Mercurial > hg > Members > tobaru > cbc > CbC_llvm
comparison lib/Target/X86/X86InstrInfo.cpp @ 0:95c75e76d11b
LLVM 3.4
author | Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 12 Dec 2013 13:56:28 +0900 |
parents | |
children | e4204d083e25 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:95c75e76d11b |
---|---|
1 //===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===// | |
2 // | |
3 // The LLVM Compiler Infrastructure | |
4 // | |
5 // This file is distributed under the University of Illinois Open Source | |
6 // License. See LICENSE.TXT for details. | |
7 // | |
8 //===----------------------------------------------------------------------===// | |
9 // | |
10 // This file contains the X86 implementation of the TargetInstrInfo class. | |
11 // | |
12 //===----------------------------------------------------------------------===// | |
13 | |
14 #include "X86InstrInfo.h" | |
15 #include "X86.h" | |
16 #include "X86InstrBuilder.h" | |
17 #include "X86MachineFunctionInfo.h" | |
18 #include "X86Subtarget.h" | |
19 #include "X86TargetMachine.h" | |
20 #include "llvm/ADT/STLExtras.h" | |
21 #include "llvm/CodeGen/LiveVariables.h" | |
22 #include "llvm/CodeGen/MachineConstantPool.h" | |
23 #include "llvm/CodeGen/MachineDominators.h" | |
24 #include "llvm/CodeGen/MachineFrameInfo.h" | |
25 #include "llvm/CodeGen/MachineInstrBuilder.h" | |
26 #include "llvm/CodeGen/MachineRegisterInfo.h" | |
27 #include "llvm/CodeGen/StackMaps.h" | |
28 #include "llvm/IR/DerivedTypes.h" | |
29 #include "llvm/IR/LLVMContext.h" | |
30 #include "llvm/MC/MCAsmInfo.h" | |
31 #include "llvm/MC/MCInst.h" | |
32 #include "llvm/Support/CommandLine.h" | |
33 #include "llvm/Support/Debug.h" | |
34 #include "llvm/Support/ErrorHandling.h" | |
35 #include "llvm/Support/raw_ostream.h" | |
36 #include "llvm/Target/TargetOptions.h" | |
37 #include <limits> | |
38 | |
39 #define GET_INSTRINFO_CTOR_DTOR | |
40 #include "X86GenInstrInfo.inc" | |
41 | |
42 using namespace llvm; | |
43 | |
44 static cl::opt<bool> | |
45 NoFusing("disable-spill-fusing", | |
46 cl::desc("Disable fusing of spill code into instructions")); | |
47 static cl::opt<bool> | |
48 PrintFailedFusing("print-failed-fuse-candidates", | |
49 cl::desc("Print instructions that the allocator wants to" | |
50 " fuse, but the X86 backend currently can't"), | |
51 cl::Hidden); | |
52 static cl::opt<bool> | |
53 ReMatPICStubLoad("remat-pic-stub-load", | |
54 cl::desc("Re-materialize load from stub in PIC mode"), | |
55 cl::init(false), cl::Hidden); | |
56 | |
57 enum { | |
58 // Select which memory operand is being unfolded. | |
59 // (stored in bits 0 - 3) | |
60 TB_INDEX_0 = 0, | |
61 TB_INDEX_1 = 1, | |
62 TB_INDEX_2 = 2, | |
63 TB_INDEX_3 = 3, | |
64 TB_INDEX_MASK = 0xf, | |
65 | |
66 // Do not insert the reverse map (MemOp -> RegOp) into the table. | |
