, X86::VRSQRTPSm, 0 },
521 { X86::VRSQRTPSr_Int, X86::VRSQRTPSm_Int, 0 },
522 { X86::VSQRTPDr, X86::VSQRTPDm, 0 },
523 { X86::VSQRTPSr, X86::VSQRTPSm, 0 },
524 { X86::VUCOMISDrr, X86::VUCOMISDrm, 0 },
525 { X86::VUCOMISSrr, X86::VUCOMISSrm, 0 },
526 { X86::VBROADCASTSSrr, X86::VBROADCASTSSrm, TB_NO_REVERSE },
527
528 // AVX 256-bit foldable instructions
529 { X86::VMOVAPDYrr, X86::VMOVAPDYrm, TB_ALIGN_32 },
530 { X86::VMOVAPSYrr, X86::VMOVAPSYrm, TB_ALIGN_32 },
531 { X86::VMOVDQAYrr, X86::VMOVDQAYrm, TB_ALIGN_32 },
532 { X86::VMOVUPDYrr, X86::VMOVUPDYrm, 0 },
533 { X86::VMOVUPSYrr, X86::VMOVUPSYrm, 0 },
534 { X86::VPERMILPDYri, X86::VPERMILPDYmi, 0 },
535 { X86::VPERMILPSYri, X86::VPERMILPSYmi, 0 },
536
537 // AVX2 foldable instructions
538 { X86::VPABSBrr256, X86::VPABSBrm256, 0 },
539 { X86::VPABSDrr256, X86::VPABSDrm256, 0 },
540 { X86::VPABSWrr256, X86::VPABSWrm256, 0 },
541 { X86::VPSHUFDYri, X86::VPSHUFDYmi, 0 },
542 { X86::VPSHUFHWYri, X86::VPSHUFHWYmi, 0 },
543 { X86::VPSHUFLWYri, X86::VPSHUFLWYmi, 0 },
544 { X86::VRCPPSYr, X86::VRCPPSYm, 0 },
545 { X86::VRCPPSYr_Int, X86::VRCPPSYm_Int, 0 },
546 { X86::VRSQRTPSYr, X86::VRSQRTPSYm, 0 },
547 { X86::VSQRTPDYr, X86::VSQRTPDYm, 0 },
548 { X86::VSQRTPSYr, X86::VSQRTPSYm, 0 },
549 { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrm, TB_NO_REVERSE },
550 { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrm, TB_NO_REVERSE },
551
552 // BMI/BMI2/LZCNT/POPCNT/TBM foldable instructions
553 { X86::BEXTR32rr, X86::BEXTR32rm, 0 },
554 { X86::BEXTR64rr, X86::BEXTR64rm, 0 },
555 { X86::BEXTRI32ri, X86::BEXTRI32mi, 0 },
556 { X86::BEXTRI64ri, X86::BEXTRI64mi, 0 },
557 { X86::BLCFILL32rr, X86::BLCFILL32rm, 0 },
558 { X86::BLCFILL64rr, X86::BLCFILL64rm, 0 },
559 { X86::BLCI32rr, X86::BLCI32rm, 0 },
560 { X86::BLCI64rr, X86::BLCI64rm, 0 },
561 { X86::BLCIC32rr, X86::BLCIC32rm, 0 },
562 { X86::BLCIC64rr, X86::BLCIC64rm, 0 },
563 { X86::BLCMSK32rr, X86::BLCMSK32rm, 0 },
564 { X86::BLCMSK64rr, X86::BLCMSK64rm, 0 },
565 { X86::BLCS32rr, X86::BLCS32rm, 0 },
566 { X86::BLCS64rr, X86::BLCS64rm, 0 },
567 { X86::BLSFILL32rr, X86::BLSFILL32rm, 0 },
568 { X86::BLSFILL64rr, X86::BLSFILL64rm, 0 },
569 { X86::BLSI32rr, X86::BLSI32rm, 0 },
570 { X86::BLSI64rr, X86::BLSI64rm, 0 },
571 { X86::BLSIC32rr, X86::BLSIC32rm, 0 },
572 { X86::BLSIC64rr, X86::BLSIC64rm, 0 },
573 { X86::BLSMSK32rr, X86::BLSMSK32rm, 0 },
574 { X86::BLSMSK64rr, X86::BLSMSK64rm, 0 },
575 { X86::BLSR32rr, X86::BLSR32rm, 0 },
576 { X86::BLSR64rr, X86::BLSR64rm, 0 },
577 { X86::BZHI32rr, X86::BZHI32rm, 0 },
578 { X86::BZHI64rr, X86::BZHI64rm, 0 },
579 { X86::LZCNT16rr, X86::LZCNT16rm, 0 },
580 { X86::LZCNT32rr, X86::LZCNT32rm, 0 },
581 { X86::LZCNT64rr, X86::LZCNT64rm, 0 },
582 { X86::POPCNT16rr, X86::POPCNT16rm, 0 },
583 { X86::POPCNT32rr, X86::POPCNT32rm, 0 },
584 { X86::POPCNT64rr, X86::POPCNT64rm, 0 },
585 { X86::RORX32ri, X86::RORX32mi, 0 },
586 { X86::RORX64ri, X86::RORX64mi, 0 },
587 { X86::SARX32rr, X86::SARX32rm, 0 },
588 { X86::SARX64rr, X86::SARX64rm, 0 },
589 { X86::SHRX32rr, X86::SHRX32rm, 0 },
590 { X86::SHRX64rr, X86::SHRX64rm, 0 },
591 { X86::SHLX32rr, X86::SHLX32rm, 0 },
592 { X86::SHLX64rr, X86::SHLX64rm, 0 },
593 { X86::T1MSKC32rr, X86::T1MSKC32rm, 0 },
594 { X86::T1MSKC64rr, X86::T1MSKC64rm, 0 },
595 { X86::TZCNT16rr, X86::TZCNT16rm, 0 },
596 { X86::TZCNT32rr, X86::TZCNT32rm, 0 },
597 { X86::TZCNT64rr, X86::TZCNT64rm, 0 },
598 { X86::TZMSK32rr, X86::TZMSK32rm, 0 },
599 { X86::TZMSK64rr, X86::TZMSK64rm, 0 },
600
601 // AVX-512 foldable instructions
602 { X86::VMOV64toPQIZrr, X86::VMOVQI2PQIZrm, 0 },
603 { X86::VMOVDI2SSZrr, X86::VMOVDI2SSZrm, 0 },
604 { X86::VMOVDQA32rr, X86::VMOVDQA32rm, TB_ALIGN_64 },
605 { X86::VMOVDQA64rr, X86::VMOVDQA64rm, TB_ALIGN_64 },
606 { X86::VMOVDQU32rr, X86::VMOVDQU32rm, 0 },
607 { X86::VMOVDQU64rr, X86::VMOVDQU64rm, 0 },
608
609 // AES foldable instructions
610 { X86::AESIMCrr, X86::AESIMCrm, TB_ALIGN_16 },
611 { X86::AESKEYGENASSIST128rr, X86::AESKEYGENASSIST128rm, TB_ALIGN_16 },
612 { X86::VAESIMCrr, X86::VAESIMCrm, TB_ALIGN_16 },
613 { X86::VAESKEYGENASSIST128rr, X86::VAESKEYGENASSIST128rm, TB_ALIGN_16 },
614 };
615
616 for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
617 unsigned RegOp = OpTbl1[i].RegOp;
618 unsigned MemOp = OpTbl1[i].MemOp;
619 unsigned Flags = OpTbl1[i].Flags;
620 AddTableEntry(RegOp2MemOpTable1, MemOp2RegOpTable,
621 RegOp, MemOp,
622 // Index 1, folded load
623 Flags | TB_INDEX_1 | TB_FOLDED_LOAD);
624 }
625
626 static const X86OpTblEntry OpTbl2[] = {
627 { X86::ADC32rr, X86::ADC32rm, 0 },
628 { X86::ADC64rr, X86::ADC64rm, 0 },
629 { X86::ADD16rr, X86::ADD16rm, 0 },
630 { X86::ADD16rr_DB, X86::ADD16rm, TB_NO_REVERSE },
631 { X86::ADD32rr, X86::ADD32rm, 0 },
632 { X86::ADD32rr_DB, X86::ADD32rm, TB_NO_REVERSE },
633 { X86::ADD64rr, X86::ADD64rm, 0 },
634 { X86::ADD64rr_DB, X86::ADD64rm, TB_NO_REVERSE },
635 { X86::ADD8rr, X86::ADD8rm, 0 },
636 { X86::ADDPDrr, X86::ADDPDrm, TB_ALIGN_16 },
637 { X86::ADDPSrr, X86::ADDPSrm, TB_ALIGN_16 },
638 { X86::ADDSDrr, X86::ADDSDrm, 0 },
639 { X86::ADDSSrr, X86::ADDSSrm, 0 },
640 { X86::ADDSUBPDrr, X86::ADDSUBPDrm, TB_ALIGN_16 },
641 { X86::ADDSUBPSrr, X86::ADDSUBPSrm, TB_ALIGN_16 },
642 { X86::AND16rr, X86::AND16rm, 0 },
643 { X86::AND32rr, X86::AND32rm, 0 },
644 { X86::AND64rr, X86::AND64rm, 0 },
645 { X86::AND8rr, X86::AND8rm, 0 },
646 { X86::ANDNPDrr, X86::ANDNPDrm, TB_ALIGN_16 },
647 { X86::ANDNPSrr, X86::ANDNPSrm, TB_ALIGN_16 },
648 { X86::ANDPDrr, X86::ANDPDrm, TB_ALIGN_16 },
649 { X86::ANDPSrr, X86::ANDPSrm, TB_ALIGN_16 },
650 { X86::BLENDPDrri, X86::BLENDPDrmi, TB_ALIGN_16 },
651 { X86::BLENDPSrri, X86::BLENDPSrmi, TB_ALIGN_16 },
652 { X86::BLENDVPDrr0, X86::BLENDVPDrm0, TB_ALIGN_16 },
653 { X86::BLENDVPSrr0, X86::BLENDVPSrm0, TB_ALIGN_16 },
654 { X86::CMOVA16rr, X86::CMOVA16rm, 0 },
655 { X86::CMOVA32rr, X86::CMOVA32rm, 0 },
656 { X86::CMOVA64rr, X86::CMOVA64rm, 0 },
657 { X86::CMOVAE16rr, X86::CMOVAE16rm, 0 },
658 { X86::CMOVAE32rr, X86::CMOVAE32rm, 0 },
659 { X86::CMOVAE64rr, X86::CMOVAE64rm, 0 },
660 { X86::CMOVB16rr, X86::CMOVB16rm, 0 },
661 { X86::CMOVB32rr, X86::CMOVB32rm, 0 },
662 { X86::CMOVB64rr, X86::CMOVB64rm, 0 },
663 { X86::CMOVBE16rr, X86::CMOVBE16rm, 0 },
664 { X86::CMOVBE32rr, X86::CMOVBE32rm, 0 },
665 { X86::CMOVBE64rr, X86::CMOVBE64rm, 0 },
666 { X86::CMOVE16rr, X86::CMOVE16rm, 0 },
667 { X86::CMOVE32rr, X86::CMOVE32rm, 0 },
668 { X86::CMOVE64rr, X86::CMOVE64rm, 0 },
669 { X86::CMOVG16rr, X86::CMOVG16rm, 0 },
670 { X86::CMOVG32rr, X86::CMOVG32rm, 0 },
671 { X86::CMOVG64rr, X86::CMOVG64rm, 0 },
672 { X86::CMOVGE16rr, X86::CMOVGE16rm, 0 },
673 { X86::CMOVGE32rr, X86::CMOVGE32rm, 0 },
674 { X86::CMOVGE64rr, X86::CMOVGE64rm, 0 },
675 { X86::CMOVL16rr, X86::CMOVL16rm, 0 },
676 { X86::CMOVL32rr, X86::CMOVL32rm, 0 },
677 { X86::CMOVL64rr, X86::CMOVL64rm, 0 },
678 { X86::CMOVLE16rr, X86::CMOVLE16rm, 0 },
679 { X86::CMOVLE32rr, X86::CMOVLE32rm, 0 },
680 { X86::CMOVLE64rr, X86::CMOVLE64rm, 0 },
681 { X86::CMOVNE16rr, X86::CMOVNE16rm, 0 },
682 { X86::CMOVNE32rr, X86::CMOVNE32rm, 0 },
683 { X86::CMOVNE64rr, X86::CMOVNE64rm, 0 },
684 { X86::CMOVNO16rr, X86::CMOVNO16rm, 0 },
685 { X86::CMOVNO32rr, X86::CMOVNO32rm, 0 },
686 { X86::CMOVNO64rr, X86::CMOVNO64rm, 0 },
687 { X86::CMOVNP16rr, X86::CMOVNP16rm, 0 },
688 { X86::CMOVNP32rr, X86::CMOVNP32rm, 0 },
689 { X86::CMOVNP64rr, X86::CMOVNP64rm, 0 },
690 { X86::CMOVNS16rr, X86::CMOVNS16rm, 0 },
691 { X86::CMOVNS32rr, X86::CMOVNS32rm, 0 },
692 { X86::CMOVNS64rr, X86::CMOVNS64rm, 0 },
693 { X86::CMOVO16rr, X86::CMOVO16rm, 0 },
694 { X86::CMOVO32rr, X86::CMOVO32rm, 0 },
695 { X86::CMOVO64rr, X86::CMOVO64rm, 0 },
696 { X86::CMOVP16rr, X86::CMOVP16rm, 0 },
697 { X86::CMOVP32rr, X86::CMOVP32rm, 0 },
698 { X86::CMOVP64rr, X86::CMOVP64rm, 0 },
699 { X86::CMOVS16rr, X86::CMOVS16rm, 0 },
700 { X86::CMOVS32rr, X86::CMOVS32rm, 0 },
701 { X86::CMOVS64rr, X86::CMOVS64rm, 0 },
702 { X86::CMPPDrri, X86::CMPPDrmi, TB_ALIGN_16 },
703 { X86::CMPPSrri, X86::CMPPSrmi, TB_ALIGN_16 },
704 { X86::CMPSDrr, X86::CMPSDrm, 0 },
705 { X86::CMPSSrr, X86::CMPSSrm, 0 },
706 { X86::DIVPDrr, X86::DIVPDrm, TB_ALIGN_16 },
707 { X86::DIVPSrr, X86::DIVPSrm, TB_ALIGN_16 },
708 { X86::DIVSDrr, X86::DIVSDrm, 0 },
709 { X86::DIVSSrr, X86::DIVSSrm, 0 },
710 { X86::FsANDNPDrr, X86::FsANDNPDrm, TB_ALIGN_16 },
711 { X86::FsANDNPSrr, X86::FsANDNPSrm, TB_ALIGN_16 },
712 { X86::FsANDPDrr, X86::FsANDPDrm, TB_ALIGN_16 },
713 { X86::FsANDPSrr, X86::FsANDPSrm, TB_ALIGN_16 },
714 { X86::FsORPDrr, X86::FsORPDrm, TB_ALIGN_16 },
715 { X86::FsORPSrr, X86::FsORPSrm, TB_ALIGN_16 },
716 { X86::FsXORPDrr, X86::FsXORPDrm, TB_ALIGN_16 },
717 { X86::FsXORPSrr, X86::FsXORPSrm, TB_ALIGN_16 },
718 { X86::HADDPDrr, X86::HADDPDrm, TB_ALIGN_16 },
719 { X86::HADDPSrr, X86::HADDPSrm, TB_ALIGN_16 },
720 { X86::HSUBPDrr, X86::HSUBPDrm, TB_ALIGN_16 },
721 { X86::HSUBPSrr, X86::HSUBPSrm, TB_ALIGN_16 },
722 { X86::IMUL16rr, X86::IMUL16rm, 0 },
723 { X86::IMUL32rr, X86::IMUL32rm, 0 },
724 { X86::IMUL64rr, X86::IMUL64rm, 0 },
725 { X86::Int_CMPSDrr, X86::Int_CMPSDrm, 0 },
726 { X86::Int_CMPSSrr, X86::Int_CMPSSrm, 0 },
727 { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm, 0 },
728 { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm, 0 },
729 { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm, 0 },
730 { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm, 0 },
731 { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm, 0 },
732 { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm, 0 },
733 { X86::MAXPDrr, X86::MAXPDrm, TB_ALIGN_16 },
734 { X86::MAXPSrr, X86::MAXPSrm, TB_ALIGN_16 },
735 { X86::MAXSDrr, X86::MAXSDrm, 0 },
736 { X86::MAXSSrr, X86::MAXSSrm, 0 },
737 { X86::MINPDrr, X86::MINPDrm, TB_ALIGN_16 },
738 { X86::MINPSrr, X86::MINPSrm, TB_ALIGN_16 },
739 { X86::MINSDrr, X86::MINSDrm, 0 },
740 { X86::MINSSrr, X86::MINSSrm, 0 },
741 { X86::MPSADBWrri, X86::MPSADBWrmi, TB_ALIGN_16 },
742 { X86::MULPDrr, X86::MULPDrm, TB_ALIGN_16 },
743 { X86::MULPSrr, X86::MULPSrm, TB_ALIGN_16 },
744 { X86::MULSDrr, X86::MULSDrm, 0 },
745 { X86::MULSSrr, X86::MULSSrm, 0 },
746 { X86::OR16rr, X86::OR16rm, 0 },
747 { X86::OR32rr, X86::OR32rm, 0 },
748 { X86::OR64rr, X86::OR64rm, 0 },
749 { X86::OR8rr, X86::OR8rm, 0 },
750 { X86::ORPDrr, X86::ORPDrm, TB_ALIGN_16 },
751 { X86::ORPSrr, X86::ORPSrm, TB_ALIGN_16 },
752 { X86::PACKSSDWrr, X86::PACKSSDWrm, TB_ALIGN_16 },
753 { X86::PACKSSWBrr, X86::PACKSSWBrm, TB_ALIGN_16 },
754 { X86::PACKUSDWrr, X86::PACKUSDWrm, TB_ALIGN_16 },
755 { X86::PACKUSWBrr, X86::PACKUSWBrm, TB_ALIGN_16 },
756 { X86::PADDBrr, X86::PADDBrm, TB_ALIGN_16 },
757 { X86::PADDDrr, X86::PADDDrm, TB_ALIGN_16 },
758 { X86::PADDQrr, X86::PADDQrm, TB_ALIGN_16 },
759 { X86::PADDSBrr, X86::PADDSBrm, TB_ALIGN_16 },
760 { X86::PADDSWrr, X86::PADDSWrm, TB_ALIGN_16 },
761 { X86::PADDUSBrr, X86::PADDUSBrm, TB_ALIGN_16 },
762 { X86::PADDUSWrr, X86::PADDUSWrm, TB_ALIGN_16 },
763 { X86::PADDWrr, X86::PADDWrm, TB_ALIGN_16 },
764 { X86::PALIGNR128rr, X86::PALIGNR128rm, TB_ALIGN_16 },
765 { X86::PANDNrr, X86::PANDNrm, TB_ALIGN_16 },
766 { X86::PANDrr, X86::PANDrm, TB_ALIGN_16 },
767 { X86::PAVGBrr, X86::PAVGBrm, TB_ALIGN_16 },
768 { X86::PAVGWrr, X86::PAVGWrm, TB_ALIGN_16 },
769 { X86::PBLENDWrri, X86::PBLENDWrmi, TB_ALIGN_16 },
770 { X86::PCMPEQBrr, X86::PCMPEQBrm, TB_ALIGN_16 },
771 { X86::PCMPEQDrr, X86::PCMPEQDrm, TB_ALIGN_16 },
772 { X86::PCMPEQQrr, X86::PCMPEQQrm, TB_ALIGN_16 },
773 { X86::PCMPEQWrr, X86::PCMPEQWrm, TB_ALIGN_16 },
774 { X86::PCMPGTBrr, X86::PCMPGTBrm, TB_ALIGN_16 },
775 { X86::PCMPGTDrr, X86::PCMPGTDrm, TB_ALIGN_16 },
776 { X86::PCMPGTQrr, X86::PCMPGTQrm, TB_ALIGN_16 },
777 { X86::PCMPGTWrr, X86::PCMPGTWrm, TB_ALIGN_16 },
778 { X86::PHADDDrr, X86::PHADDDrm, TB_ALIGN_16 },
779 { X86::PHADDWrr, X86::PHADDWrm, TB_ALIGN_16 },
780 { X86::PHADDSWrr128, X86::PHADDSWrm128, TB_ALIGN_16 },
781 { X86::PHSUBDrr, X86::PHSUBDrm, TB_ALIGN_16 },
782 { X86::PHSUBSWrr128, X86::PHSUBSWrm128, TB_ALIGN_16 },
783 { X86::PHSUBWrr, X86::PHSUBWrm, TB_ALIGN_16 },
784 { X86::PINSRWrri, X86::PINSRWrmi, TB_ALIGN_16 },
785 { X86::PMADDUBSWrr128, X86::PMADDUBSWrm128, TB_ALIGN_16 },
786 { X86::PMADDWDrr, X86::PMADDWDrm, TB_ALIGN_16 },
787 { X86::PMAXSWrr, X86::PMAXSWrm, TB_ALIGN_16 },
788 { X86::PMAXUBrr, X86::PMAXUBrm, TB_ALIGN_16 },
789 { X86::PMINSWrr, X86::PMINSWrm, TB_ALIGN_16 },
790 { X86::PMINUBrr, X86::PMINUBrm, TB_ALIGN_16 },
791 { X86::PMINSBrr, X86::PMINSBrm, TB_ALIGN_16 },
792 { X86::PMINSDrr, X86::PMINSDrm, TB_ALIGN_16 },
793 { X86::PMINUDrr, X86::PMINUDrm, TB_ALIGN_16 },
794 { X86::PMINUWrr, X86::PMINUWrm, TB_ALIGN_16 },
795 { X86::PMAXSBrr, X86::PMAXSBrm, TB_ALIGN_16 },
796 { X86::PMAXSDrr, X86::PMAXSDrm, TB_ALIGN_16 },
797 { X86::PMAXUDrr, X86::PMAXUDrm, TB_ALIGN_16 },
798 { X86::PMAXUWrr, X86::PMAXUWrm, TB_ALIGN_16 },
799 { X86::PMULDQrr, X86::PMULDQrm, TB_ALIGN_16 },
800 { X86::PMULHRSWrr128, X86::PMULHRSWrm128, TB_ALIGN_16 },
801 { X86::PMULHUWrr, X86::PMULHUWrm, TB_ALIGN_16 },
802 { X86::PMULHWrr, X86::PMULHWrm, TB_ALIGN_16 },
803 { X86::PMULLDrr, X86::PMULLDrm, TB_ALIGN_16 },
804 { X86::PMULLWrr, X86::PMULLWrm, TB_ALIGN_16 },
805 { X86::PMULUDQrr, X86::PMULUDQrm, TB_ALIGN_16 },
806 { X86::PORrr, X86::PORrm, TB_ALIGN_16 },
807 { X86::PSADBWrr, X86::PSADBWrm, TB_ALIGN_16 },
808 { X86::PSHUFBrr, X86::PSHUFBrm, TB_ALIGN_16 },
809 { X86::PSIGNBrr, X86::PSIGNBrm, TB_ALIGN_16 },
810 { X86::PSIGNWrr, X86::PSIGNWrm, TB_ALIGN_16 },
811 { X86::PSIGNDrr, X86::PSIGNDrm, TB_ALIGN_16 },
812 { X86::PSLLDrr, X86::PSLLDrm, TB_ALIGN_16 },
813 { X86::PSLLQrr, X86::PSLLQrm, TB_ALIGN_16 },
814 { X86::PSLLWrr, X86::PSLLWrm, TB_ALIGN_16 },
815 { X86::PSRADrr, X86::PSRADrm, TB_ALIGN_16 },
816 { X86::PSRAWrr, X86::PSRAWrm, TB_ALIGN_16 },
817 { X86::PSRLDrr, X86::PSRLDrm, TB_ALIGN_16 },
818 { X86::PSRLQrr, X86::PSRLQrm, TB_ALIGN_16 },
819 { X86::PSRLWrr, X86::PSRLWrm, TB_ALIGN_16 },
820 { X86::PSUBBrr, X86::PSUBBrm, TB_ALIGN_16 },
821 { X86::PSUBDrr, X86::PSUBDrm, TB_ALIGN_16 },
822 { X86::PSUBSBrr, X86::PSUBSBrm, TB_ALIGN_16 },
823 { X86::PSUBSWrr, X86::PSUBSWrm, TB_ALIGN_16 },
824 { X86::PSUBWrr, X86::PSUBWrm, TB_ALIGN_16 },
825 { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm, TB_ALIGN_16 },
826 { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm, TB_ALIGN_16 },
827 { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm, TB_ALIGN_16 },
828 { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm, TB_ALIGN_16 },
829 { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm, TB_ALIGN_16 },
830 { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm, TB_ALIGN_16 },
831 { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm, TB_ALIGN_16 },
832 { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm, TB_ALIGN_16 },
833 { X86::PXORrr, X86::PXORrm, TB_ALIGN_16 },
834 { X86::SBB32rr, X86::SBB32rm, 0 },
835 { X86::SBB64rr, X86::SBB64rm, 0 },
836 { X86::SHUFPDrri, X86::SHUFPDrmi, TB_ALIGN_16 },
837 { X86::SHUFPSrri, X86::SHUFPSrmi, TB_ALIGN_16 },
838 { X86::SUB16rr, X86::SUB16rm, 0 },
839 { X86::SUB32rr, X86::SUB32rm, 0 },
840 { X86::SUB64rr, X86::SUB64rm, 0 },
841 { X86::SUB8rr, X86::SUB8rm, 0 },
842 { X86::SUBPDrr, X86::SUBPDrm, TB_ALIGN_16 },
843 { X86::SUBPSrr, X86::SUBPSrm, TB_ALIGN_16 },
844 { X86::SUBSDrr, X86::SUBSDrm, 0 },
845 { X86::SUBSSrr, X86::SUBSSrm, 0 },
846 // FIXME: TEST*rr -> swapped operand of TEST*mr.