67 // This may be needed because there is a many -> one mapping. | |
68 TB_NO_REVERSE = 1 << 4, | |
69 | |
70 // Do not insert the forward map (RegOp -> MemOp) into the table. | |
71 // This is needed for Native Client, which prohibits branch | |
72 // instructions from using a memory operand. | |
73 TB_NO_FORWARD = 1 << 5, | |
74 | |
75 TB_FOLDED_LOAD = 1 << 6, | |
76 TB_FOLDED_STORE = 1 << 7, | |
77 | |
78 // Minimum alignment required for load/store. | |
79 // Used for RegOp->MemOp conversion. | |
80 // (stored in bits 8 - 15) | |
81 TB_ALIGN_SHIFT = 8, | |
82 TB_ALIGN_NONE = 0 << TB_ALIGN_SHIFT, | |
83 TB_ALIGN_16 = 16 << TB_ALIGN_SHIFT, | |
84 TB_ALIGN_32 = 32 << TB_ALIGN_SHIFT, | |
85 TB_ALIGN_64 = 64 << TB_ALIGN_SHIFT, | |
86 TB_ALIGN_MASK = 0xff << TB_ALIGN_SHIFT | |
87 }; | |
88 | |
89 struct X86OpTblEntry { | |
90 uint16_t RegOp; | |
91 uint16_t MemOp; | |
92 uint16_t Flags; | |
93 }; | |
94 | |
95 // Pin the vtable to this file. | |
96 void X86InstrInfo::anchor() {} | |
97 | |
98 X86InstrInfo::X86InstrInfo(X86TargetMachine &tm) | |
99 : X86GenInstrInfo((tm.getSubtarget<X86Subtarget>().is64Bit() | |
100 ? X86::ADJCALLSTACKDOWN64 | |
101 : X86::ADJCALLSTACKDOWN32), | |
102 (tm.getSubtarget<X86Subtarget>().is64Bit() | |
103 ? X86::ADJCALLSTACKUP64 | |
104 : X86::ADJCALLSTACKUP32)), | |
105 TM(tm), RI(tm) { | |
106 | |
107 static const X86OpTblEntry OpTbl2Addr[] = { | |
108 { X86::ADC32ri, X86::ADC32mi, 0 }, | |
109 { X86::ADC32ri8, X86::ADC32mi8, 0 }, | |
110 { X86::ADC32rr, X86::ADC32mr, 0 }, | |
111 { X86::ADC64ri32, X86::ADC64mi32, 0 }, | |
112 { X86::ADC64ri8, X86::ADC64mi8, 0 }, | |
113 { X86::ADC64rr, X86::ADC64mr, 0 }, | |
114 { X86::ADD16ri, X86::ADD16mi, 0 }, | |
115 { X86::ADD16ri8, X86::ADD16mi8, 0 }, | |
116 { X86::ADD16ri_DB, X86::ADD16mi, TB_NO_REVERSE }, | |
117 { X86::ADD16ri8_DB, X86::ADD16mi8, TB_NO_REVERSE }, | |
118 { X86::ADD16rr, X86::ADD16mr, 0 }, | |
119 { X86::ADD16rr_DB, X86::ADD16mr, TB_NO_REVERSE }, | |
120 { X86::ADD32ri, X86::ADD32mi, 0 }, | |
121 { X86::ADD32ri8, X86::ADD32mi8, 0 }, | |
122 { X86::ADD32ri_DB, X86::ADD32mi, TB_NO_REVERSE }, | |
123 { X86::ADD32ri8_DB, X86::ADD32mi8, TB_NO_REVERSE }, | |
124 { X86::ADD32rr, X86::ADD32mr, 0 }, | |
125 { X86::ADD32rr_DB, X86::ADD32mr, TB_NO_REVERSE }, | |
126 { X86::ADD64ri32, X86::ADD64mi32, 0 }, | |
127 { X86::ADD64ri8, X86::ADD64mi8, 0 }, | |
128 { X86::ADD64ri32_DB,X86::ADD64mi32, TB_NO_REVERSE }, | |
129 { X86::ADD64ri8_DB, X86::ADD64mi8, TB_NO_REVERSE }, | |
130 { X86::ADD64rr, X86::ADD64mr, 0 }, | |
131 { X86::ADD64rr_DB, X86::ADD64mr, TB_NO_REVERSE }, | |
132 { X86::ADD8ri, X86::ADD8mi, 0 }, | |
133 { X86::ADD8rr, X86::ADD8mr, 0 }, | |
134 { X86::AND16ri, X86::AND16mi, 0 }, | |
135 { X86::AND16ri8, X86::AND16mi8, 0 }, | |
136 { X86::AND16rr, X86::AND16mr, 0 }, | |
137 { X86::AND32ri, X86::AND32mi, 0 }, | |
138 { X86::AND32ri8, X86::AND32mi8, 0 }, | |
139 { X86::AND32rr, X86::AND32mr, 0 }, | |
140 { X86::AND64ri32, X86::AND64mi32, 0 }, | |
141 { X86::AND64ri8, X86::AND64mi8, 0 }, | |
142 { X86::AND64rr, X86::AND64mr, 0 }, | |
143 { X86::AND8ri, X86::AND8mi, 0 }, | |
144 { X86::AND8rr, X86::AND8mr, 0 }, | |
145 { X86::DEC16r, X86::DEC16m, 0 }, | |
146 { X86::DEC32r, X86::DEC32m, 0 }, | |
147 { X86::DEC64_16r, X86::DEC64_16m, 0 }, | |
148 { X86::DEC64_32r, X86::DEC64_32m, 0 }, | |
149 { X86::DEC64r, X86::DEC64m, 0 }, | |
150 { X86::DEC8r, X86::DEC8m, 0 }, | |
151 { X86::INC16r, X86::INC16m, 0 }, | |
152 { X86::INC32r, X86::INC32m, 0 }, | |
153 { X86::INC64_16r, X86::INC64_16m, 0 }, | |
154 { X86::INC64_32r, X86::INC64_32m, 0 }, | |
155 { X86::INC64r, X86::INC64m, 0 }, | |
156 { X86::INC8r, X86::INC8m, 0 }, | |
157 { X86::NEG16r, X86::NEG16m, 0 }, | |
158 { X86::NEG32r, X86::NEG32m, 0 }, | |
159 { X86::NEG64r, X86::NEG64m, 0 }, | |
160 { X86::NEG8r, X86::NEG8m, 0 }, | |
161 { X86::NOT16r, X86::NOT16m, 0 }, | |
162 { X86::NOT32r, X86::NOT32m, 0 }, | |
163 { X86::NOT64r, X86::NOT64m, 0 }, | |
164 { X86::NOT8r, X86::NOT8m, 0 }, | |
165 { X86::OR16ri, X86::OR16mi, 0 }, | |
166 { X86::OR16ri8, X86::OR16mi8, 0 }, | |
167 { X86::OR16rr, X86::OR16mr, 0 }, | |
168 { X86::OR32ri, X86::OR32mi, 0 }, | |
169 { X86::OR32ri8, X86::OR32mi8, 0 }, | |
170 { X86::OR32rr, X86::OR32mr, 0 }, | |
171 { X86::OR64ri32, X86::OR64mi32, 0 }, | |
172 { X86::OR64ri8, X86::OR64mi8, 0 }, | |
173 { X86::OR64rr, X86::OR64mr, 0 }, | |
174 { X86::OR8ri, X86::OR8mi, 0 }, | |
175 { X86::OR8rr, X86::OR8mr, 0 }, | |
176 { X86::ROL16r1, X86::ROL16m1, 0 }, | |
177 { X86::ROL16rCL, X86::ROL16mCL, 0 }, | |
178 { X86::ROL16ri, X86::ROL16mi, 0 }, | |
179 { X86::ROL32r1, X86::ROL32m1, 0 }, | |
180 { X86::ROL32rCL, X86::ROL32mCL, 0 }, | |
181 { X86::ROL32ri, X86::ROL32mi, 0 }, | |
182 { X86::ROL64r1, X86::ROL64m1, 0 }, | |
183 { X86::ROL64rCL, X86::ROL64mCL, 0 }, | |
184 { X86::ROL64ri, X86::ROL64mi, 0 }, | |
185 { X86::ROL8r1, X86::ROL8m1, 0 }, | |
186 { X86::ROL8rCL, X86::ROL8mCL, 0 }, | |
187 { X86::ROL8ri, X86::ROL8mi, 0 }, | |
188 { X86::ROR16r1, X86::ROR16m1, 0 }, | |
189 { X86::ROR16rCL, X86::ROR16mCL, 0 }, | |
190 { X86::ROR16ri, X86::ROR16mi, 0 }, | |
191 { X86::ROR32r1, X86::ROR32m1, 0 }, | |
192 { X86::ROR32rCL, X86::ROR32mCL, 0 }, | |
193 { X86::ROR32ri, X86::ROR32mi, 0 }, | |
194 { X86::ROR64r1, X86::ROR64m1, 0 }, | |
195 { X86::ROR64rCL, X86::ROR64mCL, 0 }, | |
196 { X86::ROR64ri, X86::ROR64mi, 0 }, | |
197 { X86::ROR8r1, X86::ROR8m1, 0 }, | |
198 { X86::ROR8rCL, X86::ROR8mCL, 0 }, | |
199 { X86::ROR8ri, X86::ROR8mi, 0 }, | |
200 { X86::SAR16r1, X86::SAR16m1, 0 }, | |
201 { X86::SAR16rCL, X86::SAR16mCL, 0 }, | |
202 { X86::SAR16ri, X86::SAR16mi, 0 }, | |