847 { X86::UNPCKHPDrr, X86::UNPCKHPDrm, TB_ALIGN_16 },
848 { X86::UNPCKHPSrr, X86::UNPCKHPSrm, TB_ALIGN_16 },
849 { X86::UNPCKLPDrr, X86::UNPCKLPDrm, TB_ALIGN_16 },
850 { X86::UNPCKLPSrr, X86::UNPCKLPSrm, TB_ALIGN_16 },
851 { X86::XOR16rr, X86::XOR16rm, 0 },
852 { X86::XOR32rr, X86::XOR32rm, 0 },
853 { X86::XOR64rr, X86::XOR64rm, 0 },
854 { X86::XOR8rr, X86::XOR8rm, 0 },
855 { X86::XORPDrr, X86::XORPDrm, TB_ALIGN_16 },
856 { X86::XORPSrr, X86::XORPSrm, TB_ALIGN_16 },
857 // AVX 128-bit versions of foldable instructions
858 { X86::VCVTSD2SSrr, X86::VCVTSD2SSrm, 0 },
859 { X86::Int_VCVTSD2SSrr, X86::Int_VCVTSD2SSrm, 0 },
860 { X86::VCVTSI2SD64rr, X86::VCVTSI2SD64rm, 0 },
861 { X86::Int_VCVTSI2SD64rr, X86::Int_VCVTSI2SD64rm, 0 },
862 { X86::VCVTSI2SDrr, X86::VCVTSI2SDrm, 0 },
863 { X86::Int_VCVTSI2SDrr, X86::Int_VCVTSI2SDrm, 0 },
864 { X86::VCVTSI2SS64rr, X86::VCVTSI2SS64rm, 0 },
865 { X86::Int_VCVTSI2SS64rr, X86::Int_VCVTSI2SS64rm, 0 },
866 { X86::VCVTSI2SSrr, X86::VCVTSI2SSrm, 0 },
867 { X86::Int_VCVTSI2SSrr, X86::Int_VCVTSI2SSrm, 0 },
868 { X86::VCVTSS2SDrr, X86::VCVTSS2SDrm, 0 },
869 { X86::Int_VCVTSS2SDrr, X86::Int_VCVTSS2SDrm, 0 },
870 { X86::VCVTTPD2DQrr, X86::VCVTTPD2DQXrm, 0 },
871 { X86::VCVTTPS2DQrr, X86::VCVTTPS2DQrm, 0 },
872 { X86::VRSQRTSSr, X86::VRSQRTSSm, 0 },
873 { X86::VSQRTSDr, X86::VSQRTSDm, 0 },
874 { X86::VSQRTSSr, X86::VSQRTSSm, 0 },
875 { X86::VADDPDrr, X86::VADDPDrm, 0 },
876 { X86::VADDPSrr, X86::VADDPSrm, 0 },
877 { X86::VADDSDrr, X86::VADDSDrm, 0 },
878 { X86::VADDSSrr, X86::VADDSSrm, 0 },
879 { X86::VADDSUBPDrr, X86::VADDSUBPDrm, 0 },
880 { X86::VADDSUBPSrr, X86::VADDSUBPSrm, 0 },
881 { X86::VANDNPDrr, X86::VANDNPDrm, 0 },
882 { X86::VANDNPSrr, X86::VANDNPSrm, 0 },
883 { X86::VANDPDrr, X86::VANDPDrm, 0 },
884 { X86::VANDPSrr, X86::VANDPSrm, 0 },
885 { X86::VBLENDPDrri, X86::VBLENDPDrmi, 0 },
886 { X86::VBLENDPSrri, X86::VBLENDPSrmi, 0 },
887 { X86::VBLENDVPDrr, X86::VBLENDVPDrm, 0 },
888 { X86::VBLENDVPSrr, X86::VBLENDVPSrm, 0 },
889 { X86::VCMPPDrri, X86::VCMPPDrmi, 0 },
890 { X86::VCMPPSrri, X86::VCMPPSrmi, 0 },
891 { X86::VCMPSDrr, X86::VCMPSDrm, 0 },
892 { X86::VCMPSSrr, X86::VCMPSSrm, 0 },
893 { X86::VDIVPDrr, X86::VDIVPDrm, 0 },
894 { X86::VDIVPSrr, X86::VDIVPSrm, 0 },
895 { X86::VDIVSDrr, X86::VDIVSDrm, 0 },
896 { X86::VDIVSSrr, X86::VDIVSSrm, 0 },
897 { X86::VFsANDNPDrr, X86::VFsANDNPDrm, TB_ALIGN_16 },
898 { X86::VFsANDNPSrr, X86::VFsANDNPSrm, TB_ALIGN_16 },
899 { X86::VFsANDPDrr, X86::VFsANDPDrm, TB_ALIGN_16 },
900 { X86::VFsANDPSrr, X86::VFsANDPSrm, TB_ALIGN_16 },
901 { X86::VFsORPDrr, X86::VFsORPDrm, TB_ALIGN_16 },
902 { X86::VFsORPSrr, X86::VFsORPSrm, TB_ALIGN_16 },
903 { X86::VFsXORPDrr, X86::VFsXORPDrm, TB_ALIGN_16 },
904 { X86::VFsXORPSrr, X86::VFsXORPSrm, TB_ALIGN_16 },
905 { X86::VHADDPDrr, X86::VHADDPDrm, 0 },
906 { X86::VHADDPSrr, X86::VHADDPSrm, 0 },
907 { X86::VHSUBPDrr, X86::VHSUBPDrm, 0 },
908 { X86::VHSUBPSrr, X86::VHSUBPSrm, 0 },
909 { X86::Int_VCMPSDrr, X86::Int_VCMPSDrm, 0 },
910 { X86::Int_VCMPSSrr, X86::Int_VCMPSSrm, 0 },
911 { X86::VMAXPDrr, X86::VMAXPDrm, 0 },
912 { X86::VMAXPSrr, X86::VMAXPSrm, 0 },
913 { X86::VMAXSDrr, X86::VMAXSDrm, 0 },
914 { X86::VMAXSSrr, X86::VMAXSSrm, 0 },
915 { X86::VMINPDrr, X86::VMINPDrm, 0 },
916 { X86::VMINPSrr, X86::VMINPSrm, 0 },
917 { X86::VMINSDrr, X86::VMINSDrm, 0 },
918 { X86::VMINSSrr, X86::VMINSSrm, 0 },
919 { X86::VMPSADBWrri, X86::VMPSADBWrmi, 0 },
920 { X86::VMULPDrr, X86::VMULPDrm, 0 },
921 { X86::VMULPSrr, X86::VMULPSrm, 0 },
922 { X86::VMULSDrr, X86::VMULSDrm, 0 },
923 { X86::VMULSSrr, X86::VMULSSrm, 0 },
924 { X86::VORPDrr, X86::VORPDrm, 0 },
925 { X86::VORPSrr, X86::VORPSrm, 0 },
926 { X86::VPACKSSDWrr, X86::VPACKSSDWrm, 0 },
927 { X86::VPACKSSWBrr, X86::VPACKSSWBrm, 0 },
928 { X86::VPACKUSDWrr, X86::VPACKUSDWrm, 0 },
929 { X86::VPACKUSWBrr, X86::VPACKUSWBrm, 0 },
930 { X86::VPADDBrr, X86::VPADDBrm, 0 },
931 { X86::VPADDDrr, X86::VPADDDrm, 0 },
932 { X86::VPADDQrr, X86::VPADDQrm, 0 },
933 { X86::VPADDSBrr, X86::VPADDSBrm, 0 },
934 { X86::VPADDSWrr, X86::VPADDSWrm, 0 },
935 { X86::VPADDUSBrr, X86::VPADDUSBrm, 0 },
936 { X86::VPADDUSWrr, X86::VPADDUSWrm, 0 },
937 { X86::VPADDWrr, X86::VPADDWrm, 0 },
938 { X86::VPALIGNR128rr, X86::VPALIGNR128rm, 0 },
939 { X86::VPANDNrr, X86::VPANDNrm, 0 },
940 { X86::VPANDrr, X86::VPANDrm, 0 },
941 { X86::VPAVGBrr, X86::VPAVGBrm, 0 },
942 { X86::VPAVGWrr, X86::VPAVGWrm, 0 },
943 { X86::VPBLENDWrri, X86::VPBLENDWrmi, 0 },
944 { X86::VPCMPEQBrr, X86::VPCMPEQBrm, 0 },
945 { X86::VPCMPEQDrr, X86::VPCMPEQDrm, 0 },
946 { X86::VPCMPEQQrr, X86::VPCMPEQQrm, 0 },
947 { X86::VPCMPEQWrr, X86::VPCMPEQWrm, 0 },
948 { X86::VPCMPGTBrr, X86::VPCMPGTBrm, 0 },
949 { X86::VPCMPGTDrr, X86::VPCMPGTDrm, 0 },
950 { X86::VPCMPGTQrr, X86::VPCMPGTQrm, 0 },
951 { X86::VPCMPGTWrr, X86::VPCMPGTWrm, 0 },
952 { X86::VPHADDDrr, X86::VPHADDDrm, 0 },
953 { X86::VPHADDSWrr128, X86::VPHADDSWrm128, 0 },
954 { X86::VPHADDWrr, X86::VPHADDWrm, 0 },
955 { X86::VPHSUBDrr, X86::VPHSUBDrm, 0 },
956 { X86::VPHSUBSWrr128, X86::VPHSUBSWrm128, 0 },
957 { X86::VPHSUBWrr, X86::VPHSUBWrm, 0 },
958 { X86::VPERMILPDrr, X86::VPERMILPDrm, 0 },
959 { X86::VPERMILPSrr, X86::VPERMILPSrm, 0 },
960 { X86::VPINSRWrri, X86::VPINSRWrmi, 0 },
961 { X86::VPMADDUBSWrr128, X86::VPMADDUBSWrm128, 0 },
962 { X86::VPMADDWDrr, X86::VPMADDWDrm, 0 },
963 { X86::VPMAXSWrr, X86::VPMAXSWrm, 0 },
964 { X86::VPMAXUBrr, X86::VPMAXUBrm, 0 },
965 { X86::VPMINSWrr, X86::VPMINSWrm, 0 },
966 { X86::VPMINUBrr, X86::VPMINUBrm, 0 },
967 { X86::VPMINSBrr, X86::VPMINSBrm, 0 },
968 { X86::VPMINSDrr, X86::VPMINSDrm, 0 },
969 { X86::VPMINUDrr, X86::VPMINUDrm, 0 },
970 { X86::VPMINUWrr, X86::VPMINUWrm, 0 },
971 { X86::VPMAXSBrr, X86::VPMAXSBrm, 0 },
972 { X86::VPMAXSDrr, X86::VPMAXSDrm, 0 },
973 { X86::VPMAXUDrr, X86::VPMAXUDrm, 0 },
974 { X86::VPMAXUWrr, X86::VPMAXUWrm, 0 },
975 { X86::VPMULDQrr, X86::VPMULDQrm, 0 },
976 { X86::VPMULHRSWrr128, X86::VPMULHRSWrm128, 0 },
977 { X86::VPMULHUWrr, X86::VPMULHUWrm, 0 },
978 { X86::VPMULHWrr, X86::VPMULHWrm, 0 },
979 { X86::VPMULLDrr, X86::VPMULLDrm, 0 },
980 { X86::VPMULLWrr, X86::VPMULLWrm, 0 },
981 { X86::VPMULUDQrr, X86::VPMULUDQrm, 0 },
982 { X86::VPORrr, X86::VPORrm, 0 },
983 { X86::VPSADBWrr, X86::VPSADBWrm, 0 },
984 { X86::VPSHUFBrr, X86::VPSHUFBrm, 0 },
985 { X86::VPSIGNBrr, X86::VPSIGNBrm, 0 },
986 { X86::VPSIGNWrr, X86::VPSIGNWrm, 0 },
987 { X86::VPSIGNDrr, X86::VPSIGNDrm, 0 },
988 { X86::VPSLLDrr, X86::VPSLLDrm, 0 },
989 { X86::VPSLLQrr, X86::VPSLLQrm, 0 },
990 { X86::VPSLLWrr, X86::VPSLLWrm, 0 },
991 { X86::VPSRADrr, X86::VPSRADrm, 0 },
992 { X86::VPSRAWrr, X86::VPSRAWrm, 0 },
993 { X86::VPSRLDrr, X86::VPSRLDrm, 0 },
994 { X86::VPSRLQrr, X86::VPSRLQrm, 0 },
995 { X86::VPSRLWrr, X86::VPSRLWrm, 0 },
996 { X86::VPSUBBrr, X86::VPSUBBrm, 0 },
997 { X86::VPSUBDrr, X86::VPSUBDrm, 0 },
998 { X86::VPSUBSBrr, X86::VPSUBSBrm, 0 },
999 { X86::VPSUBSWrr, X86::VPSUBSWrm, 0 },
1000 { X86::VPSUBWrr, X86::VPSUBWrm, 0 },
1001 { X86::VPUNPCKHBWrr, X86::VPUNPCKHBWrm, 0 },
1002 { X86::VPUNPCKHDQrr, X86::VPUNPCKHDQrm, 0 },
1003 { X86::VPUNPCKHQDQrr, X86::VPUNPCKHQDQrm, 0 },
1004 { X86::VPUNPCKHWDrr, X86::VPUNPCKHWDrm, 0 },
1005 { X86::VPUNPCKLBWrr, X86::VPUNPCKLBWrm, 0 },
1006 { X86::VPUNPCKLDQrr, X86::VPUNPCKLDQrm, 0 },
1007 { X86::VPUNPCKLQDQrr, X86::VPUNPCKLQDQrm, 0 },
1008 { X86::VPUNPCKLWDrr, X86::VPUNPCKLWDrm, 0 },
1009 { X86::VPXORrr, X86::VPXORrm, 0 },
1010 { X86::VSHUFPDrri, X86::VSHUFPDrmi, 0 },
1011 { X86::VSHUFPSrri, X86::VSHUFPSrmi, 0 },
1012 { X86::VSUBPDrr, X86::VSUBPDrm, 0 },
1013 { X86::VSUBPSrr, X86::VSUBPSrm, 0 },
1014 { X86::VSUBSDrr, X86::VSUBSDrm, 0 },
1015 { X86::VSUBSSrr, X86::VSUBSSrm, 0 },
1016 { X86::VUNPCKHPDrr, X86::VUNPCKHPDrm, 0 },
1017 { X86::VUNPCKHPSrr, X86::VUNPCKHPSrm, 0 },
1018 { X86::VUNPCKLPDrr, X86::VUNPCKLPDrm, 0 },
1019 { X86::VUNPCKLPSrr, X86::VUNPCKLPSrm, 0 },
1020 { X86::VXORPDrr, X86::VXORPDrm, 0 },
1021 { X86::VXORPSrr, X86::VXORPSrm, 0 },
1022 // AVX 256-bit foldable instructions
1023 { X86::VADDPDYrr, X86::VADDPDYrm, 0 },
1024 { X86::VADDPSYrr, X86::VADDPSYrm, 0 },
1025 { X86::VADDSUBPDYrr, X86::VADDSUBPDYrm, 0 },
1026 { X86::VADDSUBPSYrr, X86::VADDSUBPSYrm, 0 },
1027 { X86::VANDNPDYrr, X86::VANDNPDYrm, 0 },
1028 { X86::VANDNPSYrr, X86::VANDNPSYrm, 0 },
1029 { X86::VANDPDYrr, X86::VANDPDYrm, 0 },
1030 { X86::VANDPSYrr, X86::VANDPSYrm, 0 },
1031 { X86::VBLENDPDYrri, X86::VBLENDPDYrmi, 0 },
1032 { X86::VBLENDPSYrri, X86::VBLENDPSYrmi, 0 },
1033 { X86::VBLENDVPDYrr, X86::VBLENDVPDYrm, 0 },
1034 { X86::VBLENDVPSYrr, X86::VBLENDVPSYrm, 0 },
1035 { X86::VCMPPDYrri, X86::VCMPPDYrmi, 0 },
1036 { X86::VCMPPSYrri, X86::VCMPPSYrmi, 0 },
1037 { X86::VDIVPDYrr, X86::VDIVPDYrm, 0 },
1038 { X86::VDIVPSYrr, X86::VDIVPSYrm, 0 },
1039 { X86::VHADDPDYrr, X86::VHADDPDYrm, 0 },
1040 { X86::VHADDPSYrr, X86::VHADDPSYrm, 0 },
1041 { X86::VHSUBPDYrr, X86::VHSUBPDYrm, 0 },
1042 { X86::VHSUBPSYrr, X86::VHSUBPSYrm, 0 },
1043 { X86::VINSERTF128rr, X86::VINSERTF128rm, 0 },
1044 { X86::VMAXPDYrr, X86::VMAXPDYrm, 0 },
1045 { X86::VMAXPSYrr, X86::VMAXPSYrm, 0 },
1046 { X86::VMINPDYrr, X86::VMINPDYrm, 0 },
1047 { X86::VMINPSYrr, X86::VMINPSYrm, 0 },
1048 { X86::VMULPDYrr, X86::VMULPDYrm, 0 },
1049 { X86::VMULPSYrr, X86::VMULPSYrm, 0 },
1050 { X86::VORPDYrr, X86::VORPDYrm, 0 },
1051 { X86::VORPSYrr, X86::VORPSYrm, 0 },
1052 { X86::VPERM2F128rr, X86::VPERM2F128rm, 0 },
1053 { X86::VPERMILPDYrr, X86::VPERMILPDYrm, 0 },
1054 { X86::VPERMILPSYrr, X86::VPERMILPSYrm, 0 },
1055 { X86::VSHUFPDYrri, X86::VSHUFPDYrmi, 0 },
1056 { X86::VSHUFPSYrri, X86::VSHUFPSYrmi, 0 },
1057 { X86::VSUBPDYrr, X86::VSUBPDYrm, 0 },
1058 { X86::VSUBPSYrr, X86::VSUBPSYrm, 0 },
1059 { X86::VUNPCKHPDYrr, X86::VUNPCKHPDYrm, 0 },
1060 { X86::VUNPCKHPSYrr, X86::VUNPCKHPSYrm, 0 },
1061 { X86::VUNPCKLPDYrr, X86::VUNPCKLPDYrm, 0 },
1062 { X86::VUNPCKLPSYrr, X86::VUNPCKLPSYrm, 0 },
1063 { X86::VXORPDYrr, X86::VXORPDYrm, 0 },
1064 { X86::VXORPSYrr, X86::VXORPSYrm, 0 },
1065 // AVX2 foldable instructions
1066 { X86::VINSERTI128rr, X86::VINSERTI128rm, 0 },
1067 { X86::VPACKSSDWYrr, X86::VPACKSSDWYrm, 0 },
1068 { X86::VPACKSSWBYrr, X86::VPACKSSWBYrm, 0 },
1069 { X86::VPACKUSDWYrr, X86::VPACKUSDWYrm, 0 },
1070 { X86::VPACKUSWBYrr, X86::VPACKUSWBYrm, 0 },
1071 { X86::VPADDBYrr, X86::VPADDBYrm, 0 },
1072 { X86::VPADDDYrr, X86::VPADDDYrm, 0 },
1073 { X86::VPADDQYrr, X86::VPADDQYrm, 0 },
1074 { X86::VPADDSBYrr, X86::VPADDSBYrm, 0 },
1075 { X86::VPADDSWYrr, X86::VPADDSWYrm, 0 },
1076 { X86::VPADDUSBYrr, X86::VPADDUSBYrm, 0 },
1077 { X86::VPADDUSWYrr, X86::VPADDUSWYrm, 0 },
1078 { X86::VPADDWYrr, X86::VPADDWYrm, 0 },
1079 { X86::VPALIGNR256rr, X86::VPALIGNR256rm, 0 },
1080 { X86::VPANDNYrr, X86::VPANDNYrm, 0 },
1081 { X86::VPANDYrr, X86::VPANDYrm, 0 },
1082 { X86::VPAVGBYrr, X86::VPAVGBYrm, 0 },
1083 { X86::VPAVGWYrr, X86::VPAVGWYrm, 0 },
1084 { X86::VPBLENDDrri, X86::VPBLENDDrmi, 0 },
1085 { X86::VPBLENDDYrri, X86::VPBLENDDYrmi, 0 },
1086 { X86::VPBLENDWYrri, X86::VPBLENDWYrmi, 0 },
1087 { X86::VPCMPEQBYrr, X86::VPCMPEQBYrm, 0 },
1088 { X86::VPCMPEQDYrr, X86::VPCMPEQDYrm, 0 },
1089 { X86::VPCMPEQQYrr, X86::VPCMPEQQYrm, 0 },
1090 { X86::VPCMPEQWYrr, X86::VPCMPEQWYrm, 0 },
1091 { X86::VPCMPGTBYrr, X86::VPCMPGTBYrm, 0 },
1092 { X86::VPCMPGTDYrr, X86::VPCMPGTDYrm, 0 },
1093 { X86::VPCMPGTQYrr, X86::VPCMPGTQYrm, 0 },
1094 { X86::VPCMPGTWYrr, X86::VPCMPGTWYrm, 0 },
1095 { X86::VPERM2I128rr, X86::VPERM2I128rm, 0 },
1096 { X86::VPERMDYrr, X86::VPERMDYrm, 0 },
1097 { X86::VPERMPDYri, X86::VPERMPDYmi, 0 },
1098 { X86::VPERMPSYrr, X86::VPERMPSYrm, 0 },
1099 { X86::VPERMQYri, X86::VPERMQYmi, 0 },
1100 { X86::VPHADDDYrr, X86::VPHADDDYrm, 0 },
1101 { X86::VPHADDSWrr256, X86::VPHADDSWrm256, 0 },
1102 { X86::VPHADDWYrr, X86::VPHADDWYrm, 0 },
1103 { X86::VPHSUBDYrr, X86::VPHSUBDYrm, 0 },
1104 { X86::VPHSUBSWrr256, X86::VPHSUBSWrm256, 0 },
1105 { X86::VPHSUBWYrr, X86::VPHSUBWYrm, 0 },
1106 { X86::VPMADDUBSWrr256, X86::VPMADDUBSWrm256, 0 },
1107 { X86::VPMADDWDYrr, X86::VPMADDWDYrm, 0 },
1108 { X86::VPMAXSWYrr, X86::VPMAXSWYrm, 0 },
1109 { X86::VPMAXUBYrr, X86::VPMAXUBYrm, 0 },
1110 { X86::VPMINSWYrr, X86::VPMINSWYrm, 0 },
1111 { X86::VPMINUBYrr, X86::VPMINUBYrm, 0 },
1112 { X86::VPMINSBYrr, X86::VPMINSBYrm, 0 },
1113 { X86::VPMINSDYrr, X86::VPMINSDYrm, 0 },
1114 { X86::VPMINUDYrr, X86::VPMINUDYrm, 0 },
1115 { X86::VPMINUWYrr, X86::VPMINUWYrm, 0 },
1116 { X86::VPMAXSBYrr, X86::VPMAXSBYrm, 0 },
1117 { X86::VPMAXSDYrr, X86::VPMAXSDYrm, 0 },
1118 { X86::VPMAXUDYrr, X86::VPMAXUDYrm, 0 },
1119 { X86::VPMAXUWYrr, X86::VPMAXUWYrm, 0 },
1120 { X86::VMPSADBWYrri, X86::VMPSADBWYrmi, 0 },
1121 { X86::VPMULDQYrr, X86::VPMULDQYrm, 0 },
1122 { X86::VPMULHRSWrr256, X86::VPMULHRSWrm256, 0 },
1123 { X86::VPMULHUWYrr, X86::VPMULHUWYrm, 0 },
1124 { X86::VPMULHWYrr, X86::VPMULHWYrm, 0 },
1125 { X86::VPMULLDYrr, X86::VPMULLDYrm, 0 },
1126 { X86::VPMULLWYrr, X86::VPMULLWYrm, 0 },
1127 { X86::VPMULUDQYrr, X86::VPMULUDQYrm, 0 },
1128 { X86::VPORYrr, X86::VPORYrm, 0 },
1129 { X86::VPSADBWYrr, X86::VPSADBWYrm, 0 },
1130 { X86::VPSHUFBYrr, X86::VPSHUFBYrm, 0 },
1131 { X86::VPSIGNBYrr, X86::VPSIGNBYrm, 0 },
1132 { X86::VPSIGNWYrr, X86::VPSIGNWYrm, 0 },
1133 { X86::VPSIGNDYrr, X86::VPSIGNDYrm, 0 },
1134 { X86::VPSLLDYrr, X86::VPSLLDYrm, 0 },
1135 { X86::VPSLLQYrr, X86::VPSLLQYrm, 0 },
1136 { X86::VPSLLWYrr, X86::VPSLLWYrm, 0 },
1137 { X86::VPSLLVDrr, X86::VPSLLVDrm, 0 },
1138 { X86::VPSLLVDYrr, X86::VPSLLVDYrm, 0 },
1139 { X86::VPSLLVQrr, X86::VPSLLVQrm, 0 },
1140 { X86::VPSLLVQYrr, X86::VPSLLVQYrm, 0 },
1141 { X86::VPSRADYrr, X86::VPSRADYrm, 0 },
1142 { X86::VPSRAWYrr, X86::VPSRAWYrm, 0 },
1143 { X86::VPSRAVDrr, X86::VPSRAVDrm, 0 },
1144 { X86::VPSRAVDYrr, X86::VPSRAVDYrm, 0 },
1145 { X86::VPSRLDYrr, X86::VPSRLDYrm, 0 },
1146 { X86::VPSRLQYrr, X86::VPSRLQYrm, 0 },
1147 { X86::VPSRLWYrr, X86::VPSRLWYrm, 0 },
1148 { X86::VPSRLVDrr, X86::VPSRLVDrm, 0 },
1149 { X86::VPSRLVDYrr, X86::VPSRLVDYrm, 0 },
1150 { X86::VPSRLVQrr, X86::VPSRLVQrm, 0 },
1151 { X86::VPSRLVQYrr, X86::VPSRLVQYrm, 0 },
1152 { X86::VPSUBBYrr, X86::VPSUBBYrm, 0 },
1153 { X86::VPSUBDYrr, X86::VPSUBDYrm, 0 },
1154 { X86::VPSUBSBYrr, X86::VPSUBSBYrm, 0 },
1155 { X86::VPSUBSWYrr, X86::VPSUBSWYrm, 0 },
1156 { X86::VPSUBWYrr, X86::VPSUBWYrm, 0 },
1157 { X86::VPUNPCKHBWYrr, X86::VPUNPCKHBWYrm, 0 },
1158 { X86::VPUNPCKHDQYrr, X86::VPUNPCKHDQYrm, 0 },
1159 { X86::VPUNPCKHQDQYrr, X86::VPUNPCKHQDQYrm, 0 },
1160 { X86::VPUNPCKHWDYrr, X86::VPUNPCKHWDYrm, 0 },
1161 { X86::VPUNPCKLBWYrr, X86::VPUNPCKLBWYrm, 0 },
1162 { X86::VPUNPCKLDQYrr, X86::VPUNPCKLDQYrm, 0 },
1163 { X86::VPUNPCKLQDQYrr, X86::VPUNPCKLQDQYrm, 0 },
1164 { X86::VPUNPCKLWDYrr, X86::VPUNPCKLWDYrm, 0 },
1165 { X86::VPXORYrr, X86::VPXORYrm, 0 },
1166 // FIXME: add AVX 256-bit foldable instructions
1167
1168 // FMA4 foldable patterns
1169 { X86::VFMADDSS4rr, X86::VFMADDSS4mr, 0 },
1170 { X86::VFMADDSD4rr, X86::VFMADDSD4mr, 0 },
1171 { X86::VFMADDPS4rr, X86::VFMADDPS4mr, TB_ALIGN_16 },
1172 { X86::VFMADDPD4rr, X86::VFMADDPD4mr, TB_ALIGN_16 },
1173 { X86::VFMADDPS4rrY, X86::VFMADDPS4mrY, TB_ALIGN_32 },
1174 { X86::VFMADDPD4rrY, X86::VFMADDPD4mrY, TB_ALIGN_32 },
1175 { X86::VFNMADDSS4rr, X86::VFNMADDSS4mr, 0 },
1176 { X86::VFNMADDSD4rr, X86::VFNMADDSD4mr, 0 },
1177 { X86::VFNMADDPS4rr, X86::VFNMADDPS4mr, TB_ALIGN_16 },
1178 { X86::VFNMADDPD4rr, X86::VFNMADDPD4mr, TB_ALIGN_16 },
1179 { X86::VFNMADDPS4rrY, X86::VFNMADDPS4mrY, TB_ALIGN_32 },
1180 { X86::VFNMADDPD4rrY, X86::VFNMADDPD4mrY, TB_ALIGN_32 },
1181 { X86::VFMSUBSS4rr, X86::VFMSUBSS4mr, 0 },
1182 { X86::VFMSUBSD4rr, X86::VFMSUBSD4mr, 0 },
1183 { X86::VFMSUBPS4rr, X86::VFMSUBPS4mr, TB_ALIGN_16 },
1184 { X86::VFMSUBPD4rr, X86::VFMSUBPD4mr, TB_ALIGN_16 },
1185 { X86::VFMSUBPS4rrY, X86::VFMSUBPS4mrY, TB_ALIGN_32 },
1186 { X86::VFMSUBPD4rrY, X86::VFMSUBPD4mrY, TB_ALIGN_32 },
1187 { X86::VFNMSUBSS4rr, X86::VFNMSUBSS4mr, 0 },
1188 { X86::VFNMSUBSD4rr, X86::VFNMSUBSD4mr, 0 },
1189 { X86::VFNMSUBPS4rr, X86::VFNMSUBPS4mr, TB_ALIGN_16 },
1190 { X86::VFNMSUBPD4rr, X86::VFNMSUBPD4mr, TB_ALIGN_16 },
1191 { X86::VFNMSUBPS4rrY, X86::VFNMSUBPS4mrY, TB_ALIGN_32 },
1192 { X86::VFNMSUBPD4rrY, X86::VFNMSUBPD4mrY, TB_ALIGN_32 },
1193 { X86::VFMADDSUBPS4rr, X86::VFMADDSUBPS4mr, TB_ALIGN_16 },
1194 { X86::VFMADDSUBPD4rr, X86::VFMADDSUBPD4mr, TB_ALIGN_16 },
1195 { X86::VFMADDSUBPS4rrY, X86::VFMADDSUBPS4mrY, TB_ALIGN_32 },
1196 { X86::VFMADDSUBPD4rrY, X86::VFMADDSUBPD4mrY, TB_ALIGN_32 },
1197 { X86::VFMSUBADDPS4rr, X86::VFMSUBADDPS4mr, TB_ALIGN_16 },
1198 { X86::VFMSUBADDPD4rr, X86::VFMSUBADDPD4mr, TB_ALIGN_16 },
1199 { X86::VFMSUBADDPS4rrY, X86::VFMSUBADDPS4mrY, TB_ALIGN_32 },
1200 { X86::VFMSUBADDPD4rrY, X86::VFMSUBADDPD4mrY, TB_ALIGN_32 },
1201
1202 // BMI/BMI2 foldable instructions
1203 { X86::ANDN32rr, X86::ANDN32rm, 0 },
1204 { X86::ANDN64rr, X86::ANDN64rm, 0 },
1205 { X86::MULX32rr, X86::MULX32rm, 0 },
1206 { X86::MULX64rr, X86::MULX64rm, 0 },
1207 { X86::PDEP32rr, X86::PDEP32rm, 0 },
1208 { X86::PDEP64rr, X86::PDEP64rm, 0 },
1209 { X86::PEXT32rr, X86::PEXT32rm, 0 },
1210 { X86::PEXT64rr, X86::PEXT64rm, 0 },
1211
1212 // AVX-512 foldable instructions
1213 { X86::VPADDDZrr, X86::VPADDDZrm, 0 },
1214 { X86::VPADDQZrr, X86::VPADDQZrm, 0 },
1215 { X86::VADDPSZrr, X86::VADDPSZrm, 0 },
1216 { X86::VADDPDZrr, X86::VADDPDZrm, 0 },
1217 { X86::VSUBPSZrr, X86::VSUBPSZrm, 0 },
1218 { X86::VSUBPDZrr, X86::VSUBPDZrm, 0 },
1219 { X86::VMULPSZrr, X86::VMULPSZrm, 0 },
1220 { X86::VMULPDZrr, X86::VMULPDZrm, 0 },
1221 { X86::VDIVPSZrr, X86::VDIVPSZrm, 0 },
1222 { X86::VDIVPDZrr, X86::VDIVPDZrm, 0 },
1223 { X86::VMINPSZrr, X86::VMINPSZrm, 0 },
1224 { X86::VMINPDZrr, X86::VMINPDZrm, 0 },
1225 { X86::VMAXPSZrr, X86::VMAXPSZrm, 0 },
1226 { X86::VMAXPDZrr, X86::VMAXPDZrm, 0 },
1227 { X86::VPERMPDZri, X86::VPERMPDZmi, 0 },
1228 { X86::VPERMPSZrr, X86::VPERMPSZrm, 0 },
1229 { X86::VPSLLVDZrr, X86::VPSLLVDZrm, 0 },
1230 { X86::VPSLLVQZrr, X86::VPSLLVQZrm, 0 },
1231 { X86::VPSRAVDZrr, X86::VPSRAVDZrm, 0 },
1232 { X86::VPSRLVDZrr, X86::VPSRLVDZrm, 0 },
1233 { X86::VPSRLVQZrr, X86::VPSRLVQZrm, 0 },
1234 { X86::VSHUFPDZrri, X86::VSHUFPDZrmi, 0 },
1235 { X86::VSHUFPSZrri, X86::VSHUFPSZrmi, 0 },
1236 { X86::VALIGNQrri, X86::VALIGNQrmi, 0 },
1237 { X86::VALIGNDrri, X86::VALIGNDrmi, 0 },
1238
1239 // AES foldable instructions
1240 { X86::AESDECLASTrr, X86::AESDECLASTrm, TB_ALIGN_16 },
1241 { X86::AESDECrr, X86::AESDECrm, TB_ALIGN_16 },
1242 { X86::AESENCLASTrr, X86::AESENCLASTrm, TB_ALIGN_16 },
1243 { X86::AESENCrr, X86::AESENCrm, TB_ALIGN_16 },
1244 { X86::VAESDECLASTrr, X86::VAESDECLASTrm, TB_ALIGN_16 },
1245 { X86::VAESDECrr, X86::VAESDECrm, TB_ALIGN_16 },
1246 { X86::VAESENCLASTrr, X86::VAESENCLASTrm, TB_ALIGN_16 },
1247 { X86::VAESENCrr, X86::VAESENCrm, TB_ALIGN_16 },
1248
1249 // SHA foldable instructions
1250 { X86::SHA1MSG1rr, X86::SHA1MSG1rm, TB_ALIGN_16 },
1251 { X86::SHA1MSG2rr, X86::SHA1MSG2rm, TB_ALIGN_16 },
1252 { X86::SHA1NEXTErr, X86::SHA1NEXTErm, TB_ALIGN_16 },
1253 { X86::SHA1RNDS4rri, X86::SHA1RNDS4rmi, TB_ALIGN_16 },
1254 { X86::SHA256MSG1rr, X86::SHA256MSG1rm, TB_ALIGN_16 },
1255 { X86::SHA256MSG2rr, X86::SHA256MSG2rm, TB_ALIGN_16 },
1256 { X86::SHA256RNDS2rr, X86::SHA256RNDS2rm, TB_ALIGN_16 },
1257 };
1258
1259 for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
1260 unsigned RegOp = OpTbl2[i].RegOp;
1261 unsigned MemOp = OpTbl2[i].MemOp;
1262 unsigned Flags = OpTbl2[i].Flags;
1263 AddTableEntry(RegOp2MemOpTable2, MemOp2RegOpTable,
1264 RegOp, MemOp,
1265 // Index 2, folded load
1266 Flags | TB_INDEX_2 | TB_FOLDED_LOAD);
1267 }
1268
1269 static const X86OpTblEntry OpTbl3[] = {
1270 // FMA foldable instructions
1271 { X86::VFMADDSSr231r, X86::VFMADDSSr231m, 0 },
1272 { X86::VFMADDSDr231r, X86::VFMADDSDr231m, 0 },
1273 { X86::VFMADDSSr132r, X86::VFMADDSSr132m, 0 },
1274 { X86::VFMADDSDr132r, X86::VFMADDSDr132m, 0 },
1275 { X86::VFMADDSSr213r, X86::VFMADDSSr213m, 0 },
1276 { X86::VFMADDSDr213r, X86::VFMADDSDr213m, 0 },
1277 { X86::VFMADDSSr213r_Int, X86::VFMADDSSr213m_Int, 0 },
1278 { X86::VFMADDSDr213r_Int, X86::VFMADDSDr213m_Int, 0 },
1279
1280 { X86::VFMADDPSr231r, X86::VFMADDPSr231m, TB_ALIGN_16 },
1281 { X86::VFMADDPDr231r, X86::VFMADDPDr231m, TB_ALIGN_16 },
1282 { X86::VFMADDPSr132r, X86::VFMADDPSr132m, TB_ALIGN_16 },
1283 { X86::VFMADDPDr132r, X86::VFMADDPDr132m, TB_ALIGN_16 },
1284 { X86::VFMADDPSr213r, X86::VFMADDPSr213m, TB_ALIGN_16 },
1285 { X86::VFMADDPDr213r, X86::VFMADDPDr213m, TB_ALIGN_16 },
1286 { X86::VFMADDPSr231rY, X86::VFMADDPSr231mY, TB_ALIGN_32 },
1287 { X86::VFMADDPDr231rY, X86::VFMADDPDr231mY, TB_ALIGN_32 },
1288 { X86::VFMADDPSr132rY, X86::VFMADDPSr132mY, TB_ALIGN_32 },
1289 { X86::VFMADDPDr132rY, X86::VFMADDPDr132mY, TB_ALIGN_32 },