203 { X86::SAR32r1, X86::SAR32m1, 0 }, | |
204 { X86::SAR32rCL, X86::SAR32mCL, 0 }, | |
205 { X86::SAR32ri, X86::SAR32mi, 0 }, | |
206 { X86::SAR64r1, X86::SAR64m1, 0 }, | |
207 { X86::SAR64rCL, X86::SAR64mCL, 0 }, | |
208 { X86::SAR64ri, X86::SAR64mi, 0 }, | |
209 { X86::SAR8r1, X86::SAR8m1, 0 }, | |
210 { X86::SAR8rCL, X86::SAR8mCL, 0 }, | |
211 { X86::SAR8ri, X86::SAR8mi, 0 }, | |
212 { X86::SBB32ri, X86::SBB32mi, 0 }, | |
213 { X86::SBB32ri8, X86::SBB32mi8, 0 }, | |
214 { X86::SBB32rr, X86::SBB32mr, 0 }, | |
215 { X86::SBB64ri32, X86::SBB64mi32, 0 }, | |
216 { X86::SBB64ri8, X86::SBB64mi8, 0 }, | |
217 { X86::SBB64rr, X86::SBB64mr, 0 }, | |
218 { X86::SHL16rCL, X86::SHL16mCL, 0 }, | |
219 { X86::SHL16ri, X86::SHL16mi, 0 }, | |
220 { X86::SHL32rCL, X86::SHL32mCL, 0 }, | |
221 { X86::SHL32ri, X86::SHL32mi, 0 }, | |
222 { X86::SHL64rCL, X86::SHL64mCL, 0 }, | |
223 { X86::SHL64ri, X86::SHL64mi, 0 }, | |
224 { X86::SHL8rCL, X86::SHL8mCL, 0 }, | |
225 { X86::SHL8ri, X86::SHL8mi, 0 }, | |
226 { X86::SHLD16rrCL, X86::SHLD16mrCL, 0 }, | |
227 { X86::SHLD16rri8, X86::SHLD16mri8, 0 }, | |
228 { X86::SHLD32rrCL, X86::SHLD32mrCL, 0 }, | |
229 { X86::SHLD32rri8, X86::SHLD32mri8, 0 }, | |
230 { X86::SHLD64rrCL, X86::SHLD64mrCL, 0 }, | |
231 { X86::SHLD64rri8, X86::SHLD64mri8, 0 }, | |
232 { X86::SHR16r1, X86::SHR16m1, 0 }, | |
233 { X86::SHR16rCL, X86::SHR16mCL, 0 }, | |
234 { X86::SHR16ri, X86::SHR16mi, 0 }, | |
235 { X86::SHR32r1, X86::SHR32m1, 0 }, | |
236 { X86::SHR32rCL, X86::SHR32mCL, 0 }, | |
237 { X86::SHR32ri, X86::SHR32mi, 0 }, | |
238 { X86::SHR64r1, X86::SHR64m1, 0 }, | |
239 { X86::SHR64rCL, X86::SHR64mCL, 0 }, | |
240 { X86::SHR64ri, X86::SHR64mi, 0 }, | |
241 { X86::SHR8r1, X86::SHR8m1, 0 }, | |
242 { X86::SHR8rCL, X86::SHR8mCL, 0 }, | |
243 { X86::SHR8ri, X86::SHR8mi, 0 }, | |
244 { X86::SHRD16rrCL, X86::SHRD16mrCL, 0 }, | |
245 { X86::SHRD16rri8, X86::SHRD16mri8, 0 }, | |
246 { X86::SHRD32rrCL, X86::SHRD32mrCL, 0 }, | |
247 { X86::SHRD32rri8, X86::SHRD32mri8, 0 }, | |
248 { X86::SHRD64rrCL, X86::SHRD64mrCL, 0 }, | |
249 { X86::SHRD64rri8, X86::SHRD64mri8, 0 }, | |
250 { X86::SUB16ri, X86::SUB16mi, 0 }, | |
251 { X86::SUB16ri8, X86::SUB16mi8, 0 }, | |
252 { X86::SUB16rr, X86::SUB16mr, 0 }, | |
253 { X86::SUB32ri, X86::SUB32mi, 0 }, | |
254 { X86::SUB32ri8, X86::SUB32mi8, 0 }, | |
255 { X86::SUB32rr, X86::SUB32mr, 0 }, | |
256 { X86::SUB64ri32, X86::SUB64mi32, 0 }, | |
257 { X86::SUB64ri8, X86::SUB64mi8, 0 }, | |
258 { X86::SUB64rr, X86::SUB64mr, 0 }, | |
259 { X86::SUB8ri, X86::SUB8mi, 0 }, | |
260 { X86::SUB8rr, X86::SUB8mr, 0 }, | |
261 { X86::XOR16ri, X86::XOR16mi, 0 }, | |
262 { X86::XOR16ri8, X86::XOR16mi8, 0 }, | |
263 { X86::XOR16rr, X86::XOR16mr, 0 }, | |
264 { X86::XOR32ri, X86::XOR32mi, 0 }, | |
265 { X86::XOR32ri8, X86::XOR32mi8, 0 }, | |
266 { X86::XOR32rr, X86::XOR32mr, 0 }, | |
267 { X86::XOR64ri32, X86::XOR64mi32, 0 }, | |
268 { X86::XOR64ri8, X86::XOR64mi8, 0 }, | |
269 { X86::XOR64rr, X86::XOR64mr, 0 }, | |
270 { X86::XOR8ri, X86::XOR8mi, 0 }, | |
271 { X86::XOR8rr, X86::XOR8mr, 0 } | |
272 }; | |
273 | |
274 for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) { | |
275 unsigned RegOp = OpTbl2Addr[i].RegOp; | |
276 unsigned MemOp = OpTbl2Addr[i].MemOp; | |
277 unsigned Flags = OpTbl2Addr[i].Flags; | |
278 AddTableEntry(RegOp2MemOpTable2Addr, MemOp2RegOpTable, | |
279 RegOp, MemOp, | |
280 // Index 0, folded load and store, no alignment requirement. | |
281 Flags | TB_INDEX_0 | TB_FOLDED_LOAD | TB_FOLDED_STORE); | |
282 } | |
283 | |
284 static const X86OpTblEntry OpTbl0[] = { | |
285 { X86::BT16ri8, X86::BT16mi8, TB_FOLDED_LOAD }, | |
286 { X86::BT32ri8, X86::BT32mi8, TB_FOLDED_LOAD }, | |
287 { X86::BT64ri8, X86::BT64mi8, TB_FOLDED_LOAD }, | |
288 { X86::CALL32r, X86::CALL32m, TB_FOLDED_LOAD }, | |
289 { X86::CALL64r, X86::CALL64m, TB_FOLDED_LOAD }, | |
290 { X86::CMP16ri, X86::CMP16mi, TB_FOLDED_LOAD }, | |
291 { X86::CMP16ri8, X86::CMP16mi8, TB_FOLDED_LOAD }, | |
292 { X86::CMP16rr, X86::CMP16mr, TB_FOLDED_LOAD }, | |
293 { X86::CMP32ri, X86::CMP32mi, TB_FOLDED_LOAD }, | |
294 { X86::CMP32ri8, X86::CMP32mi8, TB_FOLDED_LOAD }, | |
295 { X86::CMP32rr, X86::CMP32mr, TB_FOLDED_LOAD }, | |
296 { X86::CMP64ri32, X86::CMP64mi32, TB_FOLDED_LOAD }, | |
297 { X86::CMP64ri8, X86::CMP64mi8, TB_FOLDED_LOAD }, | |
298 { X86::CMP64rr, X86::CMP64mr, TB_FOLDED_LOAD }, | |
299 { X86::CMP8ri, X86::CMP8mi, TB_FOLDED_LOAD }, | |
300 { X86::CMP8rr, X86::CMP8mr, TB_FOLDED_LOAD }, | |
301 { X86::DIV16r, X86::DIV16m, TB_FOLDED_LOAD }, | |
302 { X86::DIV32r, X86::DIV32m, TB_FOLDED_LOAD }, | |
303 { X86::DIV64r, X86::DIV64m, TB_FOLDED_LOAD }, | |
304 { X86::DIV8r, X86::DIV8m, TB_FOLDED_LOAD }, | |
305 { X86::EXTRACTPSrr, X86::EXTRACTPSmr, TB_FOLDED_STORE }, | |
306 { X86::IDIV16r, X86::IDIV16m, TB_FOLDED_LOAD }, | |
307 { X86::IDIV32r, X86::IDIV32m, TB_FOLDED_LOAD }, | |
308 { X86::IDIV64r, X86::IDIV64m, TB_FOLDED_LOAD }, | |
309 { X86::IDIV8r, X86::IDIV8m, TB_FOLDED_LOAD }, | |
310 { X86::IMUL16r, X86::IMUL16m, TB_FOLDED_LOAD }, | |
311 { X86::IMUL32r, X86::IMUL32m, TB_FOLDED_LOAD }, | |
312 { X86::IMUL64r, X86::IMUL64m, TB_FOLDED_LOAD }, | |
313 { X86::IMUL8r, X86::IMUL8m, TB_FOLDED_LOAD }, | |
314 { X86::JMP32r, X86::JMP32m, TB_FOLDED_LOAD }, | |
315 { X86::JMP64r, X86::JMP64m, TB_FOLDED_LOAD }, | |
316 { X86::MOV16ri, X86::MOV16mi, TB_FOLDED_STORE }, | |
317 { X86::MOV16rr, X86::MOV16mr, TB_FOLDED_STORE }, | |
318 { X86::MOV32ri, X86::MOV32mi, TB_FOLDED_STORE }, | |
319 { X86::MOV32rr, X86::MOV32mr, TB_FOLDED_STORE }, | |
320 { X86::MOV64ri32, X86::MOV64mi32, TB_FOLDED_STORE }, | |
321 { X86::MOV64rr, X86::MOV64mr, TB_FOLDED_STORE }, | |