1290 { X86::VFMADDPSr213rY, X86::VFMADDPSr213mY, TB_ALIGN_32 },
1291 { X86::VFMADDPDr213rY, X86::VFMADDPDr213mY, TB_ALIGN_32 },
1292
1293 { X86::VFNMADDSSr231r, X86::VFNMADDSSr231m, 0 },
1294 { X86::VFNMADDSDr231r, X86::VFNMADDSDr231m, 0 },
1295 { X86::VFNMADDSSr132r, X86::VFNMADDSSr132m, 0 },
1296 { X86::VFNMADDSDr132r, X86::VFNMADDSDr132m, 0 },
1297 { X86::VFNMADDSSr213r, X86::VFNMADDSSr213m, 0 },
1298 { X86::VFNMADDSDr213r, X86::VFNMADDSDr213m, 0 },
1299 { X86::VFNMADDSSr213r_Int, X86::VFNMADDSSr213m_Int, 0 },
1300 { X86::VFNMADDSDr213r_Int, X86::VFNMADDSDr213m_Int, 0 },
1301
1302 { X86::VFNMADDPSr231r, X86::VFNMADDPSr231m, TB_ALIGN_16 },
1303 { X86::VFNMADDPDr231r, X86::VFNMADDPDr231m, TB_ALIGN_16 },
1304 { X86::VFNMADDPSr132r, X86::VFNMADDPSr132m, TB_ALIGN_16 },
1305 { X86::VFNMADDPDr132r, X86::VFNMADDPDr132m, TB_ALIGN_16 },
1306 { X86::VFNMADDPSr213r, X86::VFNMADDPSr213m, TB_ALIGN_16 },
1307 { X86::VFNMADDPDr213r, X86::VFNMADDPDr213m, TB_ALIGN_16 },
1308 { X86::VFNMADDPSr231rY, X86::VFNMADDPSr231mY, TB_ALIGN_32 },
1309 { X86::VFNMADDPDr231rY, X86::VFNMADDPDr231mY, TB_ALIGN_32 },
1310 { X86::VFNMADDPSr132rY, X86::VFNMADDPSr132mY, TB_ALIGN_32 },
1311 { X86::VFNMADDPDr132rY, X86::VFNMADDPDr132mY, TB_ALIGN_32 },
1312 { X86::VFNMADDPSr213rY, X86::VFNMADDPSr213mY, TB_ALIGN_32 },
1313 { X86::VFNMADDPDr213rY, X86::VFNMADDPDr213mY, TB_ALIGN_32 },
1314
1315 { X86::VFMSUBSSr231r, X86::VFMSUBSSr231m, 0 },
1316 { X86::VFMSUBSDr231r, X86::VFMSUBSDr231m, 0 },
1317 { X86::VFMSUBSSr132r, X86::VFMSUBSSr132m, 0 },
1318 { X86::VFMSUBSDr132r, X86::VFMSUBSDr132m, 0 },
1319 { X86::VFMSUBSSr213r, X86::VFMSUBSSr213m, 0 },
1320 { X86::VFMSUBSDr213r, X86::VFMSUBSDr213m, 0 },
1321 { X86::VFMSUBSSr213r_Int, X86::VFMSUBSSr213m_Int, 0 },
1322 { X86::VFMSUBSDr213r_Int, X86::VFMSUBSDr213m_Int, 0 },
1323
1324 { X86::VFMSUBPSr231r, X86::VFMSUBPSr231m, TB_ALIGN_16 },
1325 { X86::VFMSUBPDr231r, X86::VFMSUBPDr231m, TB_ALIGN_16 },
1326 { X86::VFMSUBPSr132r, X86::VFMSUBPSr132m, TB_ALIGN_16 },
1327 { X86::VFMSUBPDr132r, X86::VFMSUBPDr132m, TB_ALIGN_16 },
1328 { X86::VFMSUBPSr213r, X86::VFMSUBPSr213m, TB_ALIGN_16 },
1329 { X86::VFMSUBPDr213r, X86::VFMSUBPDr213m, TB_ALIGN_16 },
1330 { X86::VFMSUBPSr231rY, X86::VFMSUBPSr231mY, TB_ALIGN_32 },
1331 { X86::VFMSUBPDr231rY, X86::VFMSUBPDr231mY, TB_ALIGN_32 },
1332 { X86::VFMSUBPSr132rY, X86::VFMSUBPSr132mY, TB_ALIGN_32 },
1333 { X86::VFMSUBPDr132rY, X86::VFMSUBPDr132mY, TB_ALIGN_32 },
1334 { X86::VFMSUBPSr213rY, X86::VFMSUBPSr213mY, TB_ALIGN_32 },
1335 { X86::VFMSUBPDr213rY, X86::VFMSUBPDr213mY, TB_ALIGN_32 },
1336
1337 { X86::VFNMSUBSSr231r, X86::VFNMSUBSSr231m, 0 },
1338 { X86::VFNMSUBSDr231r, X86::VFNMSUBSDr231m, 0 },
1339 { X86::VFNMSUBSSr132r, X86::VFNMSUBSSr132m, 0 },
1340 { X86::VFNMSUBSDr132r, X86::VFNMSUBSDr132m, 0 },
1341 { X86::VFNMSUBSSr213r, X86::VFNMSUBSSr213m, 0 },
1342 { X86::VFNMSUBSDr213r, X86::VFNMSUBSDr213m, 0 },
1343 { X86::VFNMSUBSSr213r_Int, X86::VFNMSUBSSr213m_Int, 0 },
1344 { X86::VFNMSUBSDr213r_Int, X86::VFNMSUBSDr213m_Int, 0 },
1345
1346 { X86::VFNMSUBPSr231r, X86::VFNMSUBPSr231m, TB_ALIGN_16 },
1347 { X86::VFNMSUBPDr231r, X86::VFNMSUBPDr231m, TB_ALIGN_16 },
1348 { X86::VFNMSUBPSr132r, X86::VFNMSUBPSr132m, TB_ALIGN_16 },
1349 { X86::VFNMSUBPDr132r, X86::VFNMSUBPDr132m, TB_ALIGN_16 },
1350 { X86::VFNMSUBPSr213r, X86::VFNMSUBPSr213m, TB_ALIGN_16 },
1351 { X86::VFNMSUBPDr213r, X86::VFNMSUBPDr213m, TB_ALIGN_16 },
1352 { X86::VFNMSUBPSr231rY, X86::VFNMSUBPSr231mY, TB_ALIGN_32 },
1353 { X86::VFNMSUBPDr231rY, X86::VFNMSUBPDr231mY, TB_ALIGN_32 },
1354 { X86::VFNMSUBPSr132rY, X86::VFNMSUBPSr132mY, TB_ALIGN_32 },
1355 { X86::VFNMSUBPDr132rY, X86::VFNMSUBPDr132mY, TB_ALIGN_32 },
1356 { X86::VFNMSUBPSr213rY, X86::VFNMSUBPSr213mY, TB_ALIGN_32 },
1357 { X86::VFNMSUBPDr213rY, X86::VFNMSUBPDr213mY, TB_ALIGN_32 },
1358
1359 { X86::VFMADDSUBPSr231r, X86::VFMADDSUBPSr231m, TB_ALIGN_16 },
1360 { X86::VFMADDSUBPDr231r, X86::VFMADDSUBPDr231m, TB_ALIGN_16 },
1361 { X86::VFMADDSUBPSr132r, X86::VFMADDSUBPSr132m, TB_ALIGN_16 },
1362 { X86::VFMADDSUBPDr132r, X86::VFMADDSUBPDr132m, TB_ALIGN_16 },
1363 { X86::VFMADDSUBPSr213r, X86::VFMADDSUBPSr213m, TB_ALIGN_16 },
1364 { X86::VFMADDSUBPDr213r, X86::VFMADDSUBPDr213m, TB_ALIGN_16 },
1365 { X86::VFMADDSUBPSr231rY, X86::VFMADDSUBPSr231mY, TB_ALIGN_32 },
1366 { X86::VFMADDSUBPDr231rY, X86::VFMADDSUBPDr231mY, TB_ALIGN_32 },
1367 { X86::VFMADDSUBPSr132rY, X86::VFMADDSUBPSr132mY, TB_ALIGN_32 },
1368 { X86::VFMADDSUBPDr132rY, X86::VFMADDSUBPDr132mY, TB_ALIGN_32 },
1369 { X86::VFMADDSUBPSr213rY, X86::VFMADDSUBPSr213mY, TB_ALIGN_32 },
1370 { X86::VFMADDSUBPDr213rY, X86::VFMADDSUBPDr213mY, TB_ALIGN_32 },
1371
1372 { X86::VFMSUBADDPSr231r, X86::VFMSUBADDPSr231m, TB_ALIGN_16 },
1373 { X86::VFMSUBADDPDr231r, X86::VFMSUBADDPDr231m, TB_ALIGN_16 },
1374 { X86::VFMSUBADDPSr132r, X86::VFMSUBADDPSr132m, TB_ALIGN_16 },
1375 { X86::VFMSUBADDPDr132r, X86::VFMSUBADDPDr132m, TB_ALIGN_16 },
1376 { X86::VFMSUBADDPSr213r, X86::VFMSUBADDPSr213m, TB_ALIGN_16 },
1377 { X86::VFMSUBADDPDr213r, X86::VFMSUBADDPDr213m, TB_ALIGN_16 },
1378 { X86::VFMSUBADDPSr231rY, X86::VFMSUBADDPSr231mY, TB_ALIGN_32 },
1379 { X86::VFMSUBADDPDr231rY, X86::VFMSUBADDPDr231mY, TB_ALIGN_32 },
1380 { X86::VFMSUBADDPSr132rY, X86::VFMSUBADDPSr132mY, TB_ALIGN_32 },
1381 { X86::VFMSUBADDPDr132rY, X86::VFMSUBADDPDr132mY, TB_ALIGN_32 },
1382 { X86::VFMSUBADDPSr213rY, X86::VFMSUBADDPSr213mY, TB_ALIGN_32 },
1383 { X86::VFMSUBADDPDr213rY, X86::VFMSUBADDPDr213mY, TB_ALIGN_32 },
1384
1385 // FMA4 foldable patterns
1386 { X86::VFMADDSS4rr, X86::VFMADDSS4rm, 0 },
1387 { X86::VFMADDSD4rr, X86::VFMADDSD4rm, 0 },
1388 { X86::VFMADDPS4rr, X86::VFMADDPS4rm, TB_ALIGN_16 },
1389 { X86::VFMADDPD4rr, X86::VFMADDPD4rm, TB_ALIGN_16 },
1390 { X86::VFMADDPS4rrY, X86::VFMADDPS4rmY, TB_ALIGN_32 },
1391 { X86::VFMADDPD4rrY, X86::VFMADDPD4rmY, TB_ALIGN_32 },
1392 { X86::VFNMADDSS4rr, X86::VFNMADDSS4rm, 0 },
1393 { X86::VFNMADDSD4rr, X86::VFNMADDSD4rm, 0 },
1394 { X86::VFNMADDPS4rr, X86::VFNMADDPS4rm, TB_ALIGN_16 },
1395 { X86::VFNMADDPD4rr, X86::VFNMADDPD4rm, TB_ALIGN_16 },
1396 { X86::VFNMADDPS4rrY, X86::VFNMADDPS4rmY, TB_ALIGN_32 },
1397 { X86::VFNMADDPD4rrY, X86::VFNMADDPD4rmY, TB_ALIGN_32 },
1398 { X86::VFMSUBSS4rr, X86::VFMSUBSS4rm, 0 },
1399 { X86::VFMSUBSD4rr, X86::VFMSUBSD4rm, 0 },
1400 { X86::VFMSUBPS4rr, X86::VFMSUBPS4rm, TB_ALIGN_16 },
1401 { X86::VFMSUBPD4rr, X86::VFMSUBPD4rm, TB_ALIGN_16 },
1402 { X86::VFMSUBPS4rrY, X86::VFMSUBPS4rmY, TB_ALIGN_32 },
1403 { X86::VFMSUBPD4rrY, X86::VFMSUBPD4rmY, TB_ALIGN_32 },
1404 { X86::VFNMSUBSS4rr, X86::VFNMSUBSS4rm, 0 },
1405 { X86::VFNMSUBSD4rr, X86::VFNMSUBSD4rm, 0 },
1406 { X86::VFNMSUBPS4rr, X86::VFNMSUBPS4rm, TB_ALIGN_16 },
1407 { X86::VFNMSUBPD4rr, X86::VFNMSUBPD4rm, TB_ALIGN_16 },
1408 { X86::VFNMSUBPS4rrY, X86::VFNMSUBPS4rmY, TB_ALIGN_32 },
1409 { X86::VFNMSUBPD4rrY, X86::VFNMSUBPD4rmY, TB_ALIGN_32 },
1410 { X86::VFMADDSUBPS4rr, X86::VFMADDSUBPS4rm, TB_ALIGN_16 },
1411 { X86::VFMADDSUBPD4rr, X86::VFMADDSUBPD4rm, TB_ALIGN_16 },
1412 { X86::VFMADDSUBPS4rrY, X86::VFMADDSUBPS4rmY, TB_ALIGN_32 },
1413 { X86::VFMADDSUBPD4rrY, X86::VFMADDSUBPD4rmY, TB_ALIGN_32 },
1414 { X86::VFMSUBADDPS4rr, X86::VFMSUBADDPS4rm, TB_ALIGN_16 },
1415 { X86::VFMSUBADDPD4rr, X86::VFMSUBADDPD4rm, TB_ALIGN_16 },
1416 { X86::VFMSUBADDPS4rrY, X86::VFMSUBADDPS4rmY, TB_ALIGN_32 },
1417 { X86::VFMSUBADDPD4rrY, X86::VFMSUBADDPD4rmY, TB_ALIGN_32 },
1418 // AVX-512 VPERMI instructions with 3 source operands.
1419 { X86::VPERMI2Drr, X86::VPERMI2Drm, 0 },
1420 { X86::VPERMI2Qrr, X86::VPERMI2Qrm, 0 },
1421 { X86::VPERMI2PSrr, X86::VPERMI2PSrm, 0 },
1422 { X86::VPERMI2PDrr, X86::VPERMI2PDrm, 0 },
1423 };
1424
1425 for (unsigned i = 0, e = array_lengthof(OpTbl3); i != e; ++i) {
1426 unsigned RegOp = OpTbl3[i].RegOp;
1427 unsigned MemOp = OpTbl3[i].MemOp;
1428 unsigned Flags = OpTbl3[i].Flags;
1429 AddTableEntry(RegOp2MemOpTable3, MemOp2RegOpTable,
1430 RegOp, MemOp,
1431 // Index 3, folded load
1432 Flags | TB_INDEX_3 | TB_FOLDED_LOAD);
1433 }
1434
1435 }
1436
1437 void
1438 X86InstrInfo::AddTableEntry(RegOp2MemOpTableType &R2MTable,
1439 MemOp2RegOpTableType &M2RTable,
1440 unsigned RegOp, unsigned MemOp, unsigned Flags) {
1441 if ((Flags & TB_NO_FORWARD) == 0) {
1442 assert(!R2MTable.count(RegOp) && "Duplicate entry!");
1443 R2MTable[RegOp] = std::make_pair(MemOp, Flags);
1444 }
1445 if ((Flags & TB_NO_REVERSE) == 0) {
1446 assert(!M2RTable.count(MemOp) &&
1447 "Duplicated entries in unfolding maps?");
1448 M2RTable[MemOp] = std::make_pair(RegOp, Flags);
1449 }
1450 }
1451
1452 bool
1453 X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
1454 unsigned &SrcReg, unsigned &DstReg,
1455 unsigned &SubIdx) const {
1456 switch (MI.getOpcode()) {
1457 default: break;
1458 case X86::MOVSX16rr8:
1459 case X86::MOVZX16rr8:
1460 case X86::MOVSX32rr8:
1461 case X86::MOVZX32rr8:
1462 case X86::MOVSX64rr8:
1463 if (!TM.getSubtarget<X86Subtarget>().is64Bit())
1464 // It's not always legal to reference the low 8-bit of the larger
1465 // register in 32-bit mode.
1466 return false;
1467 case X86::MOVSX32rr16:
1468 case X86::MOVZX32rr16:
1469 case X86::MOVSX64rr16:
1470 case X86::MOVSX64rr32: {
1471 if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
1472 // Be conservative.
1473 return false;
1474 SrcReg = MI.getOperand(1).getReg();
1475 DstReg = MI.getOperand(0).getReg();
1476 switch (MI.getOpcode()) {
1477 default: llvm_unreachable("Unreachable!");
1478 case X86::MOVSX16rr8:
1479 case X86::MOVZX16rr8:
1480 case X86::MOVSX32rr8:
1481 case X86::MOVZX32rr8:
1482 case X86::MOVSX64rr8:
1483 SubIdx = X86::sub_8bit;
1484 break;
1485 case X86::MOVSX32rr16:
1486 case X86::MOVZX32rr16:
1487 case X86::MOVSX64rr16:
1488 SubIdx = X86::sub_16bit;
1489 break;
1490 case X86::MOVSX64rr32:
1491 SubIdx = X86::sub_32bit;
1492 break;
1493 }
1494 return true;
1495 }
1496 }
1497 return false;
1498 }
1499
1500 /// isFrameOperand - Return true and the FrameIndex if the specified
1501 /// operand and follow operands form a reference to the stack frame.
1502 bool X86InstrInfo::isFrameOperand(const MachineInstr *MI, unsigned int Op,
1503 int &FrameIndex) const {
1504 if (MI->getOperand(Op).isFI() && MI->getOperand(Op+1).isImm() &&
1505 MI->getOperand(Op+2).isReg() && MI->getOperand(Op+3).isImm() &&
1506 MI->getOperand(Op+1).getImm() == 1 &&
1507 MI->getOperand(Op+2).getReg() == 0 &&
1508 MI->getOperand(Op+3).getImm() == 0) {
1509 FrameIndex = MI->getOperand(Op).getIndex();
1510 return true;
1511 }
1512 return false;
1513 }
1514
1515 static bool isFrameLoadOpcode(int Opcode) {
1516 switch (Opcode) {
1517 default:
1518 return false;
1519 case X86::MOV8rm:
1520 case X86::MOV16rm:
1521 case X86::MOV32rm:
1522 case X86::MOV64rm:
1523 case X86::LD_Fp64m:
1524 case X86::MOVSSrm:
1525 case X86::MOVSDrm:
1526 case X86::MOVAPSrm:
1527 case X86::MOVAPDrm:
1528 case X86::MOVDQArm:
1529 case X86::VMOVSSrm:
1530 case X86::VMOVSDrm:
1531 case X86::VMOVAPSrm:
1532 case X86::VMOVAPDrm:
1533 case X86::VMOVDQArm:
1534 case X86::VMOVAPSYrm:
1535 case X86::VMOVAPDYrm:
1536 case X86::VMOVDQAYrm:
1537 case X86::MMX_MOVD64rm:
1538 case X86::MMX_MOVQ64rm:
1539 case X86::VMOVDQA32rm:
1540 case X86::VMOVDQA64rm:
1541 return true;
1542 }
1543 }
1544
1545 static bool isFrameStoreOpcode(int Opcode) {
1546 switch (Opcode) {
1547 default: break;
1548 case X86::MOV8mr:
1549 case X86::MOV16mr:
1550 case X86::MOV32mr:
1551 case X86::MOV64mr:
1552 case X86::ST_FpP64m:
1553 case X86::MOVSSmr:
1554 case X86::MOVSDmr:
1555 case X86::MOVAPSmr:
1556 case X86::MOVAPDmr:
1557 case X86::MOVDQAmr:
1558 case X86::VMOVSSmr:
1559 case X86::VMOVSDmr:
1560 case X86::VMOVAPSmr:
1561 case X86::VMOVAPDmr:
1562 case X86::VMOVDQAmr:
1563 case X86::VMOVAPSYmr:
1564 case X86::VMOVAPDYmr:
1565 case X86::VMOVDQAYmr:
1566 case X86::MMX_MOVD64mr:
1567 case X86::MMX_MOVQ64mr:
1568 case X86::MMX_MOVNTQmr:
1569 return true;
1570 }
1571 return false;
1572 }
1573
1574 unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
1575 int &FrameIndex) const {
1576 if (isFrameLoadOpcode(MI->getOpcode()))
1577 if (MI->getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
1578 return MI->getOperand(0).getReg();
1579 return 0;
1580 }
1581
1582 unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
1583 int &FrameIndex) const {
1584 if (isFrameLoadOpcode(MI->getOpcode())) {
1585 unsigned Reg;
1586 if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
1587 return Reg;
1588 // Check for post-frame index elimination operations
1589 const MachineMemOperand *Dummy;
1590 return hasLoadFromStackSlot(MI, Dummy, FrameIndex);
1591 }
1592 return 0;
1593 }
1594
1595 unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
1596 int &FrameIndex) const {
1597 if (isFrameStoreOpcode(MI->getOpcode()))
1598 if (MI->getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
1599 isFrameOperand(MI, 0, FrameIndex))
1600 return MI->getOperand(X86::AddrNumOperands).getReg();
1601 return 0;
1602 }
1603
1604 unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
1605 int &FrameIndex) const {
1606 if (isFrameStoreOpcode(MI->getOpcode())) {
1607 unsigned Reg;
1608 if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
1609 return Reg;
1610 // Check for post-frame index elimination operations
1611 const MachineMemOperand *Dummy;
1612 return hasStoreToStackSlot(MI, Dummy, FrameIndex);
1613 }
1614 return 0;
1615 }
1616
1617 /// regIsPICBase - Return true if register is PIC base (i.e.g defined by
1618 /// X86::MOVPC32r.
1619 static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
1620 // Don't waste compile time scanning use-def chains of physregs.
1621 if (!TargetRegisterInfo::isVirtualRegister(BaseReg))
1622 return false;
1623 bool isPICBase = false;
1624 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
1625 E = MRI.def_end(); I != E; ++I) {
1626 MachineInstr *DefMI = I.getOperand().getParent();
1627 if (DefMI->getOpcode() != X86::MOVPC32r)
1628 return false;
1629 assert(!isPICBase && "More than one PIC base?");
1630 isPICBase = true;
1631 }
1632 return isPICBase;
1633 }
1634
1635 bool
1636 X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI,
1637 AliasAnalysis *AA) const {
1638 switch (MI->getOpcode()) {
1639 default: break;
1640 case X86::MOV8rm:
1641 case X86::MOV16rm:
1642 case X86::MOV32rm:
1643 case X86::MOV64rm:
1644 case X86::LD_Fp64m:
1645 case X86::MOVSSrm:
1646 case X86::MOVSDrm:
1647 case X86::MOVAPSrm:
1648 case X86::MOVUPSrm:
1649 case X86::MOVAPDrm:
1650 case X86::MOVDQArm:
1651 case X86::MOVDQUrm:
1652 case X86::VMOVSSrm:
1653 case X86::VMOVSDrm:
1654 case X86::VMOVAPSrm:
1655 case X86::VMOVUPSrm:
1656 case X86::VMOVAPDrm:
1657 case X86::VMOVDQArm:
1658 case X86::VMOVDQUrm:
1659 case X86::VMOVAPSYrm:
1660 case X86::VMOVUPSYrm:
1661 case X86::VMOVAPDYrm:
1662 case X86::VMOVDQAYrm:
1663 case X86::VMOVDQUYrm:
1664 case X86::MMX_MOVD64rm:
1665 case X86::MMX_MOVQ64rm:
1666 case X86::FsVMOVAPSrm:
1667 case X86::FsVMOVAPDrm:
1668 case X86::FsMOVAPSrm:
1669 case X86::FsMOVAPDrm: {
1670 // Loads from constant pools are trivially rematerializable.
1671 if (MI->getOperand(1).isReg() &&
1672 MI->getOperand(2).isImm() &&
1673 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
1674 MI->isInvariantLoad(AA)) {
1675 unsigned BaseReg = MI->getOperand(1).getReg();
1676 if (BaseReg == 0 || BaseReg == X86::RIP)
1677 return true;
1678 // Allow re-materialization of PIC load.
1679 if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
1680 return false;
1681 const MachineFunction &MF = *MI->getParent()->getParent();
1682 const MachineRegisterInfo &MRI = MF.getRegInfo();
1683 return regIsPICBase(BaseReg, MRI);
1684 }
1685 return false;
1686 }
1687
1688 case X86::LEA32r:
1689 case X86::LEA64r: {
1690 if (MI->getOperand(2).isImm() &&
1691 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
1692 !MI->getOperand(4).isReg()) {
1693 // lea fi#, lea GV, etc. are all rematerializable.
1694 if (!MI->getOperand(1).isReg())
1695 return true;
1696 unsigned BaseReg = MI->getOperand(1).getReg();
1697 if (BaseReg == 0)
1698 return true;
1699 // Allow re-materialization of lea PICBase + x.
1700 const MachineFunction &MF = *MI->getParent()->getParent();
1701 const MachineRegisterInfo &MRI = MF.getRegInfo();
1702 return regIsPICBase(BaseReg, MRI);
1703 }
1704 return false;
1705 }
1706 }
1707
1708 // All other instructions marked M_REMATERIALIZABLE are always trivially
1709 // rematerializable.
1710 return true;
1711 }
1712
1713 /// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
1714 /// would clobber the EFLAGS condition register. Note the result may be
1715 /// conservative. If it cannot definitely determine the safety after visiting
1716 /// a few instructions in each direction it assumes it's not safe.
1717 static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
1718 MachineBasicBlock::iterator I) {
1719 MachineBasicBlock::iterator E = MBB.end();
1720
1721 // For compile time consideration, if we are not able to determine the
1722 // safety after visiting 4 instructions in each direction, we will assume
1723 // it's not safe.
1724 MachineBasicBlock::iterator Iter = I;
1725 for (unsigned i = 0; Iter != E && i < 4; ++i) {
1726 bool SeenDef = false;
1727 for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
1728 MachineOperand &MO = Iter->getOperand(j);
1729 if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS))
1730 SeenDef = true;
1731 if (!MO.isReg())
1732 continue;
1733 if (MO.getReg() == X86::EFLAGS) {
1734 if (MO.isUse())
1735 return false;
1736 SeenDef = true;
1737 }
1738 }
1739
1740 if (SeenDef)
1741 // This instruction defines EFLAGS, no need to look any further.
1742 return true;
1743 ++Iter;
1744 // Skip over DBG_VALUE.
1745 while (Iter != E && Iter->isDebugValue())
1746 ++Iter;
1747 }
1748
1749 // It is safe to clobber EFLAGS at the end of a block of no successor has it
1750 // live in.
1751 if (Iter == E) {
1752 for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(),
1753 SE = MBB.succ_end(); SI != SE; ++SI)
1754 if ((*SI)->isLiveIn(X86::EFLAGS))
1755 return false;
1756 return true;
1757 }
1758
1759 MachineBasicBlock::iterator B = MBB.begin();
1760 Iter = I;
1761 for (unsigned i = 0; i < 4; ++i) {
1762 // If we make it to the beginning of the block, it's safe to clobber
1763 // EFLAGS iff EFLAGS is not live-in.
1764 if (Iter == B)
1765 return !MBB.isLiveIn(X86::EFLAGS);
1766
1767 --Iter;
1768 // Skip over DBG_VALUE.
1769 while (Iter != B && Iter->isDebugValue())
1770 --Iter;
1771
1772 bool SawKill = false;
1773 for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
1774 MachineOperand &MO = Iter->getOperand(j);
1775 // A register mask may clobber EFLAGS, but we should still look for a
1776 // live EFLAGS def.
1777 if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS))
1778 SawKill = true;
1779 if (MO.isReg() && MO.getReg() == X86::EFLAGS) {
1780 if (MO.isDef()) return MO.isDead();
1781 if (MO.isKill()) SawKill = true;
1782 }
1783 }
1784
1785 if (SawKill)
1786 // This instruction kills EFLAGS and doesn't redefine it, so
1787 // there's no need to look further.
1788 return true;
1789 }
1790
1791 // Conservative answer.
1792 return false;
1793 }
1794
1795 void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
1796 MachineBasicBlock::iterator I,
1797 unsigned DestReg, unsigned SubIdx,
1798 const MachineInstr *Orig,
1799 const TargetRegisterInfo &TRI) const {
1800 // MOV32r0 is implemented with a xor which clobbers condition code.
1801 // Re-materialize it as movri instructions to avoid side effects.
1802 unsigned Opc = Orig->getOpcode();
1803 if (Opc == X86::MOV32r0 && !isSafeToClobberEFLAGS(MBB, I)) {
1804 DebugLoc DL = Orig->getDebugLoc();
1805 BuildMI(MBB, I, DL, get(X86::MOV32ri)).addOperand(Orig->getOperand(0))
1806 .addImm(0);
1807 } else {
1808 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
1809 MBB.insert(I, MI);
1810 }
1811
1812 MachineInstr *NewMI = prior(I);
1813 NewMI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI);
1814 }
1815
1816 /// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
1817 /// is not marked dead.
1818 static bool hasLiveCondCodeDef(MachineInstr *MI) {
1819 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1820 MachineOperand &MO = MI->getOperand(i);
1821 if (MO.isReg() && MO.isDef() &&
1822 MO.getReg() == X86::EFLAGS && !MO.isDead()) {
1823 return true;
1824 }
1825 }
1826 return false;
1827 }
1828
1829 /// getTruncatedShiftCount - check whether the shift count for a machine operand
1830 /// is non-zero.
1831 inline static unsigned getTruncatedShiftCount(MachineInstr *MI,
1832 unsigned ShiftAmtOperandIdx) {
1833 // The shift count is six bits with the REX.W prefix and five bits without.