322 { X86::MOV8ri, X86::MOV8mi, TB_FOLDED_STORE }, | |
323 { X86::MOV8rr, X86::MOV8mr, TB_FOLDED_STORE }, | |
324 { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, TB_FOLDED_STORE }, | |
325 { X86::MOVAPDrr, X86::MOVAPDmr, TB_FOLDED_STORE | TB_ALIGN_16 }, | |
326 { X86::MOVAPSrr, X86::MOVAPSmr, TB_FOLDED_STORE | TB_ALIGN_16 }, | |
327 { X86::MOVDQArr, X86::MOVDQAmr, TB_FOLDED_STORE | TB_ALIGN_16 }, | |
328 { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, TB_FOLDED_STORE }, | |
329 { X86::MOVPQIto64rr,X86::MOVPQI2QImr, TB_FOLDED_STORE }, | |
330 { X86::MOVSDto64rr, X86::MOVSDto64mr, TB_FOLDED_STORE }, | |
331 { X86::MOVSS2DIrr, X86::MOVSS2DImr, TB_FOLDED_STORE }, | |
332 { X86::MOVUPDrr, X86::MOVUPDmr, TB_FOLDED_STORE }, | |
333 { X86::MOVUPSrr, X86::MOVUPSmr, TB_FOLDED_STORE }, | |
334 { X86::MUL16r, X86::MUL16m, TB_FOLDED_LOAD }, | |
335 { X86::MUL32r, X86::MUL32m, TB_FOLDED_LOAD }, | |
336 { X86::MUL64r, X86::MUL64m, TB_FOLDED_LOAD }, | |
337 { X86::MUL8r, X86::MUL8m, TB_FOLDED_LOAD }, | |
338 { X86::SETAEr, X86::SETAEm, TB_FOLDED_STORE }, | |
339 { X86::SETAr, X86::SETAm, TB_FOLDED_STORE }, | |
340 { X86::SETBEr, X86::SETBEm, TB_FOLDED_STORE }, | |
341 { X86::SETBr, X86::SETBm, TB_FOLDED_STORE }, | |
342 { X86::SETEr, X86::SETEm, TB_FOLDED_STORE }, | |
343 { X86::SETGEr, X86::SETGEm, TB_FOLDED_STORE }, | |
344 { X86::SETGr, X86::SETGm, TB_FOLDED_STORE }, | |
345 { X86::SETLEr, X86::SETLEm, TB_FOLDED_STORE }, | |
346 { X86::SETLr, X86::SETLm, TB_FOLDED_STORE }, | |
347 { X86::SETNEr, X86::SETNEm, TB_FOLDED_STORE }, | |
348 { X86::SETNOr, X86::SETNOm, TB_FOLDED_STORE }, | |
349 { X86::SETNPr, X86::SETNPm, TB_FOLDED_STORE }, | |
350 { X86::SETNSr, X86::SETNSm, TB_FOLDED_STORE }, | |
351 { X86::SETOr, X86::SETOm, TB_FOLDED_STORE }, | |
352 { X86::SETPr, X86::SETPm, TB_FOLDED_STORE }, | |
353 { X86::SETSr, X86::SETSm, TB_FOLDED_STORE }, | |
354 { X86::TAILJMPr, X86::TAILJMPm, TB_FOLDED_LOAD }, | |
355 { X86::TAILJMPr64, X86::TAILJMPm64, TB_FOLDED_LOAD }, | |
356 { X86::TEST16ri, X86::TEST16mi, TB_FOLDED_LOAD }, | |
357 { X86::TEST32ri, X86::TEST32mi, TB_FOLDED_LOAD }, | |
358 { X86::TEST64ri32, X86::TEST64mi32, TB_FOLDED_LOAD }, | |
359 { X86::TEST8ri, X86::TEST8mi, TB_FOLDED_LOAD }, | |
360 // AVX 128-bit versions of foldable instructions | |
361 { X86::VEXTRACTPSrr,X86::VEXTRACTPSmr, TB_FOLDED_STORE }, | |
362 { X86::VEXTRACTF128rr, X86::VEXTRACTF128mr, TB_FOLDED_STORE | TB_ALIGN_16 }, | |
363 { X86::VMOVAPDrr, X86::VMOVAPDmr, TB_FOLDED_STORE | TB_ALIGN_16 }, | |
364 { X86::VMOVAPSrr, X86::VMOVAPSmr, TB_FOLDED_STORE | TB_ALIGN_16 }, | |
365 { X86::VMOVDQArr, X86::VMOVDQAmr, TB_FOLDED_STORE | TB_ALIGN_16 }, | |
366 { X86::VMOVPDI2DIrr,X86::VMOVPDI2DImr, TB_FOLDED_STORE }, | |
367 { X86::VMOVPQIto64rr, X86::VMOVPQI2QImr,TB_FOLDED_STORE }, | |
368 { X86::VMOVSDto64rr,X86::VMOVSDto64mr, TB_FOLDED_STORE }, | |
369 { X86::VMOVSS2DIrr, X86::VMOVSS2DImr, TB_FOLDED_STORE }, | |
370 { X86::VMOVUPDrr, X86::VMOVUPDmr, TB_FOLDED_STORE }, | |
371 { X86::VMOVUPSrr, X86::VMOVUPSmr, TB_FOLDED_STORE }, | |
372 // AVX 256-bit foldable instructions | |
373 { X86::VEXTRACTI128rr, X86::VEXTRACTI128mr, TB_FOLDED_STORE | TB_ALIGN_16 }, | |
374 { X86::VMOVAPDYrr, X86::VMOVAPDYmr, TB_FOLDED_STORE | TB_ALIGN_32 }, | |
375 { X86::VMOVAPSYrr, X86::VMOVAPSYmr, TB_FOLDED_STORE | TB_ALIGN_32 }, | |
376 { X86::VMOVDQAYrr, X86::VMOVDQAYmr, TB_FOLDED_STORE | TB_ALIGN_32 }, | |
377 { X86::VMOVUPDYrr, X86::VMOVUPDYmr, TB_FOLDED_STORE }, | |
378 { X86::VMOVUPSYrr, X86::VMOVUPSYmr, TB_FOLDED_STORE }, | |
379 // AVX-512 foldable instructions | |
380 { X86::VMOVPDI2DIZrr,X86::VMOVPDI2DIZmr, TB_FOLDED_STORE } | |
381 }; | |
382 | |
383 for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) { | |
384 unsigned RegOp = OpTbl0[i].RegOp; | |
385 unsigned MemOp = OpTbl0[i].MemOp; | |
386 unsigned Flags = OpTbl0[i].Flags; | |
387 AddTableEntry(RegOp2MemOpTable0, MemOp2RegOpTable, | |
388 RegOp, MemOp, TB_INDEX_0 | Flags); | |
389 } | |
390 | |
391 static const X86OpTblEntry OpTbl1[] = { | |
392 { X86::CMP16rr, X86::CMP16rm, 0 }, | |
393 { X86::CMP32rr, X86::CMP32rm, 0 }, | |
394 { X86::CMP64rr, X86::CMP64rm, 0 }, | |
395 { X86::CMP8rr, X86::CMP8rm, 0 }, | |
396 { X86::CVTSD2SSrr, X86::CVTSD2SSrm, 0 }, | |
397 { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm, 0 }, | |
398 { X86::CVTSI2SDrr, X86::CVTSI2SDrm, 0 }, | |
399 { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm, 0 }, | |
400 { X86::CVTSI2SSrr, X86::CVTSI2SSrm, 0 }, | |
401 { X86::CVTSS2SDrr, X86::CVTSS2SDrm, 0 }, | |
402 { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm, 0 }, | |
403 { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm, 0 }, | |
404 { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm, 0 }, | |
405 { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm, 0 }, | |
406 { X86::IMUL16rri, X86::IMUL16rmi, 0 }, | |
407 { X86::IMUL16rri8, X86::IMUL16rmi8, 0 }, | |
408 { X86::IMUL32rri, X86::IMUL32rmi, 0 }, | |
409 { X86::IMUL32rri8, X86::IMUL32rmi8, 0 }, | |
410 { X86::IMUL64rri32, X86::IMUL64rmi32, 0 }, | |
411 { X86::IMUL64rri8, X86::IMUL64rmi8, 0 }, | |
412 { X86::Int_COMISDrr, X86::Int_COMISDrm, 0 }, | |
413 { X86::Int_COMISSrr, X86::Int_COMISSrm, 0 }, | |
414 { X86::CVTSD2SI64rr, X86::CVTSD2SI64rm, 0 }, | |
415 { X86::CVTSD2SIrr, X86::CVTSD2SIrm, 0 }, | |
416 { X86::CVTSS2SI64rr, X86::CVTSS2SI64rm, 0 }, | |
417 { X86::CVTSS2SIrr, X86::CVTSS2SIrm, 0 }, | |
418 { X86::CVTTPD2DQrr, X86::CVTTPD2DQrm, TB_ALIGN_16 }, | |
419 { X86::CVTTPS2DQrr, X86::CVTTPS2DQrm, TB_ALIGN_16 }, | |
420 { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm, 0 }, | |