1834 unsigned ShiftCountMask = (MI->getDesc().TSFlags & X86II::REX_W) ? 63 : 31;
1835 unsigned Imm = MI->getOperand(ShiftAmtOperandIdx).getImm();
1836 return Imm & ShiftCountMask;
1837 }
1838
1839 /// isTruncatedShiftCountForLEA - check whether the given shift count is appropriate
1840 /// can be represented by a LEA instruction.
1841 inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) {
1842 // Left shift instructions can be transformed into load-effective-address
1843 // instructions if we can encode them appropriately.
1844 // A LEA instruction utilizes a SIB byte to encode it's scale factor.
1845 // The SIB.scale field is two bits wide which means that we can encode any
1846 // shift amount less than 4.
1847 return ShAmt < 4 && ShAmt > 0;
1848 }
1849
1850 bool X86InstrInfo::classifyLEAReg(MachineInstr *MI, const MachineOperand &Src,
1851 unsigned Opc, bool AllowSP,
1852 unsigned &NewSrc, bool &isKill, bool &isUndef,
1853 MachineOperand &ImplicitOp) const {
1854 MachineFunction &MF = *MI->getParent()->getParent();
1855 const TargetRegisterClass *RC;
1856 if (AllowSP) {
1857 RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass;
1858 } else {
1859 RC = Opc != X86::LEA32r ?
1860 &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass;
1861 }
1862 unsigned SrcReg = Src.getReg();
1863
1864 // For both LEA64 and LEA32 the register already has essentially the right
1865 // type (32-bit or 64-bit) we may just need to forbid SP.
1866 if (Opc != X86::LEA64_32r) {
1867 NewSrc = SrcReg;
1868 isKill = Src.isKill();
1869 isUndef = Src.isUndef();
1870
1871 if (TargetRegisterInfo::isVirtualRegister(NewSrc) &&
1872 !MF.getRegInfo().constrainRegClass(NewSrc, RC))
1873 return false;
1874
1875 return true;
1876 }
1877
1878 // This is for an LEA64_32r and incoming registers are 32-bit. One way or
1879 // another we need to add 64-bit registers to the final MI.
1880 if (TargetRegisterInfo::isPhysicalRegister(SrcReg)) {
1881 ImplicitOp = Src;
1882 ImplicitOp.setImplicit();
1883
1884 NewSrc = getX86SubSuperRegister(Src.getReg(), MVT::i64);
1885 MachineBasicBlock::LivenessQueryResult LQR =
1886 MI->getParent()->computeRegisterLiveness(&getRegisterInfo(), NewSrc, MI);
1887
1888 switch (LQR) {
1889 case MachineBasicBlock::LQR_Unknown:
1890 // We can't give sane liveness flags to the instruction, abandon LEA
1891 // formation.
1892 return false;
1893 case MachineBasicBlock::LQR_Live:
1894 isKill = MI->killsRegister(SrcReg);
1895 isUndef = false;
1896 break;
1897 default:
1898 // The physreg itself is dead, so we have to use it as an <undef>.
1899 isKill = false;
1900 isUndef = true;
1901 break;
1902 }
1903 } else {
1904 // Virtual register of the wrong class, we have to create a temporary 64-bit
1905 // vreg to feed into the LEA.
1906 NewSrc = MF.getRegInfo().createVirtualRegister(RC);
1907 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1908 get(TargetOpcode::COPY))
1909 .addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit)
1910 .addOperand(Src);
1911
1912 // Which is obviously going to be dead after we're done with it.
1913 isKill = true;
1914 isUndef = false;
1915 }
1916
1917 // We've set all the parameters without issue.
1918 return true;
1919 }
1920
1921 /// convertToThreeAddressWithLEA - Helper for convertToThreeAddress when
1922 /// 16-bit LEA is disabled, use 32-bit LEA to form 3-address code by promoting
1923 /// to a 32-bit superregister and then truncating back down to a 16-bit
1924 /// subregister.
1925 MachineInstr *
1926 X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
1927 MachineFunction::iterator &MFI,
1928 MachineBasicBlock::iterator &MBBI,
1929 LiveVariables *LV) const {
1930 MachineInstr *MI = MBBI;
1931 unsigned Dest = MI->getOperand(0).getReg();
1932 unsigned Src = MI->getOperand(1).getReg();
1933 bool isDead = MI->getOperand(0).isDead();
1934 bool isKill = MI->getOperand(1).isKill();
1935
1936 MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
1937 unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1938 unsigned Opc, leaInReg;
1939 if (TM.getSubtarget<X86Subtarget>().is64Bit()) {
1940 Opc = X86::LEA64_32r;
1941 leaInReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
1942 } else {
1943 Opc = X86::LEA32r;
1944 leaInReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
1945 }
1946
1947 // Build and insert into an implicit UNDEF value. This is OK because
1948 // well be shifting and then extracting the lower 16-bits.
1949 // This has the potential to cause partial register stall. e.g.
1950 // movw (%rbp,%rcx,2), %dx
1951 // leal -65(%rdx), %esi
1952 // But testing has shown this *does* help performance in 64-bit mode (at
1953 // least on modern x86 machines).
1954 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg);
1955 MachineInstr *InsMI =
1956 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
1957 .addReg(leaInReg, RegState::Define, X86::sub_16bit)
1958 .addReg(Src, getKillRegState(isKill));
1959
1960 MachineInstrBuilder MIB = BuildMI(*MFI, MBBI, MI->getDebugLoc(),
1961 get(Opc), leaOutReg);
1962 switch (MIOpc) {
1963 default: llvm_unreachable("Unreachable!");
1964 case X86::SHL16ri: {
1965 unsigned ShAmt = MI->getOperand(2).getImm();
1966 MIB.addReg(0).addImm(1 << ShAmt)
1967 .addReg(leaInReg, RegState::Kill).addImm(0).addReg(0);
1968 break;
1969 }
1970 case X86::INC16r:
1971 case X86::INC64_16r:
1972 addRegOffset(MIB, leaInReg, true, 1);
1973 break;
1974 case X86::DEC16r:
1975 case X86::DEC64_16r:
1976 addRegOffset(MIB, leaInReg, true, -1);
1977 break;
1978 case X86::ADD16ri:
1979 case X86::ADD16ri8:
1980 case X86::ADD16ri_DB:
1981 case X86::ADD16ri8_DB:
1982 addRegOffset(MIB, leaInReg, true, MI->getOperand(2).getImm());
1983 break;
1984 case X86::ADD16rr:
1985 case X86::ADD16rr_DB: {
1986 unsigned Src2 = MI->getOperand(2).getReg();
1987 bool isKill2 = MI->getOperand(2).isKill();
1988 unsigned leaInReg2 = 0;
1989 MachineInstr *InsMI2 = 0;
1990 if (Src == Src2) {
1991 // ADD16rr %reg1028<kill>, %reg1028
1992 // just a single insert_subreg.
1993 addRegReg(MIB, leaInReg, true, leaInReg, false);
1994 } else {
1995 if (TM.getSubtarget<X86Subtarget>().is64Bit())
1996 leaInReg2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
1997 else
1998 leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
1999 // Build and insert into an implicit UNDEF value. This is OK because
2000 // well be shifting and then extracting the lower 16-bits.
2001 BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(X86::IMPLICIT_DEF),leaInReg2);
2002 InsMI2 =
2003 BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(TargetOpcode::COPY))
2004 .addReg(leaInReg2, RegState::Define, X86::sub_16bit)
2005 .addReg(Src2, getKillRegState(isKill2));
2006 addRegReg(MIB, leaInReg, true, leaInReg2, true);
2007 }
2008 if (LV && isKill2 && InsMI2)
2009 LV->replaceKillInstruction(Src2, MI, InsMI2);
2010 break;
2011 }
2012 }
2013
2014 MachineInstr *NewMI = MIB;
2015 MachineInstr *ExtMI =
2016 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
2017 .addReg(Dest, RegState::Define | getDeadRegState(isDead))
2018 .addReg(leaOutReg, RegState::Kill, X86::sub_16bit);
2019
2020 if (LV) {
2021 // Update live variables
2022 LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
2023 LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
2024 if (isKill)
2025 LV->replaceKillInstruction(Src, MI, InsMI);
2026 if (isDead)
2027 LV->replaceKillInstruction(Dest, MI, ExtMI);
2028 }
2029
2030 return ExtMI;
2031 }
2032
2033 /// convertToThreeAddress - This method must be implemented by targets that
2034 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
2035 /// may be able to convert a two-address instruction into a true
2036 /// three-address instruction on demand. This allows the X86 target (for
2037 /// example) to convert ADD and SHL instructions into LEA instructions if they
2038 /// would require register copies due to two-addressness.
2039 ///
2040 /// This method returns a null pointer if the transformation cannot be
2041 /// performed, otherwise it returns the new instruction.
2042 ///
2043 MachineInstr *
2044 X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
2045 MachineBasicBlock::iterator &MBBI,
2046 LiveVariables *LV) const {
2047 MachineInstr *MI = MBBI;
2048
2049 // The following opcodes also sets the condition code register(s). Only
2050 // convert them to equivalent lea if the condition code register def's
2051 // are dead!
2052 if (hasLiveCondCodeDef(MI))
2053 return 0;
2054
2055 MachineFunction &MF = *MI->getParent()->getParent();
2056 // All instructions input are two-addr instructions. Get the known operands.
2057 const MachineOperand &Dest = MI->getOperand(0);
2058 const MachineOperand &Src = MI->getOperand(1);
2059
2060 MachineInstr *NewMI = NULL;
2061 // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When
2062 // we have better subtarget support, enable the 16-bit LEA generation here.
2063 // 16-bit LEA is also slow on Core2.
2064 bool DisableLEA16 = true;
2065 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
2066
2067 unsigned MIOpc = MI->getOpcode();
2068 switch (MIOpc) {
2069 case X86::SHUFPSrri: {
2070 assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
2071 if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
2072
2073 unsigned B = MI->getOperand(1).getReg();
2074 unsigned C = MI->getOperand(2).getReg();
2075 if (B != C) return 0;
2076 unsigned M = MI->getOperand(3).getImm();
2077 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
2078 .addOperand(Dest).addOperand(Src).addImm(M);
2079 break;
2080 }
2081 case X86::SHUFPDrri: {
2082 assert(MI->getNumOperands() == 4 && "Unknown shufpd instruction!");
2083 if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
2084
2085 unsigned B = MI->getOperand(1).getReg();
2086 unsigned C = MI->getOperand(2).getReg();
2087 if (B != C) return 0;
2088 unsigned M = MI->getOperand(3).getImm();
2089
2090 // Convert to PSHUFD mask.
2091 M = ((M & 1) << 1) | ((M & 1) << 3) | ((M & 2) << 4) | ((M & 2) << 6)| 0x44;
2092
2093 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
2094 .addOperand(Dest).addOperand(Src).addImm(M);
2095 break;
2096 }
2097 case X86::SHL64ri: {
2098 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
2099 unsigned ShAmt = getTruncatedShiftCount(MI, 2);
2100 if (!isTruncatedShiftCountForLEA(ShAmt)) return 0;
2101
2102 // LEA can't handle RSP.
2103 if (TargetRegisterInfo::isVirtualRegister(Src.getReg()) &&
2104 !MF.getRegInfo().constrainRegClass(Src.getReg(),
2105 &X86::GR64_NOSPRegClass))
2106 return 0;
2107
2108 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
2109 .addOperand(Dest)
2110 .addReg(0).addImm(1 << ShAmt).addOperand(Src).addImm(0).addReg(0);
2111 break;
2112 }
2113 case X86::SHL32ri: {
2114 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
2115 unsigned ShAmt = getTruncatedShiftCount(MI, 2);
2116 if (!isTruncatedShiftCountForLEA(ShAmt)) return 0;
2117
2118 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
2119
2120 // LEA can't handle ESP.
2121 bool isKill, isUndef;
2122 unsigned SrcReg;
2123 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
2124 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
2125 SrcReg, isKill, isUndef, ImplicitOp))
2126 return 0;
2127
2128 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
2129 .addOperand(Dest)
2130 .addReg(0).addImm(1 << ShAmt)
2131 .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef))
2132 .addImm(0).addReg(0);
2133 if (ImplicitOp.getReg() != 0)
2134 MIB.addOperand(ImplicitOp);
2135 NewMI = MIB;
2136
2137 break;
2138 }
2139 case X86::SHL16ri: {
2140 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
2141 unsigned ShAmt = getTruncatedShiftCount(MI, 2);
2142 if (!isTruncatedShiftCountForLEA(ShAmt)) return 0;
2143
2144 if (DisableLEA16)
2145 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
2146 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
2147 .addOperand(Dest)
2148 .addReg(0).addImm(1 << ShAmt).addOperand(Src).addImm(0).addReg(0);
2149 break;
2150 }
2151 default: {
2152
2153 switch (MIOpc) {
2154 default: return 0;
2155 case X86::INC64r:
2156 case X86::INC32r:
2157 case X86::INC64_32r: {
2158 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
2159 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
2160 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
2161 bool isKill, isUndef;
2162 unsigned SrcReg;
2163 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
2164 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
2165 SrcReg, isKill, isUndef, ImplicitOp))
2166 return 0;
2167
2168 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
2169 .addOperand(Dest)
2170 .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef));
2171 if (ImplicitOp.getReg() != 0)
2172 MIB.addOperand(ImplicitOp);
2173
2174 NewMI = addOffset(MIB, 1);
2175 break;
2176 }
2177 case X86::INC16r:
2178 case X86::INC64_16r:
2179 if (DisableLEA16)
2180 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
2181 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
2182 NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
2183 .addOperand(Dest).addOperand(Src), 1);
2184 break;
2185 case X86::DEC64r:
2186 case X86::DEC32r:
2187 case X86::DEC64_32r: {
2188 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
2189 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
2190 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
2191
2192 bool isKill, isUndef;
2193 unsigned SrcReg;
2194 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
2195 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
2196 SrcReg, isKill, isUndef, ImplicitOp))
2197 return 0;
2198
2199 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
2200 .addOperand(Dest)
2201 .addReg(SrcReg, getUndefRegState(isUndef) | getKillRegState(isKill));
2202 if (ImplicitOp.getReg() != 0)
2203 MIB.addOperand(ImplicitOp);
2204
2205 NewMI = addOffset(MIB, -1);
2206
2207 break;
2208 }
2209 case X86::DEC16r:
2210 case X86::DEC64_16r:
2211 if (DisableLEA16)
2212 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
2213 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
2214 NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
2215 .addOperand(Dest).addOperand(Src), -1);
2216 break;
2217 case X86::ADD64rr:
2218 case X86::ADD64rr_DB:
2219 case X86::ADD32rr:
2220 case X86::ADD32rr_DB: {
2221 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
2222 unsigned Opc;
2223 if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB)
2224 Opc = X86::LEA64r;
2225 else
2226 Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
2227
2228 bool isKill, isUndef;
2229 unsigned SrcReg;
2230 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
2231 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
2232 SrcReg, isKill, isUndef, ImplicitOp))
2233 return 0;
2234
2235 const MachineOperand &Src2 = MI->getOperand(2);
2236 bool isKill2, isUndef2;
2237 unsigned SrcReg2;
2238 MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false);
2239 if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/ false,
2240 SrcReg2, isKill2, isUndef2, ImplicitOp2))
2241 return 0;
2242
2243 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
2244 .addOperand(Dest);
2245 if (ImplicitOp.getReg() != 0)
2246 MIB.addOperand(ImplicitOp);
2247 if (ImplicitOp2.getReg() != 0)
2248 MIB.addOperand(ImplicitOp2);
2249
2250 NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2);
2251
2252 // Preserve undefness of the operands.
2253 NewMI->getOperand(1).setIsUndef(isUndef);
2254 NewMI->getOperand(3).setIsUndef(isUndef2);
2255
2256 if (LV && Src2.isKill())
2257 LV->replaceKillInstruction(SrcReg2, MI, NewMI);
2258 break;
2259 }
2260 case X86::ADD16rr:
2261 case X86::ADD16rr_DB: {
2262 if (DisableLEA16)
2263 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
2264 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
2265 unsigned Src2 = MI->getOperand(2).getReg();
2266 bool isKill2 = MI->getOperand(2).isKill();
2267 NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
2268 .addOperand(Dest),
2269 Src.getReg(), Src.isKill(), Src2, isKill2);
2270
2271 // Preserve undefness of the operands.
2272 bool isUndef = MI->getOperand(1).isUndef();
2273 bool isUndef2 = MI->getOperand(2).isUndef();
2274 NewMI->getOperand(1).setIsUndef(isUndef);
2275 NewMI->getOperand(3).setIsUndef(isUndef2);
2276
2277 if (LV && isKill2)
2278 LV->replaceKillInstruction(Src2, MI, NewMI);
2279 break;
2280 }
2281 case X86::ADD64ri32:
2282 case X86::ADD64ri8:
2283 case X86::ADD64ri32_DB:
2284 case X86::ADD64ri8_DB:
2285 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
2286 NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
2287 .addOperand(Dest).addOperand(Src),
2288 MI->getOperand(2).getImm());
2289 break;
2290 case X86::ADD32ri:
2291 case X86::ADD32ri8:
2292 case X86::ADD32ri_DB:
2293 case X86::ADD32ri8_DB: {
2294 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
2295 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
2296
2297 bool isKill, isUndef;
2298 unsigned SrcReg;
2299 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
2300 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
2301 SrcReg, isKill, isUndef, ImplicitOp))
2302 return 0;
2303
2304 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
2305 .addOperand(Dest)
2306 .addReg(SrcReg, getUndefRegState(isUndef) | getKillRegState(isKill));
2307 if (ImplicitOp.getReg() != 0)
2308 MIB.addOperand(ImplicitOp);
2309
2310 NewMI = addOffset(MIB, MI->getOperand(2).getImm());
2311 break;
2312 }
2313 case X86::ADD16ri:
2314 case X86::ADD16ri8:
2315 case X86::ADD16ri_DB:
2316 case X86::ADD16ri8_DB:
2317 if (DisableLEA16)
2318 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
2319 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
2320 NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
2321 .addOperand(Dest).addOperand(Src),
2322 MI->getOperand(2).getImm());
2323 break;
2324 }
2325 }
2326 }
2327
2328 if (!NewMI) return 0;
2329
2330 if (LV) { // Update live variables
2331 if (Src.isKill())
2332 LV->replaceKillInstruction(Src.getReg(), MI, NewMI);
2333 if (Dest.isDead())
2334 LV->replaceKillInstruction(Dest.getReg(), MI, NewMI);
2335 }
2336
2337 MFI->insert(MBBI, NewMI); // Insert the new inst
2338 return NewMI;
2339 }
2340
2341 /// commuteInstruction - We have a few instructions that must be hacked on to
2342 /// commute them.
2343 ///
2344 MachineInstr *
2345 X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
2346 switch (MI->getOpcode()) {
2347 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
2348 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
2349 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
2350 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
2351 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
2352 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
2353 unsigned Opc;
2354 unsigned Size;
2355 switch (MI->getOpcode()) {
2356 default: llvm_unreachable("Unreachable!");
2357 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
2358 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
2359 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
2360 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
2361 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
2362 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
2363 }
2364 unsigned Amt = MI->getOperand(3).getImm();
2365 if (NewMI) {
2366 MachineFunction &MF = *MI->getParent()->getParent();
2367 MI = MF.CloneMachineInstr(MI);
2368 NewMI = false;
2369 }
2370 MI->setDesc(get(Opc));
2371 MI->getOperand(3).setImm(Size-Amt);
2372 return TargetInstrInfo::commuteInstruction(MI, NewMI);
2373 }
2374 case X86::CMOVB16rr: case X86::CMOVB32rr: case X86::CMOVB64rr:
2375 case X86::CMOVAE16rr: case X86::CMOVAE32rr: case X86::CMOVAE64rr:
2376 case X86::CMOVE16rr: case X86::CMOVE32rr: case X86::CMOVE64rr:
2377 case X86::CMOVNE16rr: case X86::CMOVNE32rr: case X86::CMOVNE64rr:
2378 case X86::CMOVBE16rr: case X86::CMOVBE32rr: case X86::CMOVBE64rr:
2379 case X86::CMOVA16rr: case X86::CMOVA32rr: case X86::CMOVA64rr:
2380 case X86::CMOVL16rr: case X86::CMOVL32rr: case X86::CMOVL64rr:
2381 case X86::CMOVGE16rr: case X86::CMOVGE32rr: case X86::CMOVGE64rr:
2382 case X86::CMOVLE16rr: case X86::CMOVLE32rr: case X86::CMOVLE64rr:
2383 case X86::CMOVG16rr: case X86::CMOVG32rr: case X86::CMOVG64rr:
2384 case X86::CMOVS16rr: case X86::CMOVS32rr: case X86::CMOVS64rr:
2385 case X86::CMOVNS16rr: case X86::CMOVNS32rr: case X86::CMOVNS64rr:
2386 case X86::CMOVP16rr: case X86::CMOVP32rr: case X86::CMOVP64rr:
2387 case X86::CMOVNP16rr: case X86::CMOVNP32rr: case X86::CMOVNP64rr:
2388 case X86::CMOVO16rr: case X86::CMOVO32rr: case X86::CMOVO64rr:
2389 case X86::CMOVNO16rr: case X86::CMOVNO32rr: case X86::CMOVNO64rr: {
2390 unsigned Opc;
2391 switch (MI->getOpcode()) {
2392 default: llvm_unreachable("Unreachable!");
2393 case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break;
2394 case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break;
2395 case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break;
2396 case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
2397 case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
2398 case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
2399 case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break;
2400 case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break;
2401 case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break;
2402 case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
2403 case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
2404 case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
2405 case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
2406 case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
2407 case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
2408 case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break;
2409 case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break;
2410 case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break;
2411 case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break;
2412 case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break;
2413 case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break;
2414 case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
2415 case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
2416 case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
2417 case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
2418 case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
2419 case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
2420 case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break;
2421 case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break;
2422 case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break;
2423 case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break;
2424 case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break;
2425 case X86::CMOVS64rr: Opc = X86::CMOVNS64rr; break;
2426 case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
2427 case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
2428 case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
2429 case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break;
2430 case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break;
2431 case X86::CMOVP64rr: Opc = X86::CMOVNP64rr; break;
2432 case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
2433 case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
2434 case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
2435 case X86::CMOVO16rr: Opc = X86::CMOVNO16rr; break;
2436 case X86::CMOVO32rr: Opc = X86::CMOVNO32rr; break;
2437 case X86::CMOVO64rr: Opc = X86::CMOVNO64rr; break;
2438 case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
2439 case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
2440 case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
2441 }
2442 if (NewMI) {
2443 MachineFunction &MF = *MI->getParent()->getParent();
2444 MI = MF.CloneMachineInstr(MI);
2445 NewMI = false;
2446 }
2447 MI->setDesc(get(Opc));
2448 // Fallthrough intended.
2449 }
2450 default:
2451 return TargetInstrInfo::commuteInstruction(MI, NewMI);
2452 }
2453 }
2454
2455 static X86::CondCode getCondFromBranchOpc(unsigned BrOpc) {
2456 switch (BrOpc) {
2457 default: return X86::COND_INVALID;
2458 case X86::JE_4: return X86::COND_E;
2459 case X86::JNE_4: return X86::COND_NE;
2460 case X86::JL_4: return X86::COND_L;
2461 case X86::JLE_4: return X86::COND_LE;
2462 case X86::JG_4: return X86::COND_G;
2463 case X86::JGE_4: return X86::COND_GE;
2464 case X86::JB_4: return X86::COND_B;
2465 case X86::JBE_4: return X86::COND_BE;
2466 case X86::JA_4: return X86::COND_A;
2467 case X86::JAE_4: return X86::COND_AE;
2468 case X86::JS_4: return X86::COND_S;
2469 case X86::JNS_4: return X86::COND_NS;
2470 case X86::JP_4: return X86::COND_P;
2471 case X86::JNP_4: return X86::COND_NP;
2472 case X86::JO_4: return X86::COND_O;
2473 case X86::JNO_4: return X86::COND_NO;
2474 }
2475 }
2476
2477 /// getCondFromSETOpc - return condition code of a SET opcode.
2478 static X86::CondCode getCondFromSETOpc(unsigned Opc) {
2479 switch (Opc) {
2480 default: return X86::COND_INVALID;
2481 case X86::SETAr: case X86::SETAm: return X86::COND_A;
2482 case X86::SETAEr: case X86::SETAEm: return X86::COND_AE;
2483 case X86::SETBr: case X86::SETBm: return X86::COND_B;
2484 case X86::SETBEr: case X86::SETBEm: return X86::COND_BE;
2485 case X86::SETEr: case X86::SETEm: return X86::COND_E;
2486 case X86::SETGr: case X86::SETGm: return X86::COND_G;
2487 case X86::SETGEr: case X86::SETGEm: return X86::COND_GE;
2488 case X86::SETLr: case X86::SETLm: return X86::COND_L;
2489 case X86::SETLEr: case X86::SETLEm: return X86::COND_LE;
2490 case X86::SETNEr: case X86::SETNEm: return X86::COND_NE;
2491 case X86::SETNOr: case X86::SETNOm: return X86::COND_NO;
2492 case X86::SETNPr: case X86::SETNPm: return X86::COND_NP;
2493 case X86::SETNSr: case X86::SETNSm: return X86::COND_NS;
2494 case X86::SETOr: case X86::SETOm: return X86::COND_O;
2495 case X86::SETPr: case X86::SETPm: return X86::COND_P;
2496 case X86::SETSr: case X86::SETSm: return X86::COND_S;
2497 }
2498 }
2499
2500 /// getCondFromCmovOpc - return condition code of a CMov opcode.
2501 X86::CondCode X86::getCondFromCMovOpc(unsigned Opc) {
2502 switch (Opc) {
2503 default: return X86::COND_INVALID;
2504 case X86::CMOVA16rm: case X86::CMOVA16rr: case X86::CMOVA32rm:
2505 case X86::CMOVA32rr: case X86::CMOVA64rm: case X86::CMOVA64rr:
2506 return X86::COND_A;
2507 case X86::CMOVAE16rm: case X86::CMOVAE16rr: case X86::CMOVAE32rm:
2508 case X86::CMOVAE32rr: case X86::CMOVAE64rm: case X86::CMOVAE64rr:
2509 return X86::COND_AE;
2510 case X86::CMOVB16rm: case X86::CMOVB16rr: case X86::CMOVB32rm:
2511 case X86::CMOVB32rr: case X86::CMOVB64rm: case X86::CMOVB64rr:
2512 return X86::COND_B;
2513 case X86::CMOVBE16rm: case X86::CMOVBE16rr: case X86::CMOVBE32rm:
2514 case X86::CMOVBE32rr: case X86::CMOVBE64rm: case X86::CMOVBE64rr:
2515 return X86::COND_BE;
2516 case X86::CMOVE16rm: case X86::CMOVE16rr: case X86::CMOVE32rm:
2517 case X86::CMOVE32rr: case X86::CMOVE64rm: case X86::CMOVE64rr:
2518 return X86::COND_E;
2519 case X86::CMOVG16rm: case X86::CMOVG16rr: case X86::CMOVG32rm:
2520 case X86::CMOVG32rr: case X86::CMOVG64rm: case X86::CMOVG64rr:
2521 return X86::COND_G;
2522 case X86::CMOVGE16rm: case X86::CMOVGE16rr: case X86::CMOVGE32rm:
2523 case X86::CMOVGE32rr: case X86::CMOVGE64rm: case X86::CMOVGE64rr:
2524 return X86::COND_GE;
2525 case X86::CMOVL16rm: case X86::CMOVL16rr: case X86::CMOVL32rm:
2526 case X86::CMOVL32rr: case X86::CMOVL64rm: case X86::CMOVL64rr:
2527 return X86::COND_L;
2528 case X86::CMOVLE16rm: case X86::CMOVLE16rr: case X86::CMOVLE32rm:
2529 case X86::CMOVLE32rr: case X86::CMOVLE64rm: case X86::CMOVLE64rr:
2530 return X86::COND_LE;
2531 case X86::CMOVNE16rm: case X86::CMOVNE16rr: case X86::CMOVNE32rm:
2532 case X86::CMOVNE32rr: case X86::CMOVNE64rm: case X86::CMOVNE64rr:
2533 return X86::COND_NE;
2534 case X86::CMOVNO16rm: case X86::CMOVNO16rr: case X86::CMOVNO32rm:
2535 case X86::CMOVNO32rr: case X86::CMOVNO64rm: case X86::CMOVNO64rr:
2536 return X86::COND_NO;
2537 case X86::CMOVNP16rm: case X86::CMOVNP16rr: case X86::CMOVNP32rm:
2538 case X86::CMOVNP32rr: case X86::CMOVNP64rm: case X86::CMOVNP64rr:
2539 return X86::COND_NP;
2540 case X86::CMOVNS16rm: case X86::CMOVNS16rr: case X86::CMOVNS32rm:
2541 case X86::CMOVNS32rr: case X86::CMOVNS64rm: case X86::CMOVNS64rr:
2542 return X86::COND_NS;
2543 case X86::CMOVO16rm: case X86::CMOVO16rr: case X86::CMOVO32rm:
2544 case X86::CMOVO32rr: case X86::CMOVO64rm: case X86::CMOVO64rr:
2545 return X86::COND_O;
2546 case X86::CMOVP16rm: case X86::CMOVP16rr: case X86::CMOVP32rm:
2547 case X86::CMOVP32rr: case X86::CMOVP64rm: case X86::CMOVP64rr:
2548 return X86::COND_P;
2549 case X86::CMOVS16rm: case X86::CMOVS16rr: case X86::CMOVS32rm:
2550 case X86::CMOVS32rr: case X86::CMOVS64rm: case X86::CMOVS64rr:
2551 return X86::COND_S;
2552 }
2553 }
2554
2555 unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
2556 switch (CC) {
2557 default: llvm_unreachable("Illegal condition code!");
2558 case X86::COND_E: return X86::JE_4;
2559 case X86::COND_NE: return X86::JNE_4;
2560 case X86::COND_L: return X86::JL_4;
2561 case X86::COND_LE: return X86::JLE_4;
2562 case X86::COND_G: return X86::JG_4;
2563 case X86::COND_GE: return X86::JGE_4;
2564 case X86::COND_B: return X86::JB_4;
2565 case X86::COND_BE: return X86::JBE_4;
2566 case X86::COND_A: return X86::JA_4;
2567 case X86::COND_AE: return X86::JAE_4;
2568 case X86::COND_S: return X86::JS_4;
2569 case X86::COND_NS: return X86::JNS_4;
2570 case X86::COND_P: return X86::JP_4;
2571 case X86::COND_NP: return X86::JNP_4;
2572 case X86::COND_O: return X86::JO_4;
2573 case X86::COND_NO: return X86::JNO_4;
2574 }
2575 }
2576
2577 /// GetOppositeBranchCondition - Return the inverse of the specified condition,
2578 /// e.g. turning COND_E to COND_NE.
2579 X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
2580 switch (CC) {
2581 default: llvm_unreachable("Illegal condition code!");
2582 case X86::COND_E: return X86::COND_NE;
2583 case X86::COND_NE: return X86::COND_E;
2584 case X86::COND_L: return X86::COND_GE;
2585 case X86::COND_LE: return X86::COND_G;
2586 case X86::COND_G: return X86::COND_LE;
2587 case X86::COND_GE: return X86::COND_L;
2588 case X86::COND_B: return X86::COND_AE;
2589 case X86::COND_BE: return X86::COND_A;
2590 case X86::COND_A: return X86::COND_BE;
2591 case X86::COND_AE: return X86::COND_B;
2592 case X86::COND_S: return X86::COND_NS;
2593 case X86::COND_NS: return X86::COND_S;
2594 case X86::COND_P: return X86::COND_NP;
2595 case X86::COND_NP: return X86::COND_P;
2596 case X86::COND_O: return X86::COND_NO;
2597 case X86::COND_NO: return X86::COND_O;
2598 }
2599 }
2600
2601 /// getSwappedCondition - assume the flags are set by MI(a,b), return
2602 /// the condition code if we modify the instructions such that flags are
2603 /// set by MI(b,a).
2604 static X86::CondCode getSwappedCondition(X86::CondCode CC) {
2605 switch (CC) {
2606 default: return X86::COND_INVALID;
2607 case X86::COND_E: return X86::COND_E;
2608 case X86::COND_NE: return X86::COND_NE;
2609 case X86::COND_L: return X86::COND_G;
2610 case X86::COND_LE: return X86::COND_GE;
2611 case X86::COND_G: return X86::COND_L;
2612 case X86::COND_GE: return X86::COND_LE;
2613 case X86::COND_B: return X86::COND_A;
2614 case X86::COND_BE: return X86::COND_AE;
2615 case X86::COND_A: return X86::COND_B;
2616 case X86::COND_AE: return X86::COND_BE;
2617 }
2618 }
2619
2620 /// getSETFromCond - Return a set opcode for the given condition and
2621 /// whether it has memory operand.
2622 static unsigned getSETFromCond(X86::CondCode CC,
2623 bool HasMemoryOperand) {
2624 static const uint16_t Opc[16][2] = {
2625 { X86::SETAr, X86::SETAm },
2626 { X86::SETAEr, X86::SETAEm },
2627 { X86::SETBr, X86::SETBm },
2628 { X86::SETBEr, X86::SETBEm },
2629 { X86::SETEr, X86::SETEm },
2630 { X86::SETGr, X86::SETGm },
2631 { X86::SETGEr, X86::SETGEm },
2632 { X86::SETLr, X86::SETLm },
2633 { X86::SETLEr, X86::SETLEm },
2634 { X86::SETNEr, X86::SETNEm },
2635 { X86::SETNOr, X86::SETNOm },
2636 { X86::SETNPr, X86::SETNPm },
2637 { X86::SETNSr, X86::SETNSm },
2638 { X86::SETOr, X86::SETOm },
2639 { X86::SETPr, X86::SETPm },
2640 { X86::SETSr, X86::SETSm }
2641 };
2642
2643 assert(CC < 16 && "Can only handle standard cond codes");
2644 return Opc[CC][HasMemoryOperand ? 1 : 0];
2645 }
2646
2647 /// getCMovFromCond - Return a cmov opcode for the given condition,
2648 /// register size in bytes, and operand type.
2649 static unsigned getCMovFromCond(X86::CondCode CC, unsigned RegBytes,
2650 bool HasMemoryOperand) {
2651 static const uint16_t Opc[32][3] = {
2652 { X86::CMOVA16rr, X86::CMOVA32rr, X86::CMOVA64rr },
2653 { X86::CMOVAE16rr, X86::CMOVAE32rr, X86::CMOVAE64rr },
2654 { X86::CMOVB16rr, X86::CMOVB32rr, X86::CMOVB64rr },
2655 { X86::CMOVBE16rr, X86::CMOVBE32rr, X86::CMOVBE64rr },
2656 { X86::CMOVE16rr, X86::CMOVE32rr, X86::CMOVE64rr },
2657 { X86::CMOVG16rr, X86::CMOVG32rr, X86::CMOVG64rr },
2658 { X86::CMOVGE16rr, X86::CMOVGE32rr, X86::CMOVGE64rr },
2659 { X86::CMOVL16rr, X86::CMOVL32rr, X86::CMOVL64rr },
2660 { X86::CMOVLE16rr, X86::CMOVLE32rr, X86::CMOVLE64rr },
2661 { X86::CMOVNE16rr, X86::CMOVNE32rr, X86::CMOVNE64rr },
2662 { X86::CMOVNO16rr, X86::CMOVNO32rr, X86::CMOVNO64rr },
2663 { X86::CMOVNP16rr, X86::CMOVNP32rr, X86::CMOVNP64rr },
2664 { X86::CMOVNS16rr, X86::CMOVNS32rr, X86::CMOVNS64rr },
2665 { X86::CMOVO16rr, X86::CMOVO32rr, X86::CMOVO64rr },
2666 { X86::CMOVP16rr, X86::CMOVP32rr, X86::CMOVP64rr },
2667 { X86::CMOVS16rr, X86::CMOVS32rr, X86::CMOVS64rr },
2668 { X86::CMOVA16rm, X86::CMOVA32rm, X86::CMOVA64rm },
2669 { X86::CMOVAE16rm, X86::CMOVAE32rm, X86::CMOVAE64rm },
2670 { X86::CMOVB16rm, X86::CMOVB32rm, X86::CMOVB64rm },
2671 { X86::CMOVBE16rm, X86::CMOVBE32rm, X86::CMOVBE64rm },
2672 { X86::CMOVE16rm, X86::CMOVE32rm, X86::CMOVE64rm },
2673 { X86::CMOVG16rm, X86::CMOVG32rm, X86::CMOVG64rm },
2674 { X86::CMOVGE16rm, X86::CMOVGE32rm, X86::CMOVGE64rm },
2675 { X86::CMOVL16rm, X86::CMOVL32rm, X86::CMOVL64rm },
2676 { X86::CMOVLE16rm, X86::CMOVLE32rm, X86::CMOVLE64rm },
2677 { X86::CMOVNE16rm, X86::CMOVNE32rm, X86::CMOVNE64rm },
2678 { X86::CMOVNO16rm, X86::CMOVNO32rm, X86::CMOVNO64rm },
2679 { X86::CMOVNP16rm, X86::CMOVNP32rm, X86::CMOVNP64rm },
2680 { X86::CMOVNS16rm, X86::CMOVNS32rm, X86::CMOVNS64rm },
2681 { X86::CMOVO16rm, X86::CMOVO32rm, X86::CMOVO64rm },
2682 { X86::CMOVP16rm, X86::CMOVP32rm, X86::CMOVP64rm },
2683 { X86::CMOVS16rm, X86::CMOVS32rm, X86::CMOVS64rm }
2684 };
2685
2686 assert(CC < 16 && "Can only handle standard cond codes");
2687 unsigned Idx = HasMemoryOperand ? 16+CC : CC;
2688 switch(RegBytes) {
2689 default: llvm_unreachable("Illegal register size!");
2690 case 2: return Opc[Idx][0];
2691 case 4: return Opc[Idx][1];
2692 case 8: return Opc[Idx][2];
2693 }
2694 }
2695
2696 bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
2697 if (!MI->isTerminator()) return false;
2698
2699 // Conditional branch is a special case.
2700 if (MI->isBranch() && !MI->isBarrier())
2701 return true;
2702 if (!MI->isPredicable())
2703 return true;
2704 return !isPredicated(MI);
2705 }
2706
2707 bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
2708 MachineBasicBlock *&TBB,
2709 MachineBasicBlock *&FBB,
2710 SmallVectorImpl<MachineOperand> &Cond,
2711 bool AllowModify) const {
2712 // Start from the bottom of the block and work up, examining the
2713 // terminator instructions.
2714 MachineBasicBlock::iterator I = MBB.end();
2715 MachineBasicBlock::iterator UnCondBrIter = MBB.end();
2716 while (I != MBB.begin()) {
2717 --I;
2718 if (I->isDebugValue())
2719 continue;
2720
2721 // Working from the bottom, when we see a non-terminator instruction, we're
2722 // done.
2723 if (!isUnpredicatedTerminator(I))
2724 break;
2725
2726 // A terminator that isn't a branch can't easily be handled by this
2727 // analysis.
2728 if (!I->isBranch())
2729 return true;
2730
2731 // Handle unconditional branches.
2732 if (I->getOpcode() == X86::JMP_4) {
2733 UnCondBrIter = I;
2734
2735 if (!AllowModify) {
2736 TBB = I->getOperand(0).getMBB();
2737 continue;
2738 }
2739
2740 // If the block has any instructions after a JMP, delete them.
2741 while (llvm::next(I) != MBB.end())
2742 llvm::next(I)->eraseFromParent();
2743
2744 Cond.clear();
2745 FBB = 0;
2746
2747 // Delete the JMP if it's equivalent to a fall-through.
2748 if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
2749 TBB = 0;
2750 I->eraseFromParent();
2751 I = MBB.end();
2752 UnCondBrIter = MBB.end();
2753 continue;
2754 }
2755
2756 // TBB is used to indicate the unconditional destination.
2757 TBB = I->getOperand(0).getMBB();
2758 continue;
2759 }
2760
2761 // Handle conditional branches.
2762 X86::CondCode BranchCode = getCondFromBranchOpc(I->getOpcode());
2763 if (BranchCode == X86::COND_INVALID)
2764 return true; // Can't handle indirect branch.
2765
2766 // Working from the bottom, handle the first conditional branch.
2767 if (Cond.empty()) {
2768 MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
2769 if (AllowModify && UnCondBrIter != MBB.end() &&
2770 MBB.isLayoutSuccessor(TargetBB)) {
2771 // If we can modify the code and it ends in something like:
2772 //
2773 // jCC L1
2774 // jmp L2
2775 // L1:
2776 // ...
2777 // L2:
2778 //
2779 // Then we can change this to:
2780 //
2781 // jnCC L2
2782 // L1:
2783 // ...
2784 // L2:
2785 //
2786 // Which is a bit more efficient.
2787 // We conditionally jump to the fall-through block.
2788 BranchCode = GetOppositeBranchCondition(BranchCode);
2789 unsigned JNCC = GetCondBranchFromCond(BranchCode);
2790 MachineBasicBlock::iterator OldInst = I;
2791
2792 BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(JNCC))
2793 .addMBB(UnCondBrIter->getOperand(0).getMBB());
2794 BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_4))
2795 .addMBB(TargetBB);
2796
2797 OldInst->eraseFromParent();
2798 UnCondBrIter->eraseFromParent();
2799
2800 // Restart the analysis.
2801 UnCondBrIter = MBB.end();
2802 I = MBB.end();
2803 continue;
2804 }
2805
2806 FBB = TBB;
2807 TBB = I->getOperand(0).getMBB();
2808 Cond.push_back(MachineOperand::CreateImm(BranchCode));
2809 continue;
2810 }
2811
2812 // Handle subsequent conditional branches. Only handle the case where all
2813 // conditional branches branch to the same destination and their condition
2814 // opcodes fit one of the special multi-branch idioms.
2815 assert(Cond.size() == 1);
2816 assert(TBB);
2817
2818 // Only handle the case where all conditional branches branch to the same
2819 // destination.
2820 if (TBB != I->getOperand(0).getMBB())
2821 return true;
2822
2823 // If the conditions are the same, we can leave them alone.
2824 X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
2825 if (OldBranchCode == BranchCode)
2826 continue;
2827
2828 // If they differ, see if they fit one of the known patterns. Theoretically,
2829 // we could handle more patterns here, but we shouldn't expect to see them
2830 // if instruction selection has done a reasonable job.
2831 if ((OldBranchCode == X86::COND_NP &&
2832 BranchCode == X86::COND_E) ||
2833 (OldBranchCode == X86::COND_E &&
2834 BranchCode == X86::COND_NP))
2835 BranchCode = X86::COND_NP_OR_E;
2836 else if ((OldBranchCode == X86::COND_P &&
2837 BranchCode == X86::COND_NE) ||
2838 (OldBranchCode == X86::COND_NE &&
2839 BranchCode == X86::COND_P))
2840 BranchCode = X86::COND_NE_OR_P;
2841 else
2842 return true;
2843
2844 // Update the MachineOperand.
2845 Cond[0].setImm(BranchCode);
2846 }
2847
2848 return false;
2849 }
2850
2851 unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
2852 MachineBasicBlock::iterator I = MBB.end();
2853 unsigned Count = 0;
2854
2855 while (I != MBB.begin()) {
2856 --I;
2857 if (I->isDebugValue())
2858 continue;
2859 if (I->getOpcode() != X86::JMP_4 &&
2860 getCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
2861 break;
2862 // Remove the branch.
2863 I->eraseFromParent();
2864 I = MBB.end();
2865 ++Count;
2866 }
2867
2868 return Count;
2869 }
2870
2871 unsigned
2872 X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
2873 MachineBasicBlock *FBB,
2874 const SmallVectorImpl<MachineOperand> &Cond,
2875 DebugLoc DL) const {
2876 // Shouldn't be a fall through.
2877 assert(TBB && "InsertBranch must not be told to insert a fallthrough");
2878 assert((Cond.size() == 1 || Cond.size() == 0) &&
2879 "X86 branch conditions have one component!");
2880
2881 if (Cond.empty()) {
2882 // Unconditional branch?
2883 assert(!FBB && "Unconditional branch with multiple successors!");
2884 BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(TBB);
2885 return 1;
2886 }
2887
2888 // Conditional branch.
2889 unsigned Count = 0;
2890 X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
2891 switch (CC) {
2892 case X86::COND_NP_OR_E:
2893 // Synthesize NP_OR_E with two branches.
2894 BuildMI(&MBB, DL, get(X86::JNP_4)).addMBB(TBB);
2895 ++Count;
2896 BuildMI(&MBB, DL, get(X86::JE_4)).addMBB(TBB);
2897 ++Count;
2898 break;
2899 case X86::COND_NE_OR_P:
2900 // Synthesize NE_OR_P with two branches.
2901 BuildMI(&MBB, DL, get(X86::JNE_4)).addMBB(TBB);
2902 ++Count;
2903 BuildMI(&MBB, DL, get(X86::JP_4)).addMBB(TBB);
2904 ++Count;
2905 break;
2906 default: {
2907 unsigned Opc = GetCondBranchFromCond(CC);
2908 BuildMI(&MBB, DL, get(Opc)).addMBB(TBB);
2909 ++Count;
2910 }
2911 }
2912 if (FBB) {
2913 // Two-way Conditional branch. Insert the second branch.
2914 BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(FBB);
2915 ++Count;
2916 }
2917 return Count;
2918 }
2919
2920 bool X86InstrInfo::
2921 canInsertSelect(const MachineBasicBlock &MBB,
2922 const SmallVectorImpl<MachineOperand> &Cond,
2923 unsigned TrueReg, unsigned FalseReg,
2924 int &CondCycles, int &TrueCycles, int &FalseCycles) const {
2925 // Not all subtargets have cmov instructions.
2926 if (!TM.getSubtarget<X86Subtarget>().hasCMov())
2927 return false;
2928 if (Cond.size() != 1)
2929 return false;
2930 // We cannot do the composite conditions, at least not in SSA form.
2931 if ((X86::CondCode)Cond[0].getImm() > X86::COND_S)
2932 return false;
2933
2934 // Check register classes.
2935 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
2936 const TargetRegisterClass *RC =
2937 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
2938 if (!RC)
2939 return false;
2940
2941 // We have cmov instructions for 16, 32, and 64 bit general purpose registers.
2942 if (X86::GR16RegClass.hasSubClassEq(RC) ||
2943 X86::GR32RegClass.hasSubClassEq(RC) ||
2944 X86::GR64RegClass.hasSubClassEq(RC)) {
2945 // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy
2946 // Bridge. Probably Ivy Bridge as well.
2947 CondCycles = 2;
2948 TrueCycles = 2;
2949 FalseCycles = 2;
2950 return true;
2951 }
2952
2953 // Can't do vectors.
2954 return false;
2955 }
2956
2957 void X86InstrInfo::insertSelect(MachineBasicBlock &MBB,
2958 MachineBasicBlock::iterator I, DebugLoc DL,
2959 unsigned DstReg,
2960 const SmallVectorImpl<MachineOperand> &Cond,
2961 unsigned TrueReg, unsigned FalseReg) const {
2962 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
2963 assert(Cond.size() == 1 && "Invalid Cond array");
2964 unsigned Opc = getCMovFromCond((X86::CondCode)Cond[0].getImm(),
2965 MRI.getRegClass(DstReg)->getSize(),
2966 false/*HasMemoryOperand*/);
2967 BuildMI(MBB, I, DL, get(Opc), DstReg).addReg(FalseReg).addReg(TrueReg);
2968 }
2969
2970 /// isHReg - Test if the given register is a physical h register.
2971 static bool isHReg(unsigned Reg) {
2972 return X86::GR8_ABCD_HRegClass.contains(Reg);
2973 }
2974
2975 // Try and copy between VR128/VR64 and GR64 registers.
2976 static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg,
2977 const X86Subtarget& Subtarget) {
2978
2979
2980 // SrcReg(VR128) -> DestReg(GR64)
2981 // SrcReg(VR64) -> DestReg(GR64)
2982 // SrcReg(GR64) -> DestReg(VR128)
2983 // SrcReg(GR64) -> DestReg(VR64)
2984
2985 bool HasAVX = Subtarget.hasAVX();
2986 bool HasAVX512 = Subtarget.hasAVX512();
2987 if (X86::GR64RegClass.contains(DestReg)) {
2988 if (X86::VR128XRegClass.contains(SrcReg))
2989 // Copy from a VR128 register to a GR64 register.
2990 return HasAVX512 ? X86::VMOVPQIto64Zrr: (HasAVX ? X86::VMOVPQIto64rr :
2991 X86::MOVPQIto64rr);
2992 if (X86::VR64RegClass.contains(SrcReg))
2993 // Copy from a VR64 register to a GR64 register.
2994 return X86::MOVSDto64rr;
2995 } else if (X86::GR64RegClass.contains(SrcReg)) {
2996 // Copy from a GR64 register to a VR128 register.
2997 if (X86::VR128XRegClass.contains(DestReg))
2998 return HasAVX512 ? X86::VMOV64toPQIZrr: (HasAVX ? X86::VMOV64toPQIrr :
2999 X86::MOV64toPQIrr);
3000 // Copy from a GR64 register to a VR64 register.
3001 if (X86::VR64RegClass.contains(DestReg))
3002 return X86::MOV64toSDrr;
3003 }
3004
3005 // SrcReg(FR32) -> DestReg(GR32)
3006 // SrcReg(GR32) -> DestReg(FR32)
3007
3008 if (X86::GR32RegClass.contains(DestReg) && X86::FR32XRegClass.contains(SrcReg))
3009 // Copy from a FR32 register to a GR32 register.
3010 return HasAVX512 ? X86::VMOVSS2DIZrr : (HasAVX ? X86::VMOVSS2DIrr : X86::MOVSS2DIrr);
3011
3012 if (X86::FR32XRegClass.contains(DestReg) && X86::GR32RegClass.contains(SrcReg))
3013 // Copy from a GR32 register to a FR32 register.
3014 return HasAVX512 ? X86::VMOVDI2SSZrr : (HasAVX ? X86::VMOVDI2SSrr : X86::MOVDI2SSrr);
3015 return 0;
3016 }
3017
3018 static
3019 unsigned copyPhysRegOpcode_AVX512(unsigned& DestReg, unsigned& SrcReg) {
3020 if (X86::VR128XRegClass.contains(DestReg, SrcReg) ||
3021 X86::VR256XRegClass.contains(DestReg, SrcReg) ||
3022 X86::VR512RegClass.contains(DestReg, SrcReg)) {
3023 DestReg = get512BitSuperRegister(DestReg);
3024 SrcReg = get512BitSuperRegister(SrcReg);
3025 return X86::VMOVAPSZrr;
3026 }
3027 if ((X86::VK8RegClass.contains(DestReg) ||
3028 X86::VK16RegClass.contains(DestReg)) &&
3029 (X86::VK8RegClass.contains(SrcReg) ||
3030 X86::VK16RegClass.contains(SrcReg)))
3031 return X86::KMOVWkk;
3032 return 0;
3033 }
3034
3035 void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
3036 MachineBasicBlock::iterator MI, DebugLoc DL,
3037 unsigned DestReg, unsigned SrcReg,
3038 bool KillSrc) const {
3039 // First deal with the normal symmetric copies.
3040 bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
3041 bool HasAVX512 = TM.getSubtarget<X86Subtarget>().hasAVX512();
3042 unsigned Opc = 0;
3043 if (X86::GR64RegClass.contains(DestReg, SrcReg))
3044 Opc = X86::MOV64rr;
3045 else if (X86::GR32RegClass.contains(DestReg, SrcReg))
3046 Opc = X86::MOV32rr;
3047 else if (X86::GR16RegClass.contains(DestReg, SrcReg))
3048 Opc = X86::MOV16rr;
3049 else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
3050 // Copying to or from a physical H register on x86-64 requires a NOREX
3051 // move. Otherwise use a normal move.
3052 if ((isHReg(DestReg) || isHReg(SrcReg)) &&
3053 TM.getSubtarget<X86Subtarget>().is64Bit()) {
3054 Opc = X86::MOV8rr_NOREX;
3055 // Both operands must be encodable without an REX prefix.
3056 assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) &&
3057 "8-bit H register can not be copied outside GR8_NOREX");
3058 } else
3059 Opc = X86::MOV8rr;
3060 }
3061 else if (X86::VR64RegClass.contains(DestReg, SrcReg))
3062 Opc = X86::MMX_MOVQ64rr;
3063 else if (HasAVX512)
3064 Opc = copyPhysRegOpcode_AVX512(DestReg, SrcReg);
3065 else if (X86::VR128RegClass.contains(DestReg, SrcReg))
3066 Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr;
3067 else if (X86::VR256RegClass.contains(DestReg, SrcReg))
3068 Opc = X86::VMOVAPSYrr;
3069 if (!Opc)
3070 Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, TM.getSubtarget<X86Subtarget>());
3071
3072 if (Opc) {
3073 BuildMI(MBB, MI, DL, get(Opc), DestReg)
3074 .addReg(SrcReg, getKillRegState(KillSrc));
3075 return;
3076 }
3077
3078 // Moving EFLAGS to / from another register requires a push and a pop.
3079 // Notice that we have to adjust the stack if we don't want to clobber the
3080 // first frame index. See X86FrameLowering.cpp - colobbersTheStack.
3081 if (SrcReg == X86::EFLAGS) {
3082 if (X86::GR64RegClass.contains(DestReg)) {
3083 BuildMI(MBB, MI, DL, get(X86::PUSHF64));
3084 BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg);
3085 return;
3086 }
3087 if (X86::GR32RegClass.contains(DestReg)) {
3088 BuildMI(MBB, MI, DL, get(X86::PUSHF32));
3089 BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg);
3090 return;
3091 }
3092 }
3093 if (DestReg == X86::EFLAGS) {
3094 if (X86::GR64RegClass.contains(SrcReg)) {
3095 BuildMI(MBB, MI, DL, get(X86::PUSH64r))
3096 .addReg(SrcReg, getKillRegState(KillSrc));
3097 BuildMI(MBB, MI, DL, get(X86::POPF64));
3098 return;
3099 }
3100 if (X86::GR32RegClass.contains(SrcReg)) {
3101 BuildMI(MBB, MI, DL, get(X86::PUSH32r))
3102 .addReg(SrcReg, getKillRegState(KillSrc));
3103 BuildMI(MBB, MI, DL, get(X86::POPF32));
3104 return;
3105 }
3106 }
3107
3108 DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg)
3109 << " to " << RI.getName(DestReg) << '\n');
3110 llvm_unreachable("Cannot emit physreg copy instruction");
3111 }
3112
3113 static unsigned getLoadStoreRegOpcode(unsigned Reg,
3114 const TargetRegisterClass *RC,
3115 bool isStackAligned,
3116 const TargetMachine &TM,
3117 bool load) {
3118 if (TM.getSubtarget<X86Subtarget>().hasAVX512()) {
3119 if (X86::VK8RegClass.hasSubClassEq(RC) ||
3120 X86::VK16RegClass.hasSubClassEq(RC))
3121 return load ? X86::KMOVWkm : X86::KMOVWmk;
3122 if (RC->getSize() == 4 && X86::FR32XRegClass.hasSubClassEq(RC))
3123 return load ? X86::VMOVSSZrm : X86::VMOVSSZmr;
3124 if (RC->getSize() == 8 && X86::FR64XRegClass.hasSubClassEq(RC))
3125 return load ? X86::VMOVSDZrm : X86::VMOVSDZmr;
3126 if (X86::VR512RegClass.hasSubClassEq(RC))
3127 return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
3128 }
3129
3130 bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
3131 switch (RC->getSize()) {
3132 default:
3133 llvm_unreachable("Unknown spill size");
3134 case 1:
3135 assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass");
3136 if (TM.getSubtarget<X86Subtarget>().is64Bit())
3137 // Copying to or from a physical H register on x86-64 requires a NOREX
3138 // move. Otherwise use a normal move.
3139 if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC))
3140 return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
3141 return load ? X86::MOV8rm : X86::MOV8mr;
3142 case 2:
3143 assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass");
3144 return load ? X86::MOV16rm : X86::MOV16mr;
3145 case 4:
3146 if (X86::GR32RegClass.hasSubClassEq(RC))
3147 return load ? X86::MOV32rm : X86::MOV32mr;
3148 if (X86::FR32RegClass.hasSubClassEq(RC))
3149 return load ?
3150 (HasAVX ? X86::VMOVSSrm : X86::MOVSSrm) :
3151 (HasAVX ? X86::VMOVSSmr : X86::MOVSSmr);
3152 if (X86::RFP32RegClass.hasSubClassEq(RC))
3153 return load ? X86::LD_Fp32m : X86::ST_Fp32m;
3154 llvm_unreachable("Unknown 4-byte regclass");
3155 case 8:
3156 if (X86::GR64RegClass.hasSubClassEq(RC))
3157 return load ? X86::MOV64rm : X86::MOV64mr;
3158 if (X86::FR64RegClass.hasSubClassEq(RC))
3159 return load ?
3160 (HasAVX ? X86::VMOVSDrm : X86::MOVSDrm) :
3161 (HasAVX ? X86::VMOVSDmr : X86::MOVSDmr);
3162 if (X86::VR64RegClass.hasSubClassEq(RC))
3163 return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
3164 if (X86::RFP64RegClass.hasSubClassEq(RC))
3165 return load ? X86::LD_Fp64m : X86::ST_Fp64m;
3166 llvm_unreachable("Unknown 8-byte regclass");
3167 case 10:
3168 assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass");
3169 return load ? X86::LD_Fp80m : X86::ST_FpP80m;
3170 case 16: {
3171 assert((X86::VR128RegClass.hasSubClassEq(RC) ||
3172 X86::VR128XRegClass.hasSubClassEq(RC))&& "Unknown 16-byte regclass");
3173 // If stack is realigned we can use aligned stores.
3174 if (isStackAligned)
3175 return load ?
3176 (HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm) :
3177 (HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr);
3178 else
3179 return load ?
3180 (HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm) :
3181 (HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr);
3182 }
3183 case 32:
3184 assert((X86::VR256RegClass.hasSubClassEq(RC) ||
3185 X86::VR256XRegClass.hasSubClassEq(RC)) && "Unknown 32-byte regclass");
3186 // If stack is realigned we can use aligned stores.
3187 if (isStackAligned)
3188 return load ? X86::VMOVAPSYrm : X86::VMOVAPSYmr;
3189 else
3190 return load ? X86::VMOVUPSYrm : X86::VMOVUPSYmr;
3191 case 64:
3192 assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass");
3193 if (isStackAligned)
3194 return load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr;
3195 else
3196 return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
3197 }
3198 }
3199
3200 static unsigned getStoreRegOpcode(unsigned SrcReg,
3201 const TargetRegisterClass *RC,
3202 bool isStackAligned,
3203 TargetMachine &TM) {
3204 return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, TM, false);
3205 }
3206
3207
3208 static unsigned getLoadRegOpcode(unsigned DestReg,
3209 const TargetRegisterClass *RC,
3210 bool isStackAligned,
3211 const TargetMachine &TM) {
3212 return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, TM, true);
3213 }
3214
3215 void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
3216 MachineBasicBlock::iterator MI,
3217 unsigned SrcReg, bool isKill, int FrameIdx,
3218 const TargetRegisterClass *RC,
3219 const TargetRegisterInfo *TRI) const {
3220 const MachineFunction &MF = *MBB.getParent();
3221 assert(MF.getFrameInfo()->getObjectSize(FrameIdx) >= RC->getSize() &&
3222 "Stack slot too small for store");
3223 unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
3224 bool isAligned = (TM.getFrameLowering()->getStackAlignment() >= Alignment) ||
3225 RI.canRealignStack(MF);
3226 unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
3227 DebugLoc DL = MBB.findDebugLoc(MI);
3228 addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
3229 .addReg(SrcReg, getKillRegState(isKill));
3230 }
3231
3232 void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
3233 bool isKill,
3234 SmallVectorImpl<MachineOperand> &Addr,
3235 const TargetRegisterClass *RC,
3236 MachineInstr::mmo_iterator MMOBegin,
3237 MachineInstr::mmo_iterator MMOEnd,
3238 SmallVectorImpl<MachineInstr*> &NewMIs) const {
3239 unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
3240 bool isAligned = MMOBegin != MMOEnd &&
3241 (*MMOBegin)->getAlignment() >= Alignment;
3242 unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
3243 DebugLoc DL;
3244 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
3245 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
3246 MIB.addOperand(Addr[i]);
3247 MIB.addReg(SrcReg, getKillRegState(isKill));
3248 (*MIB).setMemRefs(MMOBegin, MMOEnd);
3249 NewMIs.push_back(MIB);
3250 }
3251
3252
3253 void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
3254 MachineBasicBlock::iterator MI,
3255 unsigned DestReg, int FrameIdx,
3256 const TargetRegisterClass *RC,
3257 const TargetRegisterInfo *TRI) const {
3258 const MachineFunction &MF = *MBB.getParent();
3259 unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
3260 bool isAligned = (TM.getFrameLowering()->getStackAlignment() >= Alignment) ||
3261 RI.canRealignStack(MF);
3262 unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
3263 DebugLoc DL = MBB.findDebugLoc(MI);
3264 addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
3265 }
3266
3267 void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
3268 SmallVectorImpl<MachineOperand> &Addr,
3269 const TargetRegisterClass *RC,
3270 MachineInstr::mmo_iterator MMOBegin,
3271 MachineInstr::mmo_iterator MMOEnd,
3272 SmallVectorImpl<MachineInstr*> &NewMIs) const {
3273 unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
3274 bool isAligned = MMOBegin != MMOEnd &&
3275 (*MMOBegin)->getAlignment() >= Alignment;
3276 unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
3277 DebugLoc DL;
3278 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
3279 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
3280 MIB.addOperand(Addr[i]);
3281 (*MIB).setMemRefs(MMOBegin, MMOEnd);
3282 NewMIs.push_back(MIB);
3283 }
3284
3285 bool X86InstrInfo::
3286 analyzeCompare(const MachineInstr *MI, unsigned &SrcReg, unsigned &SrcReg2,
3287 int &CmpMask, int &CmpValue) const {
3288 switch (MI->getOpcode()) {
3289 default: break;
3290 case X86::CMP64ri32:
3291 case X86::CMP64ri8:
3292 case X86::CMP32ri:
3293 case X86::CMP32ri8:
3294 case X86::CMP16ri:
3295 case X86::CMP16ri8:
3296 case X86::CMP8ri:
3297 SrcReg = MI->getOperand(0).getReg();
3298 SrcReg2 = 0;
3299 CmpMask = ~0;
3300 CmpValue = MI->getOperand(1).getImm();
3301 return true;
3302 // A SUB can be used to perform comparison.
3303 case X86::SUB64rm:
3304 case X86::SUB32rm:
3305 case X86::SUB16rm:
3306 case X86::SUB8rm:
3307 SrcReg = MI->getOperand(1).getReg();
3308 SrcReg2 = 0;
3309 CmpMask = ~0;
3310 CmpValue = 0;
3311 return true;
3312 case X86::SUB64rr:
3313 case X86::SUB32rr:
3314 case X86::SUB16rr:
3315 case X86::SUB8rr:
3316 SrcReg = MI->getOperand(1).getReg();
3317 SrcReg2 = MI->getOperand(2).getReg();
3318 CmpMask = ~0;
3319 CmpValue = 0;
3320 return true;
3321 case X86::SUB64ri32:
3322 case X86::SUB64ri8:
3323 case X86::SUB32ri:
3324 case X86::SUB32ri8:
3325 case X86::SUB16ri:
3326 case X86::SUB16ri8:
3327 case X86::SUB8ri:
3328 SrcReg = MI->getOperand(1).getReg();
3329 SrcReg2 = 0;
3330 CmpMask = ~0;
3331 CmpValue = MI->getOperand(2).getImm();
3332 return true;
3333 case X86::CMP64rr:
3334 case X86::CMP32rr:
3335 case X86::CMP16rr:
3336 case X86::CMP8rr:
3337 SrcReg = MI->getOperand(0).getReg();
3338 SrcReg2 = MI->getOperand(1).getReg();
3339 CmpMask = ~0;
3340 CmpValue = 0;
3341 return true;
3342 case X86::TEST8rr:
3343 case X86::TEST16rr:
3344 case X86::TEST32rr:
3345 case X86::TEST64rr:
3346 SrcReg = MI->getOperand(0).getReg();
3347 if (MI->getOperand(1).getReg() != SrcReg) return false;
3348 // Compare against zero.
3349 SrcReg2 = 0;
3350 CmpMask = ~0;
3351 CmpValue = 0;
3352 return true;
3353 }
3354 return false;
3355 }
3356
3357 /// isRedundantFlagInstr - check whether the first instruction, whose only
3358 /// purpose is to update flags, can be made redundant.
3359 /// CMPrr can be made redundant by SUBrr if the operands are the same.
3360 /// This function can be extended later on.
3361 /// SrcReg, SrcRegs: register operands for FlagI.
3362 /// ImmValue: immediate for FlagI if it takes an immediate.
3363 inline static bool isRedundantFlagInstr(MachineInstr *FlagI, unsigned SrcReg,
3364 unsigned SrcReg2, int ImmValue,
3365 MachineInstr *OI) {
3366 if (((FlagI->getOpcode() == X86::CMP64rr &&
3367 OI->getOpcode() == X86::SUB64rr) ||
3368 (FlagI->getOpcode() == X86::CMP32rr &&
3369 OI->getOpcode() == X86::SUB32rr)||
3370 (FlagI->getOpcode() == X86::CMP16rr &&
3371 OI->getOpcode() == X86::SUB16rr)||
3372 (FlagI->getOpcode() == X86::CMP8rr &&
3373 OI->getOpcode() == X86::SUB8rr)) &&
3374 ((OI->getOperand(1).getReg() == SrcReg &&
3375 OI->getOperand(2).getReg() == SrcReg2) ||
3376 (OI->getOperand(1).getReg() == SrcReg2 &&
3377 OI->getOperand(2).getReg() == SrcReg)))
3378 return true;
3379
3380 if (((FlagI->getOpcode() == X86::CMP64ri32 &&
3381 OI->getOpcode() == X86::SUB64ri32) ||
3382 (FlagI->getOpcode() == X86::CMP64ri8 &&
3383 OI->getOpcode() == X86::SUB64ri8) ||
3384 (FlagI->getOpcode() == X86::CMP32ri &&
3385 OI->getOpcode() == X86::SUB32ri) ||
3386 (FlagI->getOpcode() == X86::CMP32ri8 &&
3387 OI->getOpcode() == X86::SUB32ri8) ||
3388 (FlagI->getOpcode() == X86::CMP16ri &&
3389 OI->getOpcode() == X86::SUB16ri) ||
3390 (FlagI->getOpcode() == X86::CMP16ri8 &&
3391 OI->getOpcode() == X86::SUB16ri8) ||
3392 (FlagI->getOpcode() == X86::CMP8ri &&
3393 OI->getOpcode() == X86::SUB8ri)) &&
3394 OI->getOperand(1).getReg() == SrcReg &&
3395 OI->getOperand(2).getImm() == ImmValue)
3396 return true;
3397 return false;
3398 }
3399
3400 /// isDefConvertible - check whether the definition can be converted
3401 /// to remove a comparison against zero.
3402 inline static bool isDefConvertible(MachineInstr *MI) {
3403 switch (MI->getOpcode()) {
3404 default: return false;
3405
3406 // The shift instructions only modify ZF if their shift count is non-zero.
3407 // N.B.: The processor truncates the shift count depending on the encoding.
3408 case X86::SAR8ri: case X86::SAR16ri: case X86::SAR32ri:case X86::SAR64ri:
3409 case X86::SHR8ri: case X86::SHR16ri: case X86::SHR32ri:case X86::SHR64ri:
3410 return getTruncatedShiftCount(MI, 2) != 0;
3411
3412 // Some left shift instructions can be turned into LEA instructions but only
3413 // if their flags aren't used. Avoid transforming such instructions.
3414 case X86::SHL8ri: case X86::SHL16ri: case X86::SHL32ri:case X86::SHL64ri:{
3415 unsigned ShAmt = getTruncatedShiftCount(MI, 2);
3416 if (isTruncatedShiftCountForLEA(ShAmt)) return false;
3417 return ShAmt != 0;
3418 }
3419
3420 case X86::SHRD16rri8:case X86::SHRD32rri8:case X86::SHRD64rri8:
3421 case X86::SHLD16rri8:case X86::SHLD32rri8:case X86::SHLD64rri8:
3422 return getTruncatedShiftCount(MI, 3) != 0;
3423
3424 case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri:
3425 case X86::SUB32ri8: case X86::SUB16ri: case X86::SUB16ri8:
3426 case X86::SUB8ri: case X86::SUB64rr: case X86::SUB32rr:
3427 case X86::SUB16rr: case X86::SUB8rr: case X86::SUB64rm:
3428 case X86::SUB32rm: case X86::SUB16rm: case X86::SUB8rm:
3429 case X86::DEC64r: case X86::DEC32r: case X86::DEC16r: case X86::DEC8r:
3430 case X86::DEC64_32r: case X86::DEC64_16r:
3431 case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD32ri:
3432 case X86::ADD32ri8: case X86::ADD16ri: case X86::ADD16ri8:
3433 case X86::ADD8ri: case X86::ADD64rr: case X86::ADD32rr:
3434 case X86::ADD16rr: case X86::ADD8rr: case X86::ADD64rm:
3435 case X86::ADD32rm: case X86::ADD16rm: case X86::ADD8rm:
3436 case X86::INC64r: case X86::INC32r: case X86::INC16r: case X86::INC8r:
3437 case X86::INC64_32r: case X86::INC64_16r:
3438 case X86::AND64ri32: case X86::AND64ri8: case X86::AND32ri:
3439 case X86::AND32ri8: case X86::AND16ri: case X86::AND16ri8:
3440 case X86::AND8ri: case X86::AND64rr: case X86::AND32rr:
3441 case X86::AND16rr: case X86::AND8rr: case X86::AND64rm:
3442 case X86::AND32rm: case X86::AND16rm: case X86::AND8rm:
3443 case X86::XOR64ri32: case X86::XOR64ri8: case X86::XOR32ri:
3444 case X86::XOR32ri8: case X86::XOR16ri: case X86::XOR16ri8:
3445 case X86::XOR8ri: case X86::XOR64rr: case X86::XOR32rr:
3446 case X86::XOR16rr: case X86::XOR8rr: case X86::XOR64rm:
3447 case X86::XOR32rm: case X86::XOR16rm: case X86::XOR8rm:
3448 case X86::OR64ri32: case X86::OR64ri8: case X86::OR32ri:
3449 case X86::OR32ri8: case X86::OR16ri: case X86::OR16ri8:
3450 case X86::OR8ri: case X86::OR64rr: case X86::OR32rr:
3451 case X86::OR16rr: case X86::OR8rr: case X86::OR64rm:
3452 case X86::OR32rm: case X86::OR16rm: case X86::OR8rm:
3453 case X86::NEG8r: case X86::NEG16r: case X86::NEG32r: case X86::NEG64r:
3454 case X86::SAR8r1: case X86::SAR16r1: case X86::SAR32r1:case X86::SAR64r1:
3455 case X86::SHR8r1: case X86::SHR16r1: case X86::SHR32r1:case X86::SHR64r1:
3456 case X86::SHL8r1: case X86::SHL16r1: case X86::SHL32r1:case X86::SHL64r1:
3457 case X86::ADC32ri: case X86::ADC32ri8:
3458 case X86::ADC32rr: case X86::ADC64ri32:
3459 case X86::ADC64ri8: case X86::ADC64rr:
3460 case X86::SBB32ri: case X86::SBB32ri8:
3461 case X86::SBB32rr: case X86::SBB64ri32:
3462 case X86::SBB64ri8: case X86::SBB64rr:
3463 case X86::ANDN32rr: case X86::ANDN32rm:
3464 case X86::ANDN64rr: case X86::ANDN64rm:
3465 case X86::BEXTR32rr: case X86::BEXTR64rr:
3466 case X86::BEXTR32rm: case X86::BEXTR64rm:
3467 case X86::BLSI32rr: case X86::BLSI32rm:
3468 case X86::BLSI64rr: case X86::BLSI64rm:
3469 case X86::BLSMSK32rr:case X86::BLSMSK32rm:
3470 case X86::BLSMSK64rr:case X86::BLSMSK64rm:
3471 case X86::BLSR32rr: case X86::BLSR32rm:
3472 case X86::BLSR64rr: case X86::BLSR64rm:
3473 case X86::BZHI32rr: case X86::BZHI32rm:
3474 case X86::BZHI64rr: case X86::BZHI64rm:
3475 case X86::LZCNT16rr: case X86::LZCNT16rm:
3476 case X86::LZCNT32rr: case X86::LZCNT32rm:
3477 case X86::LZCNT64rr: case X86::LZCNT64rm:
3478 case X86::POPCNT16rr:case X86::POPCNT16rm:
3479 case X86::POPCNT32rr:case X86::POPCNT32rm:
3480 case X86::POPCNT64rr:case X86::POPCNT64rm:
3481 case X86::TZCNT16rr: case X86::TZCNT16rm:
3482 case X86::TZCNT32rr: case X86::TZCNT32rm:
3483 case X86::TZCNT64rr: case X86::TZCNT64rm:
3484 return true;
3485 }
3486 }
3487
3488 /// optimizeCompareInstr - Check if there exists an earlier instruction that
3489 /// operates on the same source operands and sets flags in the same way as
3490 /// Compare; remove Compare if possible.
3491 bool X86InstrInfo::
3492 optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2,
3493 int CmpMask, int CmpValue,
3494 const MachineRegisterInfo *MRI) const {
3495 // Check whether we can replace SUB with CMP.
3496 unsigned NewOpcode = 0;
3497 switch (CmpInstr->getOpcode()) {
3498 default: break;
3499 case X86::SUB64ri32:
3500 case X86::SUB64ri8:
3501 case X86::SUB32ri:
3502 case X86::SUB32ri8:
3503 case X86::SUB16ri:
3504 case X86::SUB16ri8:
3505 case X86::SUB8ri:
3506 case X86::SUB64rm:
3507 case X86::SUB32rm:
3508 case X86::SUB16rm:
3509 case X86::SUB8rm:
3510 case X86::SUB64rr:
3511 case X86::SUB32rr:
3512 case X86::SUB16rr:
3513 case X86::SUB8rr: {
3514 if (!MRI->use_nodbg_empty(CmpInstr->getOperand(0).getReg()))
3515 return false;
3516 // There is no use of the destination register, we can replace SUB with CMP.
3517 switch (CmpInstr->getOpcode()) {
3518 default: llvm_unreachable("Unreachable!");
3519 case X86::SUB64rm: NewOpcode = X86::CMP64rm; break;
3520 case X86::SUB32rm: NewOpcode = X86::CMP32rm; break;
3521 case X86::SUB16rm: NewOpcode = X86::CMP16rm; break;
3522 case X86::SUB8rm: NewOpcode = X86::CMP8rm; break;
3523 case X86::SUB64rr: NewOpcode = X86::CMP64rr; break;
3524 case X86::SUB32rr: NewOpcode = X86::CMP32rr; break;
3525 case X86::SUB16rr: NewOpcode = X86::CMP16rr; break;
3526 case X86::SUB8rr: NewOpcode = X86::CMP8rr; break;
3527 case X86::SUB64ri32: NewOpcode = X86::CMP64ri32; break;
3528 case X86::SUB64ri8: NewOpcode = X86::CMP64ri8; break;
3529 case X86::SUB32ri: NewOpcode = X86::CMP32ri; break;
3530 case X86::SUB32ri8: NewOpcode = X86::CMP32ri8; break;
3531 case X86::SUB16ri: NewOpcode = X86::CMP16ri; break;
3532 case X86::SUB16ri8: NewOpcode = X86::CMP16ri8; break;
3533 case X86::SUB8ri: NewOpcode = X86::CMP8ri; break;
3534 }
3535 CmpInstr->setDesc(get(NewOpcode));
3536 CmpInstr->RemoveOperand(0);
3537 // Fall through to optimize Cmp if Cmp is CMPrr or CMPri.
3538 if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm ||
3539 NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm)
3540 return false;
3541 }
3542 }
3543
3544 // Get the unique definition of SrcReg.
3545 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
3546 if (!MI) return false;
3547
3548 // CmpInstr is the first instruction of the BB.
3549 MachineBasicBlock::iterator I = CmpInstr, Def = MI;
3550
3551 // If we are comparing against zero, check whether we can use MI to update
3552 // EFLAGS. If MI is not in the same BB as CmpInstr, do not optimize.
3553 bool IsCmpZero = (SrcReg2 == 0 && CmpValue == 0);
3554 if (IsCmpZero && (MI->getParent() != CmpInstr->getParent() ||
3555 !isDefConvertible(MI)))
3556 return false;
3557
3558 // We are searching for an earlier instruction that can make CmpInstr
3559 // redundant and that instruction will be saved in Sub.
3560 MachineInstr *Sub = NULL;
3561 const TargetRegisterInfo *TRI = &getRegisterInfo();
3562
3563 // We iterate backward, starting from the instruction before CmpInstr and
3564 // stop when reaching the definition of a source register or done with the BB.
3565 // RI points to the instruction before CmpInstr.
3566 // If the definition is in this basic block, RE points to the definition;
3567 // otherwise, RE is the rend of the basic block.
3568 MachineBasicBlock::reverse_iterator
3569 RI = MachineBasicBlock::reverse_iterator(I),
3570 RE = CmpInstr->getParent() == MI->getParent() ?
3571 MachineBasicBlock::reverse_iterator(++Def) /* points to MI */ :
3572 CmpInstr->getParent()->rend();
3573 MachineInstr *Movr0Inst = 0;
3574 for (; RI != RE; ++RI) {
3575 MachineInstr *Instr = &*RI;
3576 // Check whether CmpInstr can be made redundant by the current instruction.
3577 if (!IsCmpZero &&
3578 isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpValue, Instr)) {
3579 Sub = Instr;
3580 break;
3581 }
3582
3583 if (Instr->modifiesRegister(X86::EFLAGS, TRI) ||
3584 Instr->readsRegister(X86::EFLAGS, TRI)) {
3585 // This instruction modifies or uses EFLAGS.
3586
3587 // MOV32r0 etc. are implemented with xor which clobbers condition code.
3588 // They are safe to move up, if the definition to EFLAGS is dead and
3589 // earlier instructions do not read or write EFLAGS.
3590 if (!Movr0Inst && Instr->getOpcode() == X86::MOV32r0 &&
3591 Instr->registerDefIsDead(X86::EFLAGS, TRI)) {
3592 Movr0Inst = Instr;
3593 continue;
3594 }
3595
3596 // We can't remove CmpInstr.
3597 return false;
3598 }
3599 }
3600
3601 // Return false if no candidates exist.
3602 if (!IsCmpZero && !Sub)
3603 return false;
3604
3605 bool IsSwapped = (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
3606 Sub->getOperand(2).getReg() == SrcReg);
3607
3608 // Scan forward from the instruction after CmpInstr for uses of EFLAGS.
3609 // It is safe to remove CmpInstr if EFLAGS is redefined or killed.
3610 // If we are done with the basic block, we need to check whether EFLAGS is
3611 // live-out.
3612 bool IsSafe = false;
3613 SmallVector<std::pair<MachineInstr*, unsigned /*NewOpc*/>, 4> OpsToUpdate;
3614 MachineBasicBlock::iterator E = CmpInstr->getParent()->end();
3615 for (++I; I != E; ++I) {
3616 const MachineInstr &Instr = *I;
3617 bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI);
3618 bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI);
3619 // We should check the usage if this instruction uses and updates EFLAGS.
3620 if (!UseEFLAGS && ModifyEFLAGS) {
3621 // It is safe to remove CmpInstr if EFLAGS is updated again.
3622 IsSafe = true;
3623 break;
3624 }
3625 if (!UseEFLAGS && !ModifyEFLAGS)
3626 continue;
3627
3628 // EFLAGS is used by this instruction.
3629 X86::CondCode OldCC;
3630 bool OpcIsSET = false;
3631 if (IsCmpZero || IsSwapped) {
3632 // We decode the condition code from opcode.
3633 if (Instr.isBranch())
3634 OldCC = getCondFromBranchOpc(Instr.getOpcode());
3635 else {
3636 OldCC = getCondFromSETOpc(Instr.getOpcode());
3637 if (OldCC != X86::COND_INVALID)
3638 OpcIsSET = true;
3639 else
3640 OldCC = X86::getCondFromCMovOpc(Instr.getOpcode());
3641 }
3642 if (OldCC == X86::COND_INVALID) return false;
3643 }
3644 if (IsCmpZero) {
3645 switch (OldCC) {
3646 default: break;
3647 case X86::COND_A: case X86::COND_AE:
3648 case X86::COND_B: case X86::COND_BE:
3649 case X86::COND_G: case X86::COND_GE:
3650 case X86::COND_L: case X86::COND_LE:
3651 case X86::COND_O: case X86::COND_NO:
3652 // CF and OF are used, we can't perform this optimization.
3653 return false;
3654 }
3655 } else if (IsSwapped) {
3656 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs
3657 // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
3658 // We swap the condition code and synthesize the new opcode.
3659 X86::CondCode NewCC = getSwappedCondition(OldCC);
3660 if (NewCC == X86::COND_INVALID) return false;
3661
3662 // Synthesize the new opcode.
3663 bool HasMemoryOperand = Instr.hasOneMemOperand();
3664 unsigned NewOpc;
3665 if (Instr.isBranch())
3666 NewOpc = GetCondBranchFromCond(NewCC);
3667 else if(OpcIsSET)
3668 NewOpc = getSETFromCond(NewCC, HasMemoryOperand);
3669 else {
3670 unsigned DstReg = Instr.getOperand(0).getReg();
3671 NewOpc = getCMovFromCond(NewCC, MRI->getRegClass(DstReg)->getSize(),
3672 HasMemoryOperand);
3673 }
3674
3675 // Push the MachineInstr to OpsToUpdate.
3676 // If it is safe to remove CmpInstr, the condition code of these
3677 // instructions will be modified.
3678 OpsToUpdate.push_back(std::make_pair(&*I, NewOpc));
3679 }
3680 if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) {
3681 // It is safe to remove CmpInstr if EFLAGS is updated again or killed.
3682 IsSafe = true;
3683 break;
3684 }
3685 }
3686
3687 // If EFLAGS is not killed nor re-defined, we should check whether it is
3688 // live-out. If it is live-out, do not optimize.
3689 if ((IsCmpZero || IsSwapped) && !IsSafe) {
3690 MachineBasicBlock *MBB = CmpInstr->getParent();
3691 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
3692 SE = MBB->succ_end(); SI != SE; ++SI)
3693 if ((*SI)->isLiveIn(X86::EFLAGS))
3694 return false;
3695 }
3696
3697 // The instruction to be updated is either Sub or MI.
3698 Sub = IsCmpZero ? MI : Sub;
3699 // Move Movr0Inst to the appropriate place before Sub.
3700 if (Movr0Inst) {
3701 // Look backwards until we find a def that doesn't use the current EFLAGS.
3702 Def = Sub;
3703 MachineBasicBlock::reverse_iterator
3704 InsertI = MachineBasicBlock::reverse_iterator(++Def),
3705 InsertE = Sub->getParent()->rend();
3706 for (; InsertI != InsertE; ++InsertI) {
3707 MachineInstr *Instr = &*InsertI;
3708 if (!Instr->readsRegister(X86::EFLAGS, TRI) &&
3709 Instr->modifiesRegister(X86::EFLAGS, TRI)) {
3710 Sub->getParent()->remove(Movr0Inst);
3711 Instr->getParent()->insert(MachineBasicBlock::iterator(Instr),
3712 Movr0Inst);
3713 break;
3714 }
3715 }
3716 if (InsertI == InsertE)
3717 return false;
3718 }
3719
3720 // Make sure Sub instruction defines EFLAGS and mark the def live.
3721 unsigned i = 0, e = Sub->getNumOperands();
3722 for (; i != e; ++i) {
3723 MachineOperand &MO = Sub->getOperand(i);
3724 if (MO.isReg() && MO.isDef() && MO.getReg() == X86::EFLAGS) {
3725 MO.setIsDead(false);
3726 break;
3727 }
3728 }
3729 assert(i != e && "Unable to locate a def EFLAGS operand");
3730
3731 CmpInstr->eraseFromParent();
3732
3733 // Modify the condition code of instructions in OpsToUpdate.
3734 for (unsigned i = 0, e = OpsToUpdate.size(); i < e; i++)
3735 OpsToUpdate[i].first->setDesc(get(OpsToUpdate[i].second));
3736 return true;
3737 }
3738
3739 /// optimizeLoadInstr - Try to remove the load by folding it to a register
3740 /// operand at the use. We fold the load instructions if load defines a virtual
3741 /// register, the virtual register is used once in the same BB, and the
3742 /// instructions in-between do not load or store, and have no side effects.
3743 MachineInstr* X86InstrInfo::
3744 optimizeLoadInstr(MachineInstr *MI, const MachineRegisterInfo *MRI,
3745 unsigned &FoldAsLoadDefReg,
3746 MachineInstr *&DefMI) const {
3747 if (FoldAsLoadDefReg == 0)
3748 return 0;
3749 // To be conservative, if there exists another load, clear the load candidate.
3750 if (MI->mayLoad()) {
3751 FoldAsLoadDefReg = 0;
3752 return 0;
3753 }
3754
3755 // Check whether we can move DefMI here.
3756 DefMI = MRI->getVRegDef(FoldAsLoadDefReg);
3757 assert(DefMI);
3758 bool SawStore = false;
3759 if (!DefMI->isSafeToMove(this, 0, SawStore))
3760 return 0;
3761
3762 // We try to commute MI if possible.
3763 unsigned IdxEnd = (MI->isCommutable()) ? 2 : 1;
3764 for (unsigned Idx = 0; Idx < IdxEnd; Idx++) {
3765 // Collect information about virtual register operands of MI.
3766 unsigned SrcOperandId = 0;
3767 bool FoundSrcOperand = false;
3768 for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
3769 MachineOperand &MO = MI->getOperand(i);
3770 if (!MO.isReg())
3771 continue;
3772 unsigned Reg = MO.getReg();
3773 if (Reg != FoldAsLoadDefReg)
3774 continue;
3775 // Do not fold if we have a subreg use or a def or multiple uses.
3776 if (MO.getSubReg() || MO.isDef() || FoundSrcOperand)
3777 return 0;
3778
3779 SrcOperandId = i;
3780 FoundSrcOperand = true;
3781 }
3782 if (!FoundSrcOperand) return 0;
3783
3784 // Check whether we can fold the def into SrcOperandId.
3785 SmallVector<unsigned, 8> Ops;
3786 Ops.push_back(SrcOperandId);
3787 MachineInstr *FoldMI = foldMemoryOperand(MI, Ops, DefMI);
3788 if (FoldMI) {
3789 FoldAsLoadDefReg = 0;
3790 return FoldMI;
3791 }
3792
3793 if (Idx == 1) {
3794 // MI was changed but it didn't help, commute it back!
3795 commuteInstruction(MI, false);
3796 return 0;
3797 }
3798
3799 // Check whether we can commute MI and enable folding.
3800 if (MI->isCommutable()) {
3801 MachineInstr *NewMI = commuteInstruction(MI, false);
3802 // Unable to commute.
3803 if (!NewMI) return 0;
3804 if (NewMI != MI) {
3805 // New instruction. It doesn't need to be kept.
3806 NewMI->eraseFromParent();
3807 return 0;
3808 }
3809 }
3810 }
3811 return 0;
3812 }
3813
3814 /// Expand2AddrUndef - Expand a single-def pseudo instruction to a two-addr
3815 /// instruction with two undef reads of the register being defined. This is
3816 /// used for mapping:
3817 /// %xmm4 = V_SET0
3818 /// to:
3819 /// %xmm4 = PXORrr %xmm4<undef>, %xmm4<undef>
3820 ///
3821 static bool Expand2AddrUndef(MachineInstrBuilder &MIB,
3822 const MCInstrDesc &Desc) {
3823 assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
3824 unsigned Reg = MIB->getOperand(0).getReg();
3825 MIB->setDesc(Desc);
3826
3827 // MachineInstr::addOperand() will insert explicit operands before any
3828 // implicit operands.
3829 MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
3830 // But we don't trust that.
3831 assert(MIB->getOperand(1).getReg() == Reg &&
3832 MIB->getOperand(2).getReg() == Reg && "Misplaced operand");
3833 return true;
3834 }
3835
3836 bool X86InstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
3837 bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
3838 MachineInstrBuilder MIB(*MI->getParent()->getParent(), MI);
3839 switch (MI->getOpcode()) {
3840 case X86::SETB_C8r:
3841 return Expand2AddrUndef(MIB, get(X86::SBB8rr));
3842 case X86::SETB_C16r:
3843 return Expand2AddrUndef(MIB, get(X86::SBB16rr));
3844 case X86::SETB_C32r:
3845 return Expand2AddrUndef(MIB, get(X86::SBB32rr));
3846 case X86::SETB_C64r:
3847 return Expand2AddrUndef(MIB, get(X86::SBB64rr));
3848 case X86::V_SET0:
3849 case X86::FsFLD0SS:
3850 case X86::FsFLD0SD:
3851 return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr));
3852 case X86::AVX_SET0:
3853 assert(HasAVX && "AVX not supported");
3854 return Expand2AddrUndef(MIB, get(X86::VXORPSYrr));
3855 case X86::AVX512_512_SET0:
3856 return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
3857 case X86::V_SETALLONES:
3858 return Expand2AddrUndef(MIB, get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr));
3859 case X86::AVX2_SETALLONES:
3860 return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr));
3861 case X86::TEST8ri_NOREX:
3862 MI->setDesc(get(X86::TEST8ri));
3863 return true;
3864 case X86::KSET0W: return Expand2AddrUndef(MIB, get(X86::KXORWrr));
3865 case X86::KSET1B:
3866 case X86::KSET1W: return Expand2AddrUndef(MIB, get(X86::KXNORWrr));
3867 }
3868 return false;
3869 }
3870
3871 static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
3872 const SmallVectorImpl<MachineOperand> &MOs,
3873 MachineInstr *MI,
3874 const TargetInstrInfo &TII) {
3875 // Create the base instruction with the memory operand as the first part.
3876 // Omit the implicit operands, something BuildMI can't do.
3877 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
3878 MI->getDebugLoc(), true);
3879 MachineInstrBuilder MIB(MF, NewMI);
3880 unsigned NumAddrOps = MOs.size();
3881 for (unsigned i = 0; i != NumAddrOps; ++i)
3882 MIB.addOperand(MOs[i]);
3883 if (NumAddrOps < 4) // FrameIndex only
3884 addOffset(MIB, 0);
3885
3886 // Loop over the rest of the ri operands, converting them over.
3887 unsigned NumOps = MI->getDesc().getNumOperands()-2;
3888 for (unsigned i = 0; i != NumOps; ++i) {
3889 MachineOperand &MO = MI->getOperand(i+2);
3890 MIB.addOperand(MO);
3891 }
3892 for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
3893 MachineOperand &MO = MI->getOperand(i);
3894 MIB.addOperand(MO);
3895 }
3896 return MIB;
3897 }
3898
3899 static MachineInstr *FuseInst(MachineFunction &MF,
3900 unsigned Opcode, unsigned OpNo,
3901 const SmallVectorImpl<MachineOperand> &MOs,
3902 MachineInstr *MI, const TargetInstrInfo &TII) {
3903 // Omit the implicit operands, something BuildMI can't do.
3904 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
3905 MI->getDebugLoc(), true);
3906 MachineInstrBuilder MIB(MF, NewMI);
3907
3908 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
3909 MachineOperand &MO = MI->getOperand(i);
3910 if (i == OpNo) {
3911 assert(MO.isReg() && "Expected to fold into reg operand!");
3912 unsigned NumAddrOps = MOs.size();
3913 for (unsigned i = 0; i != NumAddrOps; ++i)
3914 MIB.addOperand(MOs[i]);
3915 if (NumAddrOps < 4) // FrameIndex only
3916 addOffset(MIB, 0);
3917 } else {
3918 MIB.addOperand(MO);
3919 }
3920 }
3921 return MIB;
3922 }
3923
3924 static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
3925 const SmallVectorImpl<MachineOperand> &MOs,
3926 MachineInstr *MI) {
3927 MachineFunction &MF = *MI->getParent()->getParent();
3928 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode));
3929
3930 unsigned NumAddrOps = MOs.size();
3931 for (unsigned i = 0; i != NumAddrOps; ++i)
3932 MIB.addOperand(MOs[i]);
3933 if (NumAddrOps < 4) // FrameIndex only
3934 addOffset(MIB, 0);
3935 return MIB.addImm(0);
3936 }
3937
3938 MachineInstr*
3939 X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
3940 MachineInstr *MI, unsigned i,
3941 const SmallVectorImpl<MachineOperand> &MOs,
3942 unsigned Size, unsigned Align) const {
3943 const DenseMap<unsigned, std::pair<unsigned,unsigned> > *OpcodeTablePtr = 0;
3944 bool isCallRegIndirect = TM.getSubtarget<X86Subtarget>().callRegIndirect();
3945 bool isTwoAddrFold = false;
3946
3947 // Atom favors register form of call. So, we do not fold loads into calls
3948 // when X86Subtarget is Atom.
3949 if (isCallRegIndirect &&
3950 (MI->getOpcode() == X86::CALL32r || MI->getOpcode() == X86::CALL64r)) {
3951 return NULL;
3952 }
3953
3954 unsigned NumOps = MI->getDesc().getNumOperands();
3955 bool isTwoAddr = NumOps > 1 &&
3956 MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
3957
3958 // FIXME: AsmPrinter doesn't know how to handle
3959 // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
3960 if (MI->getOpcode() == X86::ADD32ri &&
3961 MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
3962 return NULL;
3963
3964 MachineInstr *NewMI = NULL;
3965 // Folding a memory location into the two-address part of a two-address
3966 // instruction is different than folding it other places. It requires
3967 // replacing the *two* registers with the memory location.
3968 if (isTwoAddr && NumOps >= 2 && i < 2 &&
3969 MI->getOperand(0).isReg() &&
3970 MI->getOperand(1).isReg() &&
3971 MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
3972 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
3973 isTwoAddrFold = true;
3974 } else if (i == 0) { // If operand 0
3975 if (MI->getOpcode() == X86::MOV32r0) {
3976 NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
3977 if (NewMI)
3978 return NewMI;
3979 }
3980
3981 OpcodeTablePtr = &RegOp2MemOpTable0;
3982 } else if (i == 1) {
3983 OpcodeTablePtr = &RegOp2MemOpTable1;
3984 } else if (i == 2) {
3985 OpcodeTablePtr = &RegOp2MemOpTable2;
3986 } else if (i == 3) {
3987 OpcodeTablePtr = &RegOp2MemOpTable3;
3988 }
3989
3990 // If table selected...
3991 if (OpcodeTablePtr) {
3992 // Find the Opcode to fuse
3993 DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
3994 OpcodeTablePtr->find(MI->getOpcode());
3995 if (I != OpcodeTablePtr->end()) {
3996 unsigned Opcode = I->second.first;
3997 unsigned MinAlign = (I->second.second & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT;
3998 if (Align < MinAlign)
3999 return NULL;
4000 bool NarrowToMOV32rm = false;
4001 if (Size) {
4002 unsigned RCSize = getRegClass(MI->getDesc(), i, &RI, MF)->getSize();
4003 if (Size < RCSize) {
4004 // Check if it's safe to fold the load. If the size of the object is
4005 // narrower than the load width, then it's not.
4006 if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
4007 return NULL;
4008 // If this is a 64-bit load, but the spill slot is 32, then we can do
4009 // a 32-bit load which is implicitly zero-extended. This likely is due
4010 // to liveintervalanalysis remat'ing a load from stack slot.
4011 if (MI->getOperand(0).getSubReg() || MI->getOperand(1).getSubReg())
4012 return NULL;
4013 Opcode = X86::MOV32rm;
4014 NarrowToMOV32rm = true;
4015 }
4016 }
4017
4018 if (isTwoAddrFold)
4019 NewMI = FuseTwoAddrInst(MF, Opcode, MOs, MI, *this);
4020 else
4021 NewMI = FuseInst(MF, Opcode, i, MOs, MI, *this);
4022
4023 if (NarrowToMOV32rm) {
4024 // If this is the special case where we use a MOV32rm to load a 32-bit
4025 // value and zero-extend the top bits. Change the destination register
4026 // to a 32-bit one.
4027 unsigned DstReg = NewMI->getOperand(0).getReg();
4028 if (TargetRegisterInfo::isPhysicalRegister(DstReg))
4029 NewMI->getOperand(0).setReg(RI.getSubReg(DstReg,
4030 X86::sub_32bit));
4031 else
4032 NewMI->getOperand(0).setSubReg(X86::sub_32bit);
4033 }
4034 return NewMI;
4035 }
4036 }
4037
4038 // No fusion
4039 if (PrintFailedFusing && !MI->isCopy())
4040 dbgs() << "We failed to fuse operand " << i << " in " << *MI;
4041 return NULL;
4042 }
4043
4044 /// hasPartialRegUpdate - Return true for all instructions that only update
4045 /// the first 32 or 64-bits of the destination register and leave the rest
4046 /// unmodified. This can be used to avoid folding loads if the instructions
4047 /// only update part of the destination register, and the non-updated part is
4048 /// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these
4049 /// instructions breaks the partial register dependency and it can improve
4050 /// performance. e.g.:
4051 ///
4052 /// movss (%rdi), %xmm0
4053 /// cvtss2sd %xmm0, %xmm0
4054 ///
4055 /// Instead of
4056 /// cvtss2sd (%rdi), %xmm0
4057 ///
4058 /// FIXME: This should be turned into a TSFlags.
4059 ///
4060 static bool hasPartialRegUpdate(unsigned Opcode) {
4061 switch (Opcode) {
4062 case X86::CVTSI2SSrr:
4063 case X86::CVTSI2SS64rr:
4064 case X86::CVTSI2SDrr:
4065 case X86::CVTSI2SD64rr:
4066 case X86::CVTSD2SSrr:
4067 case X86::Int_CVTSD2SSrr:
4068 case X86::CVTSS2SDrr:
4069 case X86::Int_CVTSS2SDrr:
4070 case X86::RCPSSr:
4071 case X86::RCPSSr_Int:
4072 case X86::ROUNDSDr:
4073 case X86::ROUNDSDr_Int:
4074 case X86::ROUNDSSr:
4075 case X86::ROUNDSSr_Int:
4076 case X86::RSQRTSSr:
4077 case X86::RSQRTSSr_Int:
4078 case X86::SQRTSSr:
4079 case X86::SQRTSSr_Int:
4080 return true;
4081 }
4082
4083 return false;
4084 }
4085
4086 /// getPartialRegUpdateClearance - Inform the ExeDepsFix pass how many idle
4087 /// instructions we would like before a partial register update.
4088 unsigned X86InstrInfo::
4089 getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum,
4090 const TargetRegisterInfo *TRI) const {
4091 if (OpNum != 0 || !hasPartialRegUpdate(MI->getOpcode()))
4092 return 0;
4093
4094 // If MI is marked as reading Reg, the partial register update is wanted.
4095 const MachineOperand &MO = MI->getOperand(0);
4096 unsigned Reg = MO.getReg();
4097 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
4098 if (MO.readsReg() || MI->readsVirtualRegister(Reg))
4099 return 0;
4100 } else {
4101 if (MI->readsRegister(Reg, TRI))
4102 return 0;
4103 }
4104
4105 // If any of the preceding 16 instructions are reading Reg, insert a
4106 // dependency breaking instruction. The magic number is based on a few
4107 // Nehalem experiments.
4108 return 16;
4109 }
4110
4111 // Return true for any instruction the copies the high bits of the first source
4112 // operand into the unused high bits of the destination operand.
4113 static bool hasUndefRegUpdate(unsigned Opcode) {
4114 switch (Opcode) {
4115 case X86::VCVTSI2SSrr:
4116 case X86::Int_VCVTSI2SSrr:
4117 case X86::VCVTSI2SS64rr:
4118 case X86::Int_VCVTSI2SS64rr:
4119 case X86::VCVTSI2SDrr:
4120 case X86::Int_VCVTSI2SDrr:
4121 case X86::VCVTSI2SD64rr:
4122 case X86::Int_VCVTSI2SD64rr:
4123 case X86::VCVTSD2SSrr:
4124 case X86::Int_VCVTSD2SSrr:
4125 case X86::VCVTSS2SDrr:
4126 case X86::Int_VCVTSS2SDrr:
4127 case X86::VRCPSSr:
4128 case X86::VROUNDSDr:
4129 case X86::VROUNDSDr_Int:
4130 case X86::VROUNDSSr:
4131 case X86::VROUNDSSr_Int:
4132 case X86::VRSQRTSSr:
4133 case X86::VSQRTSSr:
4134
4135 // AVX-512
4136 case X86::VCVTSD2SSZrr:
4137 case X86::VCVTSS2SDZrr:
4138 return true;
4139 }
4140
4141 return false;
4142 }
4143
4144 /// Inform the ExeDepsFix pass how many idle instructions we would like before
4145 /// certain undef register reads.
4146 ///
4147 /// This catches the VCVTSI2SD family of instructions:
4148 ///
4149 /// vcvtsi2sdq %rax, %xmm0<undef>, %xmm14
4150 ///
4151 /// We should to be careful *not* to catch VXOR idioms which are presumably
4152 /// handled specially in the pipeline:
4153 ///
4154 /// vxorps %xmm1<undef>, %xmm1<undef>, %xmm1
4155 ///
4156 /// Like getPartialRegUpdateClearance, this makes a strong assumption that the
4157 /// high bits that are passed-through are not live.
4158 unsigned X86InstrInfo::
4159 getUndefRegClearance(const MachineInstr *MI, unsigned &OpNum,
4160 const TargetRegisterInfo *TRI) const {
4161 if (!hasUndefRegUpdate(MI->getOpcode()))
4162 return 0;
4163
4164 // Set the OpNum parameter to the first source operand.
4165 OpNum = 1;
4166
4167 const MachineOperand &MO = MI->getOperand(OpNum);
4168 if (MO.isUndef() && TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
4169 // Use the same magic number as getPartialRegUpdateClearance.
4170 return 16;
4171 }
4172 return 0;
4173 }
4174
4175 void X86InstrInfo::
4176 breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
4177 const TargetRegisterInfo *TRI) const {
4178 unsigned Reg = MI->getOperand(OpNum).getReg();
4179 // If MI kills this register, the false dependence is already broken.
4180 if (MI->killsRegister(Reg, TRI))
4181 return;
4182 if (X86::VR128RegClass.contains(Reg)) {
4183 // These instructions are all floating point domain, so xorps is the best
4184 // choice.
4185 bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
4186 unsigned Opc = HasAVX ? X86::VXORPSrr : X86::XORPSrr;
4187 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(Opc), Reg)
4188 .addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
4189 } else if (X86::VR256RegClass.contains(Reg)) {
4190 // Use vxorps to clear the full ymm register.
4191 // It wants to read and write the xmm sub-register.
4192 unsigned XReg = TRI->getSubReg(Reg, X86::sub_xmm);
4193 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(X86::VXORPSrr), XReg)
4194 .addReg(XReg, RegState::Undef).addReg(XReg, RegState::Undef)
4195 .addReg(Reg, RegState::ImplicitDefine);
4196 } else
4197 return;
4198 MI->addRegisterKilled(Reg, TRI, true);
4199 }
4200
4201 static MachineInstr* foldPatchpoint(MachineFunction &MF,
4202 MachineInstr *MI,
4203 const SmallVectorImpl<unsigned> &Ops,
4204 int FrameIndex,
4205 const TargetInstrInfo &TII) {
4206 unsigned StartIdx = 0;
4207 switch (MI->getOpcode()) {
4208 case TargetOpcode::STACKMAP:
4209 StartIdx = 2; // Skip ID, nShadowBytes.
4210 break;
4211 case TargetOpcode::PATCHPOINT: {
4212 // For PatchPoint, the call args are not foldable.
4213 PatchPointOpers opers(MI);
4214 StartIdx = opers.getVarIdx();
4215 break;
4216 }
4217 default:
4218 llvm_unreachable("unexpected stackmap opcode");
4219 }
4220
4221 // Return false if any operands requested for folding are not foldable (not
4222 // part of the stackmap's live values).
4223 for (SmallVectorImpl<unsigned>::const_iterator I = Ops.begin(), E = Ops.end();
4224 I != E; ++I) {
4225 if (*I < StartIdx)
4226 return 0;
4227 }
4228
4229 MachineInstr *NewMI =
4230 MF.CreateMachineInstr(TII.get(MI->getOpcode()), MI->getDebugLoc(), true);
4231 MachineInstrBuilder MIB(MF, NewMI);
4232
4233 // No need to fold return, the meta data, and function arguments
4234 for (unsigned i = 0; i < StartIdx; ++i)
4235 MIB.addOperand(MI->getOperand(i));
4236
4237 for (unsigned i = StartIdx; i < MI->getNumOperands(); ++i) {
4238 MachineOperand &MO = MI->getOperand(i);
4239 if (std::find(Ops.begin(), Ops.end(), i) != Ops.end()) {
4240 assert(MO.getReg() && "patchpoint can only fold a vreg operand");
4241 // Compute the spill slot size and offset.
4242 const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(MO.getReg());
4243 unsigned SpillSize;
4244 unsigned SpillOffset;
4245 bool Valid = TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize,
4246 SpillOffset, &MF.getTarget());
4247 if (!Valid)
4248 report_fatal_error("cannot spill patchpoint subregister operand");
4249
4250 MIB.addOperand(MachineOperand::CreateImm(StackMaps::IndirectMemRefOp));
4251 MIB.addOperand(MachineOperand::CreateImm(SpillSize));
4252 MIB.addOperand(MachineOperand::CreateFI(FrameIndex));
4253 addOffset(MIB, SpillOffset);
4254 }
4255 else
4256 MIB.addOperand(MO);
4257 }
4258 return NewMI;
4259 }
4260
4261 MachineInstr*
4262 X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr *MI,
4263 const SmallVectorImpl<unsigned> &Ops,
4264 int FrameIndex) const {
4265 // Special case stack map and patch point intrinsics.
4266 if (MI->getOpcode() == TargetOpcode::STACKMAP
4267 || MI->getOpcode() == TargetOpcode::PATCHPOINT) {
4268 return foldPatchpoint(MF, MI, Ops, FrameIndex, *this);
4269 }
4270 // Check switch flag
4271 if (NoFusing) return NULL;
4272
4273 // Unless optimizing for size, don't fold to avoid partial
4274 // register update stalls
4275 if (!MF.getFunction()->getAttributes().
4276 hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize) &&
4277 hasPartialRegUpdate(MI->getOpcode()))
4278 return 0;
4279
4280 const MachineFrameInfo *MFI = MF.getFrameInfo();
4281 unsigned Size = MFI->getObjectSize(FrameIndex);
4282 unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
4283 // If the function stack isn't realigned we don't want to fold instructions
4284 // that need increased alignment.
4285 if (!RI.needsStackRealignment(MF))
4286 Alignment = std::min(Alignment, TM.getFrameLowering()->getStackAlignment());
4287 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
4288 unsigned NewOpc = 0;
4289 unsigned RCSize = 0;
4290 switch (MI->getOpcode()) {
4291 default: return NULL;
4292 case X86::TEST8rr: NewOpc = X86::CMP8ri; RCSize = 1; break;
4293 case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
4294 case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
4295 case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
4296 }
4297 // Check if it's safe to fold the load. If the size of the object is
4298 // narrower than the load width, then it's not.
4299 if (Size < RCSize)
4300 return NULL;
4301 // Change to CMPXXri r, 0 first.
4302 MI->setDesc(get(NewOpc));
4303 MI->getOperand(1).ChangeToImmediate(0);
4304 } else if (Ops.size() != 1)
4305 return NULL;
4306
4307 SmallVector<MachineOperand,4> MOs;
4308 MOs.push_back(MachineOperand::CreateFI(FrameIndex));
4309 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, Size, Alignment);
4310 }
4311
4312 MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
4313 MachineInstr *MI,
4314 const SmallVectorImpl<unsigned> &Ops,
4315 MachineInstr *LoadMI) const {
4316 // If loading from a FrameIndex, fold directly from the FrameIndex.
4317 unsigned NumOps = LoadMI->getDesc().getNumOperands();
4318 int FrameIndex;
4319 if (isLoadFromStackSlot(LoadMI, FrameIndex))
4320 return foldMemoryOperandImpl(MF, MI, Ops, FrameIndex);
4321
4322 // Check switch flag
4323 if (NoFusing) return NULL;
4324
4325 // Unless optimizing for size, don't fold to avoid partial
4326 // register update stalls
4327 if (!MF.getFunction()->getAttributes().
4328 hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize) &&
4329 hasPartialRegUpdate(MI->getOpcode()))
4330 return 0;
4331
4332 // Determine the alignment of the load.
4333 unsigned Alignment = 0;
4334 if (LoadMI->hasOneMemOperand())
4335 Alignment = (*LoadMI->memoperands_begin())->getAlignment();
4336 else
4337 switch (LoadMI->getOpcode()) {
4338 case X86::AVX2_SETALLONES:
4339 case X86::AVX_SET0:
4340 Alignment = 32;
4341 break;
4342 case X86::V_SET0:
4343 case X86::V_SETALLONES:
4344 Alignment = 16;
4345 break;
4346 case X86::FsFLD0SD:
4347 Alignment = 8;
4348 break;
4349 case X86::FsFLD0SS:
4350 Alignment = 4;
4351 break;
4352 default:
4353 return 0;
4354 }
4355 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
4356 unsigned NewOpc = 0;
4357 switch (MI->getOpcode()) {
4358 default: return NULL;
4359 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
4360 case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
4361 case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
4362 case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
4363 }
4364 // Change to CMPXXri r, 0 first.
4365 MI->setDesc(get(NewOpc));
4366 MI->getOperand(1).ChangeToImmediate(0);
4367 } else if (Ops.size() != 1)
4368 return NULL;
4369
4370 // Make sure the subregisters match.
4371 // Otherwise we risk changing the size of the load.
4372 if (LoadMI->getOperand(0).getSubReg() != MI->getOperand(Ops[0]).getSubReg())
4373 return NULL;
4374
4375 SmallVector<MachineOperand,X86::AddrNumOperands> MOs;
4376 switch (LoadMI->getOpcode()) {
4377 case X86::V_SET0:
4378 case X86::V_SETALLONES:
4379 case X86::AVX2_SETALLONES:
4380 case X86::AVX_SET0:
4381 case X86::FsFLD0SD:
4382 case X86::FsFLD0SS: {
4383 // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
4384 // Create a constant-pool entry and operands to load from it.
4385
4386 // Medium and large mode can't fold loads this way.
4387 if (TM.getCodeModel() != CodeModel::Small &&
4388 TM.getCodeModel() != CodeModel::Kernel)
4389 return NULL;
4390
4391 // x86-32 PIC requires a PIC base register for constant pools.
4392 unsigned PICBase = 0;
4393 if (TM.getRelocationModel() == Reloc::PIC_) {
4394 if (TM.getSubtarget<X86Subtarget>().is64Bit())
4395 PICBase = X86::RIP;
4396 else
4397 // FIXME: PICBase = getGlobalBaseReg(&MF);
4398 // This doesn't work for several reasons.
4399 // 1. GlobalBaseReg may have been spilled.
4400 // 2. It may not be live at MI.
4401 return NULL;
4402 }
4403
4404 // Create a constant-pool entry.
4405 MachineConstantPool &MCP = *MF.getConstantPool();
4406 Type *Ty;
4407 unsigned Opc = LoadMI->getOpcode();
4408 if (Opc == X86::FsFLD0SS)
4409 Ty = Type::getFloatTy(MF.getFunction()->getContext());
4410 else if (Opc == X86::FsFLD0SD)
4411 Ty = Type::getDoubleTy(MF.getFunction()->getContext());
4412 else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX_SET0)
4413 Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 8);
4414 else
4415 Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4);
4416
4417 bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX2_SETALLONES);
4418 const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) :
4419 Constant::getNullValue(Ty);
4420 unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
4421
4422 // Create operands to load from the constant pool entry.
4423 MOs.push_back(MachineOperand::CreateReg(PICBase, false));
4424 MOs.push_back(MachineOperand::CreateImm(1));
4425 MOs.push_back(MachineOperand::CreateReg(0, false));
4426 MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
4427 MOs.push_back(MachineOperand::CreateReg(0, false));
4428 break;
4429 }
4430 default: {
4431 if ((LoadMI->getOpcode() == X86::MOVSSrm ||
4432 LoadMI->getOpcode() == X86::VMOVSSrm) &&
4433 MF.getRegInfo().getRegClass(LoadMI->getOperand(0).getReg())->getSize()
4434 > 4)
4435 // These instructions only load 32 bits, we can't fold them if the
4436 // destination register is wider than 32 bits (4 bytes).
4437 return NULL;
4438 if ((LoadMI->getOpcode() == X86::MOVSDrm ||
4439 LoadMI->getOpcode() == X86::VMOVSDrm) &&
4440 MF.getRegInfo().getRegClass(LoadMI->getOperand(0).getReg())->getSize()
4441 > 8)
4442 // These instructions only load 64 bits, we can't fold them if the
4443 // destination register is wider than 64 bits (8 bytes).
4444 return NULL;
4445
4446 // Folding a normal load. Just copy the load's address operands.
4447 for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i)
4448 MOs.push_back(LoadMI->getOperand(i));
4449 break;
4450 }
4451 }
4452 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, 0, Alignment);
4453 }
4454
4455
4456 bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
4457 const SmallVectorImpl<unsigned> &Ops) const {
4458 // Check switch flag
4459 if (NoFusing) return 0;
4460
4461 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
4462 switch (MI->getOpcode()) {
4463 default: return false;
4464 case X86::TEST8rr:
4465 case X86::TEST16rr:
4466 case X86::TEST32rr:
4467 case X86::TEST64rr:
4468 return true;
4469 case X86::ADD32ri:
4470 // FIXME: AsmPrinter doesn't know how to handle
4471 // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
4472 if (MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
4473 return false;
4474 break;
4475 }
4476 }
4477
4478 if (Ops.size() != 1)
4479 return false;
4480
4481 unsigned OpNum = Ops[0];
4482 unsigned Opc = MI->getOpcode();
4483 unsigned NumOps = MI->getDesc().getNumOperands();
4484 bool isTwoAddr = NumOps > 1 &&
4485 MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
4486
4487 // Folding a memory location into the two-address part of a two-address
4488 // instruction is different than folding it other places. It requires
4489 // replacing the *two* registers with the memory location.
4490 const DenseMap<unsigned, std::pair<unsigned,unsigned> > *OpcodeTablePtr = 0;
4491 if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
4492 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
4493 } else if (OpNum == 0) { // If operand 0
4494 if (Opc == X86::MOV32r0)
4495 return true;
4496
4497 OpcodeTablePtr = &RegOp2MemOpTable0;
4498 } else if (OpNum == 1) {
4499 OpcodeTablePtr = &RegOp2MemOpTable1;
4500 } else if (OpNum == 2) {
4501 OpcodeTablePtr = &RegOp2MemOpTable2;
4502 } else if (OpNum == 3) {
4503 OpcodeTablePtr = &RegOp2MemOpTable3;
4504 }
4505
4506 if (OpcodeTablePtr && OpcodeTablePtr->count(Opc))
4507 return true;
4508 return TargetInstrInfo::canFoldMemoryOperand(MI, Ops);
4509 }
4510
4511 bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
4512 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
4513 SmallVectorImpl<MachineInstr*> &NewMIs) const {
4514 DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
4515 MemOp2RegOpTable.find(MI->getOpcode());
4516 if (I == MemOp2RegOpTable.end())
4517 return false;
4518 unsigned Opc = I->second.first;
4519 unsigned Index = I->second.second & TB_INDEX_MASK;
4520 bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
4521 bool FoldedStore = I->second.second & TB_FOLDED_STORE;
4522 if (UnfoldLoad && !FoldedLoad)
4523 return false;
4524 UnfoldLoad &= FoldedLoad;
4525 if (UnfoldStore && !FoldedStore)
4526 return false;
4527 UnfoldStore &= FoldedStore;
4528
4529 const MCInstrDesc &MCID = get(Opc);
4530 const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
4531 if (!MI->hasOneMemOperand() &&
4532 RC == &X86::VR128RegClass &&
4533 !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
4534 // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
4535 // conservatively assume the address is unaligned. That's bad for
4536 // performance.
4537 return false;
4538 SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
4539 SmallVector<MachineOperand,2> BeforeOps;
4540 SmallVector<MachineOperand,2> AfterOps;
4541 SmallVector<MachineOperand,4> ImpOps;
4542 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
4543 MachineOperand &Op = MI->getOperand(i);
4544 if (i >= Index && i < Index + X86::AddrNumOperands)
4545 AddrOps.push_back(Op);
4546 else if (Op.isReg() && Op.isImplicit())
4547 ImpOps.push_back(Op);
4548 else if (i < Index)
4549 BeforeOps.push_back(Op);
4550 else if (i > Index)
4551 AfterOps.push_back(Op);
4552 }
4553
4554 // Emit the load instruction.
4555 if (UnfoldLoad) {
4556 std::pair<MachineInstr::mmo_iterator,
4557 MachineInstr::mmo_iterator> MMOs =
4558 MF.extractLoadMemRefs(MI->memoperands_begin(),
4559 MI->memoperands_end());
4560 loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs);
4561 if (UnfoldStore) {
4562 // Address operands cannot be marked isKill.
4563 for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
4564 MachineOperand &MO = NewMIs[0]->getOperand(i);
4565 if (MO.isReg())
4566 MO.setIsKill(false);
4567 }
4568 }
4569 }
4570
4571 // Emit the data processing instruction.
4572 MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI->getDebugLoc(), true);
4573 MachineInstrBuilder MIB(MF, DataMI);
4574
4575 if (FoldedStore)
4576 MIB.addReg(Reg, RegState::Define);
4577 for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
4578 MIB.addOperand(BeforeOps[i]);
4579 if (FoldedLoad)
4580 MIB.addReg(Reg);
4581 for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
4582 MIB.addOperand(AfterOps[i]);
4583 for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
4584 MachineOperand &MO = ImpOps[i];
4585 MIB.addReg(MO.getReg(),
4586 getDefRegState(MO.isDef()) |
4587 RegState::Implicit |
4588 getKillRegState(MO.isKill()) |
4589 getDeadRegState(MO.isDead()) |
4590 getUndefRegState(MO.isUndef()));
4591 }
4592 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
4593 switch (DataMI->getOpcode()) {
4594 default: break;
4595 case X86::CMP64ri32:
4596 case X86::CMP64ri8:
4597 case X86::CMP32ri:
4598 case X86::CMP32ri8:
4599 case X86::CMP16ri:
4600 case X86::CMP16ri8:
4601 case X86::CMP8ri: {
4602 MachineOperand &MO0 = DataMI->getOperand(0);
4603 MachineOperand &MO1 = DataMI->getOperand(1);
4604 if (MO1.getImm() == 0) {
4605 unsigned NewOpc;
4606 switch (DataMI->getOpcode()) {
4607 default: llvm_unreachable("Unreachable!");
4608 case X86::CMP64ri8:
4609 case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
4610 case X86::CMP32ri8:
4611 case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
4612 case X86::CMP16ri8:
4613 case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
4614 case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
4615 }
4616 DataMI->setDesc(get(NewOpc));
4617 MO1.ChangeToRegister(MO0.getReg(), false);
4618 }
4619 }
4620 }
4621 NewMIs.push_back(DataMI);
4622
4623 // Emit the store instruction.
4624 if (UnfoldStore) {
4625 const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF);
4626 std::pair<MachineInstr::mmo_iterator,
4627 MachineInstr::mmo_iterator> MMOs =
4628 MF.extractStoreMemRefs(MI->memoperands_begin(),
4629 MI->memoperands_end());
4630 storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs);
4631 }
4632
4633 return true;
4634 }
4635
4636 bool
4637 X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
4638 SmallVectorImpl<SDNode*> &NewNodes) const {
4639 if (!N->isMachineOpcode())
4640 return false;
4641
4642 DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
4643 MemOp2RegOpTable.find(N->getMachineOpcode());
4644 if (I == MemOp2RegOpTable.end())
4645 return false;
4646 unsigned Opc = I->second.first;
4647 unsigned Index = I->second.second & TB_INDEX_MASK;
4648 bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
4649 bool FoldedStore = I->second.second & TB_FOLDED_STORE;
4650 const MCInstrDesc &MCID = get(Opc);
4651 MachineFunction &MF = DAG.getMachineFunction();
4652 const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
4653 unsigned NumDefs = MCID.NumDefs;
4654 std::vector<SDValue> AddrOps;
4655 std::vector<SDValue> BeforeOps;
4656 std::vector<SDValue> AfterOps;
4657 SDLoc dl(N);
4658 unsigned NumOps = N->getNumOperands();
4659 for (unsigned i = 0; i != NumOps-1; ++i) {
4660 SDValue Op = N->getOperand(i);
4661 if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands)
4662 AddrOps.push_back(Op);
4663 else if (i < Index-NumDefs)
4664 BeforeOps.push_back(Op);
4665 else if (i > Index-NumDefs)
4666 AfterOps.push_back(Op);
4667 }
4668 SDValue Chain = N->getOperand(NumOps-1);
4669 AddrOps.push_back(Chain);
4670
4671 // Emit the load instruction.
4672 SDNode *Load = 0;
4673 if (FoldedLoad) {
4674 EVT VT = *RC->vt_begin();
4675 std::pair<MachineInstr::mmo_iterator,
4676 MachineInstr::mmo_iterator> MMOs =
4677 MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
4678 cast<MachineSDNode>(N)->memoperands_end());
4679 if (!(*MMOs.first) &&
4680 RC == &X86::VR128RegClass &&
4681 !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
4682 // Do not introduce a slow unaligned load.
4683 return false;
4684 unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
4685 bool isAligned = (*MMOs.first) &&
4686 (*MMOs.first)->getAlignment() >= Alignment;
4687 Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, TM), dl,
4688 VT, MVT::Other, AddrOps);
4689 NewNodes.push_back(Load);
4690
4691 // Preserve memory reference information.
4692 cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
4693 }
4694
4695 // Emit the data processing instruction.
4696 std::vector<EVT> VTs;
4697 const TargetRegisterClass *DstRC = 0;
4698 if (MCID.getNumDefs() > 0) {
4699 DstRC = getRegClass(MCID, 0, &RI, MF);
4700 VTs.push_back(*DstRC->vt_begin());
4701 }
4702 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
4703 EVT VT = N->getValueType(i);
4704 if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs())
4705 VTs.push_back(VT);
4706 }
4707 if (Load)
4708 BeforeOps.push_back(SDValue(Load, 0));
4709 std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
4710 SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, BeforeOps);
4711 NewNodes.push_back(NewNode);
4712
4713 // Emit the store instruction.
4714 if (FoldedStore) {
4715 AddrOps.pop_back();
4716 AddrOps.push_back(SDValue(NewNode, 0));
4717 AddrOps.push_back(Chain);
4718 std::pair<MachineInstr::mmo_iterator,
4719 MachineInstr::mmo_iterator> MMOs =
4720 MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
4721 cast<MachineSDNode>(N)->memoperands_end());
4722 if (!(*MMOs.first) &&
4723 RC == &X86::VR128RegClass &&
4724 !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
4725 // Do not introduce a slow unaligned store.
4726 return false;
4727 unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
4728 bool isAligned = (*MMOs.first) &&
4729 (*MMOs.first)->getAlignment() >= Alignment;
4730 SDNode *Store = DAG.getMachineNode(getStoreRegOpcode(0, DstRC,
4731 isAligned, TM),
4732 dl, MVT::Other, AddrOps);
4733 NewNodes.push_back(Store);
4734
4735 // Preserve memory reference information.
4736 cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
4737 }
4738
4739 return true;
4740 }
4741
4742 unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
4743 bool UnfoldLoad, bool UnfoldStore,
4744 unsigned *LoadRegIndex) const {
4745 DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
4746 MemOp2RegOpTable.find(Opc);
4747 if (I == MemOp2RegOpTable.end())
4748 return 0;
4749 bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
4750 bool FoldedStore = I->second.second & TB_FOLDED_STORE;
4751 if (UnfoldLoad && !FoldedLoad)
4752 return 0;
4753 if (UnfoldStore && !FoldedStore)
4754 return 0;
4755 if (LoadRegIndex)
4756 *LoadRegIndex = I->second.second & TB_INDEX_MASK;
4757 return I->second.first;
4758 }
4759
4760 bool
4761 X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
4762 int64_t &Offset1, int64_t &Offset2) const {
4763 if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
4764 return false;
4765 unsigned Opc1 = Load1->getMachineOpcode();
4766 unsigned Opc2 = Load2->getMachineOpcode();
4767 switch (Opc1) {
4768 default: return false;
4769 case X86::MOV8rm:
4770 case X86::MOV16rm:
4771 case X86::MOV32rm:
4772 case X86::MOV64rm:
4773 case X86::LD_Fp32m:
4774 case X86::LD_Fp64m:
4775 case X86::LD_Fp80m:
4776 case X86::MOVSSrm:
4777 case X86::MOVSDrm:
4778 case X86::MMX_MOVD64rm:
4779 case X86::MMX_MOVQ64rm:
4780 case X86::FsMOVAPSrm:
4781 case X86::FsMOVAPDrm:
4782 case X86::MOVAPSrm:
4783 case X86::MOVUPSrm:
4784 case X86::MOVAPDrm:
4785 case X86::MOVDQArm:
4786 case X86::MOVDQUrm:
4787 // AVX load instructions
4788 case X86::VMOVSSrm:
4789 case X86::VMOVSDrm:
4790 case X86::FsVMOVAPSrm:
4791 case X86::FsVMOVAPDrm:
4792 case X86::VMOVAPSrm:
4793 case X86::VMOVUPSrm:
4794 case X86::VMOVAPDrm:
4795 case X86::VMOVDQArm:
4796 case X86::VMOVDQUrm:
4797 case X86::VMOVAPSYrm:
4798 case X86::VMOVUPSYrm:
4799 case X86::VMOVAPDYrm:
4800 case X86::VMOVDQAYrm:
4801 case X86::VMOVDQUYrm:
4802 break;
4803 }
4804 switch (Opc2) {
4805 default: return false;
4806 case X86::MOV8rm:
4807 case X86::MOV16rm:
4808 case X86::MOV32rm:
4809 case X86::MOV64rm:
4810 case X86::LD_Fp32m:
4811 case X86::LD_Fp64m:
4812 case X86::LD_Fp80m:
4813 case X86::MOVSSrm:
4814 case X86::MOVSDrm:
4815 case X86::MMX_MOVD64rm:
4816 case X86::MMX_MOVQ64rm:
4817 case X86::FsMOVAPSrm:
4818 case X86::FsMOVAPDrm:
4819 case X86::MOVAPSrm:
4820 case X86::MOVUPSrm:
4821 case X86::MOVAPDrm:
4822 case X86::MOVDQArm:
4823 case X86::MOVDQUrm:
4824 // AVX load instructions
4825 case X86::VMOVSSrm:
4826 case X86::VMOVSDrm:
4827 case X86::FsVMOVAPSrm:
4828 case X86::FsVMOVAPDrm:
4829 case X86::VMOVAPSrm:
4830 case X86::VMOVUPSrm:
4831 case X86::VMOVAPDrm:
4832 case X86::VMOVDQArm:
4833 case X86::VMOVDQUrm:
4834 case X86::VMOVAPSYrm:
4835 case X86::VMOVUPSYrm:
4836 case X86::VMOVAPDYrm:
4837 case X86::VMOVDQAYrm:
4838 case X86::VMOVDQUYrm:
4839 break;
4840 }
4841
4842 // Check if chain operands and base addresses match.
4843 if (Load1->getOperand(0) != Load2->getOperand(0) ||
4844 Load1->getOperand(5) != Load2->getOperand(5))
4845 return false;
4846 // Segment operands should match as well.
4847 if (Load1->getOperand(4) != Load2->getOperand(4))
4848 return false;
4849 // Scale should be 1, Index should be Reg0.
4850 if (Load1->getOperand(1) == Load2->getOperand(1) &&
4851 Load1->getOperand(2) == Load2->getOperand(2)) {
4852 if (cast<ConstantSDNode>(Load1->getOperand(1))->getZExtValue() != 1)
4853 return false;
4854
4855 // Now let's examine the displacements.
4856 if (isa<ConstantSDNode>(Load1->getOperand(3)) &&
4857 isa<ConstantSDNode>(Load2->getOperand(3))) {
4858 Offset1 = cast<ConstantSDNode>(Load1->getOperand(3))->getSExtValue();
4859 Offset2 = cast<ConstantSDNode>(Load2->getOperand(3))->getSExtValue();
4860 return true;
4861 }
4862 }
4863 return false;
4864 }
4865
4866 bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
4867 int64_t Offset1, int64_t Offset2,
4868 unsigned NumLoads) const {
4869 assert(Offset2 > Offset1);
4870 if ((Offset2 - Offset1) / 8 > 64)
4871 return false;
4872
4873 unsigned Opc1 = Load1->getMachineOpcode();
4874 unsigned Opc2 = Load2->getMachineOpcode();
4875 if (Opc1 != Opc2)
4876 return false; // FIXME: overly conservative?
4877
4878 switch (Opc1) {
4879 default: break;
4880 case X86::LD_Fp32m:
4881 case X86::LD_Fp64m:
4882 case X86::LD_Fp80m:
4883 case X86::MMX_MOVD64rm:
4884 case X86::MMX_MOVQ64rm:
4885 return false;
4886 }
4887
4888 EVT VT = Load1->getValueType(0);
4889 switch (VT.getSimpleVT().SimpleTy) {
4890 default:
4891 // XMM registers. In 64-bit mode we can be a bit more aggressive since we
4892 // have 16 of them to play with.
4893 if (TM.getSubtargetImpl()->is64Bit()) {
4894 if (NumLoads >= 3)
4895 return false;
4896 } else if (NumLoads) {
4897 return false;
4898 }
4899 break;
4900 case MVT::i8:
4901 case MVT::i16:
4902 case MVT::i32:
4903 case MVT::i64:
4904 case MVT::f32:
4905 case MVT::f64:
4906 if (NumLoads)
4907 return false;
4908 break;
4909 }
4910
4911 return true;
4912 }
4913
4914 bool X86InstrInfo::shouldScheduleAdjacent(MachineInstr* First,
4915 MachineInstr *Second) const {
4916 // Check if this processor supports macro-fusion. Since this is a minor
4917 // heuristic, we haven't specifically reserved a feature. hasAVX is a decent
4918 // proxy for SandyBridge+.
4919 if (!TM.getSubtarget<X86Subtarget>().hasAVX())
4920 return false;
4921
4922 enum {
4923 FuseTest,
4924 FuseCmp,
4925 FuseInc
4926 } FuseKind;
4927
4928 switch(Second->getOpcode()) {
4929 default:
4930 return false;
4931 case X86::JE_4:
4932 case X86::JNE_4:
4933 case X86::JL_4:
4934 case X86::JLE_4:
4935 case X86::JG_4:
4936 case X86::JGE_4:
4937 FuseKind = FuseInc;
4938 break;
4939 case X86::JB_4:
4940 case X86::JBE_4:
4941 case X86::JA_4:
4942 case X86::JAE_4:
4943 FuseKind = FuseCmp;
4944 break;
4945 case X86::JS_4:
4946 case X86::JNS_4:
4947 case X86::JP_4:
4948 case X86::JNP_4:
4949 case X86::JO_4:
4950 case X86::JNO_4:
4951 FuseKind = FuseTest;
4952 break;
4953 }
4954 switch (First->getOpcode()) {
4955 default:
4956 return false;
4957 case X86::TEST8rr:
4958 case X86::TEST16rr:
4959 case X86::TEST32rr:
4960 case X86::TEST64rr:
4961 case X86::TEST8ri:
4962 case X86::TEST16ri:
4963 case X86::TEST32ri:
4964 case X86::TEST32i32:
4965 case X86::TEST64i32:
4966 case X86::TEST64ri32:
4967 case X86::TEST8rm:
4968 case X86::TEST16rm:
4969 case X86::TEST32rm:
4970 case X86::TEST64rm:
4971 case X86::AND16i16:
4972 case X86::AND16ri:
4973 case X86::AND16ri8:
4974 case X86::AND16rm:
4975 case X86::AND16rr:
4976 case X86::AND32i32:
4977 case X86::AND32ri:
4978 case X86::AND32ri8:
4979 case X86::AND32rm:
4980 case X86::AND32rr:
4981 case X86::AND64i32:
4982 case X86::AND64ri32:
4983 case X86::AND64ri8:
4984 case X86::AND64rm:
4985 case X86::AND64rr:
4986 case X86::AND8i8:
4987 case X86::AND8ri:
4988 case X86::AND8rm:
4989 case X86::AND8rr:
4990 return true;
4991 case X86::CMP16i16:
4992 case X86::CMP16ri:
4993 case X86::CMP16ri8:
4994 case X86::CMP16rm:
4995 case X86::CMP16rr:
4996 case X86::CMP32i32:
4997 case X86::CMP32ri:
4998 case X86::CMP32ri8:
4999 case X86::CMP32rm:
5000 case X86::CMP32rr:
5001 case X86::CMP64i32:
5002 case X86::CMP64ri32:
5003 case X86::CMP64ri8:
5004 case X86::CMP64rm:
5005 case X86::CMP64rr:
5006 case X86::CMP8i8:
5007 case X86::CMP8ri:
5008 case X86::CMP8rm:
5009 case X86::CMP8rr:
5010 case X86::ADD16i16:
5011 case X86::ADD16ri:
5012 case X86::ADD16ri8:
5013 case X86::ADD16ri8_DB:
5014 case X86::ADD16ri_DB:
5015 case X86::ADD16rm:
5016 case X86::ADD16rr:
5017 case X86::ADD16rr_DB:
5018 case X86::ADD32i32:
5019 case X86::ADD32ri:
5020 case X86::ADD32ri8:
5021 case X86::ADD32ri8_DB:
5022 case X86::ADD32ri_DB:
5023 case X86::ADD32rm:
5024 case X86::ADD32rr:
5025 case X86::ADD32rr_DB:
5026 case X86::ADD64i32:
5027 case X86::ADD64ri32:
5028 case X86::ADD64ri32_DB:
5029 case X86::ADD64ri8:
5030 case X86::ADD64ri8_DB:
5031 case X86::ADD64rm:
5032 case X86::ADD64rr:
5033 case X86::ADD64rr_DB:
5034 case X86::ADD8i8:
5035 case X86::ADD8mi:
5036 case X86::ADD8mr:
5037 case X86::ADD8ri:
5038 case X86::ADD8rm:
5039 case X86::ADD8rr:
5040 case X86::SUB16i16:
5041 case X86::SUB16ri:
5042 case X86::SUB16ri8:
5043 case X86::SUB16rm:
5044 case X86::SUB16rr:
5045 case X86::SUB32i32:
5046 case X86::SUB32ri:
5047 case X86::SUB32ri8:
5048 case X86::SUB32rm:
5049 case X86::SUB32rr:
5050 case X86::SUB64i32:
5051 case X86::SUB64ri32:
5052 case X86::SUB64ri8:
5053 case X86::SUB64rm:
5054 case X86::SUB64rr:
5055 case X86::SUB8i8:
5056 case X86::SUB8ri:
5057 case X86::SUB8rm:
5058 case X86::SUB8rr:
5059 return FuseKind == FuseCmp || FuseKind == FuseInc;
5060 case X86::INC16r:
5061 case X86::INC32r:
5062 case X86::INC64_16r:
5063 case X86::INC64_32r:
5064 case X86::INC64r:
5065 case X86::INC8r:
5066 case X86::DEC16r:
5067 case X86::DEC32r:
5068 case X86::DEC64_16r:
5069 case X86::DEC64_32r:
5070 case X86::DEC64r:
5071 case X86::DEC8r:
5072 return FuseKind == FuseInc;
5073 }
5074 }
5075
5076 bool X86InstrInfo::
5077 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
5078 assert(Cond.size() == 1 && "Invalid X86 branch condition!");
5079 X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
5080 if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
5081 return true;
5082 Cond[0].setImm(GetOppositeBranchCondition(CC));
5083 return false;
5084 }
5085
5086 bool X86InstrInfo::
5087 isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
5088 // FIXME: Return false for x87 stack register classes for now. We can't
5089 // allow any loads of these registers before FpGet_ST0_80.
5090 return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
5091 RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass);
5092 }
5093
5094 /// getGlobalBaseReg - Return a virtual register initialized with the
5095 /// the global base register value. Output instructions required to
5096 /// initialize the register in the function entry block, if necessary.
5097 ///
5098 /// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
5099 ///
5100 unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
5101 assert(!TM.getSubtarget<X86Subtarget>().is64Bit() &&
5102 "X86-64 PIC uses RIP relative addressing");
5103
5104 X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
5105 unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
5106 if (GlobalBaseReg != 0)
5107 return GlobalBaseReg;
5108
5109 // Create the register. The code to initialize it is inserted
5110 // later, by the CGBR pass (below).
5111 MachineRegisterInfo &RegInfo = MF->getRegInfo();
5112 GlobalBaseReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
5113 X86FI->setGlobalBaseReg(GlobalBaseReg);
5114 return GlobalBaseReg;
5115 }
5116
5117 // These are the replaceable SSE instructions. Some of these have Int variants
5118 // that we don't include here. We don't want to replace instructions selected
5119 // by intrinsics.
5120 static const uint16_t ReplaceableInstrs[][3] = {
5121 //PackedSingle PackedDouble PackedInt
5122 { X86::MOVAPSmr, X86::MOVAPDmr, X86::MOVDQAmr },
5123 { X86::MOVAPSrm, X86::MOVAPDrm, X86::MOVDQArm },
5124 { X86::MOVAPSrr, X86::MOVAPDrr, X86::MOVDQArr },
5125 { X86::MOVUPSmr, X86::MOVUPDmr, X86::MOVDQUmr },
5126 { X86::MOVUPSrm, X86::MOVUPDrm, X86::MOVDQUrm },
5127 { X86::MOVNTPSmr, X86::MOVNTPDmr, X86::MOVNTDQmr },
5128 { X86::ANDNPSrm, X86::ANDNPDrm, X86::PANDNrm },
5129 { X86::ANDNPSrr, X86::ANDNPDrr, X86::PANDNrr },
5130 { X86::ANDPSrm, X86::ANDPDrm, X86::PANDrm },
5131 { X86::ANDPSrr, X86::ANDPDrr, X86::PANDrr },
5132 { X86::ORPSrm, X86::ORPDrm, X86::PORrm },
5133 { X86::ORPSrr, X86::ORPDrr, X86::PORrr },
5134 { X86::XORPSrm, X86::XORPDrm, X86::PXORrm },
5135 { X86::XORPSrr, X86::XORPDrr, X86::PXORrr },
5136 // AVX 128-bit support
5137 { X86::VMOVAPSmr, X86::VMOVAPDmr, X86::VMOVDQAmr },
5138 { X86::VMOVAPSrm, X86::VMOVAPDrm, X86::VMOVDQArm },
5139 { X86::VMOVAPSrr, X86::VMOVAPDrr, X86::VMOVDQArr },
5140 { X86::VMOVUPSmr, X86::VMOVUPDmr, X86::VMOVDQUmr },
5141 { X86::VMOVUPSrm, X86::VMOVUPDrm, X86::VMOVDQUrm },
5142 { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr },
5143 { X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNrm },
5144 { X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNrr },
5145 { X86::VANDPSrm, X86::VANDPDrm, X86::VPANDrm },
5146 { X86::VANDPSrr, X86::VANDPDrr, X86::VPANDrr },
5147 { X86::VORPSrm, X86::VORPDrm, X86::VPORrm },
5148 { X86::VORPSrr, X86::VORPDrr, X86::VPORrr },
5149 { X86::VXORPSrm, X86::VXORPDrm, X86::VPXORrm },
5150 { X86::VXORPSrr, X86::VXORPDrr, X86::VPXORrr },
5151 // AVX 256-bit support
5152 { X86::VMOVAPSYmr, X86::VMOVAPDYmr, X86::VMOVDQAYmr },
5153 { X86::VMOVAPSYrm, X86::VMOVAPDYrm, X86::VMOVDQAYrm },
5154 { X86::VMOVAPSYrr, X86::VMOVAPDYrr, X86::VMOVDQAYrr },
5155 { X86::VMOVUPSYmr, X86::VMOVUPDYmr, X86::VMOVDQUYmr },
5156 { X86::VMOVUPSYrm, X86::VMOVUPDYrm, X86::VMOVDQUYrm },
5157 { X86::VMOVNTPSYmr, X86::VMOVNTPDYmr, X86::VMOVNTDQYmr }
5158 };
5159
5160 static const uint16_t ReplaceableInstrsAVX2[][3] = {
5161 //PackedSingle PackedDouble PackedInt
5162 { X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNYrm },
5163 { X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNYrr },
5164 { X86::VANDPSYrm, X86::VANDPDYrm, X86::VPANDYrm },
5165 { X86::VANDPSYrr, X86::VANDPDYrr, X86::VPANDYrr },
5166 { X86::VORPSYrm, X86::VORPDYrm, X86::VPORYrm },
5167 { X86::VORPSYrr, X86::VORPDYrr, X86::VPORYrr },
5168 { X86::VXORPSYrm, X86::VXORPDYrm, X86::VPXORYrm },
5169 { X86::VXORPSYrr, X86::VXORPDYrr, X86::VPXORYrr },
5170 { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr },
5171 { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr },
5172 { X86::VINSERTF128rm, X86::VINSERTF128rm, X86::VINSERTI128rm },
5173 { X86::VINSERTF128rr, X86::VINSERTF128rr, X86::VINSERTI128rr },
5174 { X86::VPERM2F128rm, X86::VPERM2F128rm, X86::VPERM2I128rm },
5175 { X86::VPERM2F128rr, X86::VPERM2F128rr, X86::VPERM2I128rr }
5176 };
5177
5178 // FIXME: Some shuffle and unpack instructions have equivalents in different
5179 // domains, but they require a bit more work than just switching opcodes.
5180
5181 static const uint16_t *lookup(unsigned opcode, unsigned domain) {
5182 for (unsigned i = 0, e = array_lengthof(ReplaceableInstrs); i != e; ++i)
5183 if (ReplaceableInstrs[i][domain-1] == opcode)
5184 return ReplaceableInstrs[i];
5185 return 0;
5186 }
5187
5188 static const uint16_t *lookupAVX2(unsigned opcode, unsigned domain) {
5189 for (unsigned i = 0, e = array_lengthof(ReplaceableInstrsAVX2); i != e; ++i)
5190 if (ReplaceableInstrsAVX2[i][domain-1] == opcode)
5191 return ReplaceableInstrsAVX2[i];
5192 return 0;
5193 }
5194
5195 std::pair<uint16_t, uint16_t>
5196 X86InstrInfo::getExecutionDomain(const MachineInstr *MI) const {
5197 uint16_t domain = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
5198 bool hasAVX2 = TM.getSubtarget<X86Subtarget>().hasAVX2();
5199 uint16_t validDomains = 0;
5200 if (domain && lookup(MI->getOpcode(), domain))
5201 validDomains = 0xe;
5202 else if (domain && lookupAVX2(MI->getOpcode(), domain))
5203 validDomains = hasAVX2 ? 0xe : 0x6;
5204 return std::make_pair(domain, validDomains);
5205 }
5206
5207 void X86InstrInfo::setExecutionDomain(MachineInstr *MI, unsigned Domain) const {
5208 assert(Domain>0 && Domain<4 && "Invalid execution domain");
5209 uint16_t dom = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
5210 assert(dom && "Not an SSE instruction");
5211 const uint16_t *table = lookup(MI->getOpcode(), dom);
5212 if (!table) { // try the other table
5213 assert((TM.getSubtarget<X86Subtarget>().hasAVX2() || Domain < 3) &&
5214 "256-bit vector operations only available in AVX2");
5215 table = lookupAVX2(MI->getOpcode(), dom);
5216 }
5217 assert(table && "Cannot change domain");
5218 MI->setDesc(get(table[Domain-1]));
5219 }
5220
5221 /// getNoopForMachoTarget - Return the noop instruction to use for a noop.
5222 void X86InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
5223 NopInst.setOpcode(X86::NOOP);
5224 }
5225
5226 bool X86InstrInfo::isHighLatencyDef(int opc) const {
5227 switch (opc) {
5228 default: return false;
5229 case X86::DIVSDrm:
5230 case X86::DIVSDrm_Int:
5231 case X86::DIVSDrr:
5232 case X86::DIVSDrr_Int:
5233 case X86::DIVSSrm:
5234 case X86::DIVSSrm_Int:
5235 case X86::DIVSSrr:
5236 case X86::DIVSSrr_Int:
5237 case X86::SQRTPDm:
5238 case X86::SQRTPDr:
5239 case X86::SQRTPSm:
5240 case X86::SQRTPSr:
5241 case X86::SQRTSDm:
5242 case X86::SQRTSDm_Int:
5243 case X86::SQRTSDr:
5244 case X86::SQRTSDr_Int:
5245 case X86::SQRTSSm:
5246 case X86::SQRTSSm_Int:
5247 case X86::SQRTSSr:
5248 case X86::SQRTSSr_Int:
5249 // AVX instructions with high latency
5250 case X86::VDIVSDrm:
5251 case X86::VDIVSDrm_Int:
5252 case X86::VDIVSDrr:
5253 case X86::VDIVSDrr_Int:
5254 case X86::VDIVSSrm:
5255 case X86::VDIVSSrm_Int:
5256 case X86::VDIVSSrr:
5257 case X86::VDIVSSrr_Int:
5258 case X86::VSQRTPDm:
5259 case X86::VSQRTPDr:
5260 case X86::VSQRTPSm:
5261 case X86::VSQRTPSr:
5262 case X86::VSQRTSDm:
5263 case X86::VSQRTSDm_Int:
5264 case X86::VSQRTSDr:
5265 case X86::VSQRTSSm:
5266 case X86::VSQRTSSm_Int:
5267 case X86::VSQRTSSr:
5268 case X86::VSQRTPDZrm:
5269 case X86::VSQRTPDZrr:
5270 case X86::VSQRTPSZrm:
5271 case X86::VSQRTPSZrr:
5272 case X86::VSQRTSDZm:
5273 case X86::VSQRTSDZm_Int:
5274 case X86::VSQRTSDZr:
5275 case X86::VSQRTSSZm_Int:
5276 case X86::VSQRTSSZr:
5277 case X86::VSQRTSSZm:
5278 case X86::VDIVSDZrm:
5279 case X86::VDIVSDZrr:
5280 case X86::VDIVSSZrm:
5281 case X86::VDIVSSZrr:
5282
5283 case X86::VGATHERQPSZrm:
5284 case X86::VGATHERQPDZrm:
5285 case X86::VGATHERDPDZrm:
5286 case X86::VGATHERDPSZrm:
5287 case X86::VPGATHERQDZrm:
5288 case X86::VPGATHERQQZrm:
5289 case X86::VPGATHERDDZrm:
5290 case X86::VPGATHERDQZrm:
5291 case X86::VSCATTERQPDZmr:
5292 case X86::VSCATTERQPSZmr:
5293 case X86::VSCATTERDPDZmr:
5294 case X86::VSCATTERDPSZmr:
5295 case X86::VPSCATTERQDZmr:
5296 case X86::VPSCATTERQQZmr:
5297 case X86::VPSCATTERDDZmr:
5298 case X86::VPSCATTERDQZmr:
5299 return true;
5300 }
5301 }
5302
5303 bool X86InstrInfo::
5304 hasHighOperandLatency(const InstrItineraryData *ItinData,
5305 const MachineRegisterInfo *MRI,
5306 const MachineInstr *DefMI, unsigned DefIdx,
5307 const MachineInstr *UseMI, unsigned UseIdx) const {
5308 return isHighLatencyDef(DefMI->getOpcode());
5309 }
5310
5311 namespace {
5312 /// CGBR - Create Global Base Reg pass. This initializes the PIC
5313 /// global base register for x86-32.
5314 struct CGBR : public MachineFunctionPass {
5315 static char ID;
5316 CGBR() : MachineFunctionPass(ID) {}
5317
5318 virtual bool runOnMachineFunction(MachineFunction &MF) {
5319 const X86TargetMachine *TM =
5320 static_cast<const X86TargetMachine *>(&MF.getTarget());
5321
5322 assert(!TM->getSubtarget<X86Subtarget>().is64Bit() &&
5323 "X86-64 PIC uses RIP relative addressing");
5324
5325 // Only emit a global base reg in PIC mode.
5326 if (TM->getRelocationModel() != Reloc::PIC_)
5327 return false;
5328
5329 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
5330 unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
5331
5332 // If we didn't need a GlobalBaseReg, don't insert code.
5333 if (GlobalBaseReg == 0)
5334 return false;
5335
5336 // Insert the set of GlobalBaseReg into the first MBB of the function
5337 MachineBasicBlock &FirstMBB = MF.front();
5338 MachineBasicBlock::iterator MBBI = FirstMBB.begin();
5339 DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
5340 MachineRegisterInfo &RegInfo = MF.getRegInfo();
5341 const X86InstrInfo *TII = TM->getInstrInfo();
5342
5343 unsigned PC;
5344 if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT())
5345 PC = RegInfo.createVirtualRegister(&X86::GR32RegClass);
5346 else
5347 PC = GlobalBaseReg;
5348
5349 // Operand of MovePCtoStack is completely ignored by asm printer. It's
5350 // only used in JIT code emission as displacement to pc.
5351 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
5352
5353 // If we're using vanilla 'GOT' PIC style, we should use relative addressing
5354 // not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
5355 if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT()) {
5356 // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register
5357 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
5358 .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
5359 X86II::MO_GOT_ABSOLUTE_ADDRESS);
5360 }
5361
5362 return true;
5363 }
5364
5365 virtual const char *getPassName() const {
5366 return "X86 PIC Global Base Reg Initialization";
5367 }
5368
5369 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
5370 AU.setPreservesCFG();
5371 MachineFunctionPass::getAnalysisUsage(AU);
5372 }
5373 };
5374 }
5375
5376 char CGBR::ID = 0;
5377 FunctionPass*
5378 llvm::createGlobalBaseRegPass() { return new CGBR(); }
5379
5380 namespace {
5381 struct LDTLSCleanup : public MachineFunctionPass {
5382 static char ID;
5383 LDTLSCleanup() : MachineFunctionPass(ID) {}
5384
5385 virtual bool runOnMachineFunction(MachineFunction &MF) {
5386 X86MachineFunctionInfo* MFI = MF.getInfo<X86MachineFunctionInfo>();
5387 if (MFI->getNumLocalDynamicTLSAccesses() < 2) {
5388 // No point folding accesses if there isn't at least two.
5389 return false;
5390 }
5391
5392 MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>();
5393 return VisitNode(DT->getRootNode(), 0);
5394 }
5395
5396 // Visit the dominator subtree rooted at Node in pre-order.
5397 // If TLSBaseAddrReg is non-null, then use that to replace any
5398 // TLS_base_addr instructions. Otherwise, create the register
5399 // when the first such instruction is seen, and then use it
5400 // as we encounter more instructions.
5401 bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) {
5402 MachineBasicBlock *BB = Node->getBlock();
5403 bool Changed = false;
5404
5405 // Traverse the current block.
5406 for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
5407 ++I) {
5408 switch (I->getOpcode()) {
5409 case X86::TLS_base_addr32:
5410 case X86::TLS_base_addr64:
5411 if (TLSBaseAddrReg)
5412 I = ReplaceTLSBaseAddrCall(I, TLSBaseAddrReg);
5413 else
5414 I = SetRegister(I, &TLSBaseAddrReg);
5415 Changed = true;
5416 break;
5417 default:
5418 break;
5419 }
5420 }
5421
5422 // Visit the children of this block in the dominator tree.
5423 for (MachineDomTreeNode::iterator I = Node->begin(), E = Node->end();
5424 I != E; ++I) {
5425 Changed |= VisitNode(*I, TLSBaseAddrReg);
5426 }
5427
5428 return Changed;
5429 }
5430
5431 // Replace the TLS_base_addr instruction I with a copy from
5432 // TLSBaseAddrReg, returning the new instruction.
5433 MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr *I,
5434 unsigned TLSBaseAddrReg) {
5435 MachineFunction *MF = I->getParent()->getParent();
5436 const X86TargetMachine *TM =
5437 static_cast<const X86TargetMachine *>(&MF->getTarget());
5438 const bool is64Bit = TM->getSubtarget<X86Subtarget>().is64Bit();
5439 const X86InstrInfo *TII = TM->getInstrInfo();
5440
5441 // Insert a Copy from TLSBaseAddrReg to RAX/EAX.
5442 MachineInstr *Copy = BuildMI(*I->getParent(), I, I->getDebugLoc(),
5443 TII->get(TargetOpcode::COPY),
5444 is64Bit ? X86::RAX : X86::EAX)
5445 .addReg(TLSBaseAddrReg);
5446
5447 // Erase the TLS_base_addr instruction.
5448 I->eraseFromParent();
5449
5450 return Copy;
5451 }
5452
5453 // Create a virtal register in *TLSBaseAddrReg, and populate it by
5454 // inserting a copy instruction after I. Returns the new instruction.
5455 MachineInstr *SetRegister(MachineInstr *I, unsigned *TLSBaseAddrReg) {
5456 MachineFunction *MF = I->getParent()->getParent();
5457 const X86TargetMachine *TM =
5458 static_cast<const X86TargetMachine *>(&MF->getTarget());
5459 const bool is64Bit = TM->getSubtarget<X86Subtarget>().is64Bit();
5460 const X86InstrInfo *TII = TM->getInstrInfo();
5461
5462 // Create a virtual register for the TLS base address.
5463 MachineRegisterInfo &RegInfo = MF->getRegInfo();
5464 *TLSBaseAddrReg = RegInfo.createVirtualRegister(is64Bit
5465 ? &X86::GR64RegClass
5466 : &X86::GR32RegClass);
5467
5468 // Insert a copy from RAX/EAX to TLSBaseAddrReg.
5469 MachineInstr *Next = I->getNextNode();
5470 MachineInstr *Copy = BuildMI(*I->getParent(), Next, I->getDebugLoc(),
5471 TII->get(TargetOpcode::COPY),
5472 *TLSBaseAddrReg)
5473 .addReg(is64Bit ? X86::RAX : X86::EAX);
5474
5475 return Copy;
5476 }
5477
5478 virtual const char *getPassName() const {
5479 return "Local Dynamic TLS Access Clean-up";
5480 }
5481
5482 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
5483 AU.setPreservesCFG();
5484 AU.addRequired<MachineDominatorTree>();
5485 MachineFunctionPass::getAnalysisUsage(AU);
5486 }
5487 };
5488 }
5489
5490 char LDTLSCleanup::ID = 0;
5491 FunctionPass*
5492 llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); }