421 { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm, 0 }, | |
422 { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm, 0 }, | |
423 { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm, 0 }, | |
424 { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm, 0 }, | |
425 { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm, 0 }, | |
426 { X86::MOV16rr, X86::MOV16rm, 0 }, | |
427 { X86::MOV32rr, X86::MOV32rm, 0 }, | |
428 { X86::MOV64rr, X86::MOV64rm, 0 }, | |
429 { X86::MOV64toPQIrr, X86::MOVQI2PQIrm, 0 }, | |
430 { X86::MOV64toSDrr, X86::MOV64toSDrm, 0 }, | |
431 { X86::MOV8rr, X86::MOV8rm, 0 }, | |
432 { X86::MOVAPDrr, X86::MOVAPDrm, TB_ALIGN_16 }, | |
433 { X86::MOVAPSrr, X86::MOVAPSrm, TB_ALIGN_16 }, | |
434 { X86::MOVDDUPrr, X86::MOVDDUPrm, 0 }, | |
435 { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm, 0 }, | |
436 { X86::MOVDI2SSrr, X86::MOVDI2SSrm, 0 }, | |
437 { X86::MOVDQArr, X86::MOVDQArm, TB_ALIGN_16 }, | |
438 { X86::MOVSHDUPrr, X86::MOVSHDUPrm, TB_ALIGN_16 }, | |
439 { X86::MOVSLDUPrr, X86::MOVSLDUPrm, TB_ALIGN_16 }, | |
440 { X86::MOVSX16rr8, X86::MOVSX16rm8, 0 }, | |
441 { X86::MOVSX32rr16, X86::MOVSX32rm16, 0 }, | |
442 { X86::MOVSX32rr8, X86::MOVSX32rm8, 0 }, | |
443 { X86::MOVSX64rr16, X86::MOVSX64rm16, 0 }, | |
444 { X86::MOVSX64rr32, X86::MOVSX64rm32, 0 }, | |
445 { X86::MOVSX64rr8, X86::MOVSX64rm8, 0 }, | |
446 { X86::MOVUPDrr, X86::MOVUPDrm, TB_ALIGN_16 }, | |
447 { X86::MOVUPSrr, X86::MOVUPSrm, 0 }, | |
448 { X86::MOVZQI2PQIrr, X86::MOVZQI2PQIrm, 0 }, | |
449 { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm, TB_ALIGN_16 }, | |
450 { X86::MOVZX16rr8, X86::MOVZX16rm8, 0 }, | |
451 { X86::MOVZX32rr16, X86::MOVZX32rm16, 0 }, | |
452 { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8, 0 }, | |
453 { X86::MOVZX32rr8, X86::MOVZX32rm8, 0 }, | |
454 { X86::PABSBrr128, X86::PABSBrm128, TB_ALIGN_16 }, | |
455 { X86::PABSDrr128, X86::PABSDrm128, TB_ALIGN_16 }, | |
456 { X86::PABSWrr128, X86::PABSWrm128, TB_ALIGN_16 }, | |
457 { X86::PSHUFDri, X86::PSHUFDmi, TB_ALIGN_16 }, | |
458 { X86::PSHUFHWri, X86::PSHUFHWmi, TB_ALIGN_16 }, | |
459 { X86::PSHUFLWri, X86::PSHUFLWmi, TB_ALIGN_16 }, | |
460 { X86::RCPPSr, X86::RCPPSm, TB_ALIGN_16 }, | |
461 { X86::RCPPSr_Int, X86::RCPPSm_Int, TB_ALIGN_16 }, | |
462 { X86::RSQRTPSr, X86::RSQRTPSm, TB_ALIGN_16 }, | |
463 { X86::RSQRTPSr_Int, X86::RSQRTPSm_Int, TB_ALIGN_16 }, | |
464 { X86::RSQRTSSr, X86::RSQRTSSm, 0 }, | |
465 { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int, 0 }, | |
466 { X86::SQRTPDr, X86::SQRTPDm, TB_ALIGN_16 }, | |
467 { X86::SQRTPSr, X86::SQRTPSm, TB_ALIGN_16 }, | |
468 { X86::SQRTSDr, X86::SQRTSDm, 0 }, | |
469 { X86::SQRTSDr_Int, X86::SQRTSDm_Int, 0 }, | |
470 { X86::SQRTSSr, X86::SQRTSSm, 0 }, | |
471 { X86::SQRTSSr_Int, X86::SQRTSSm_Int, 0 }, | |
472 { X86::TEST16rr, X86::TEST16rm, 0 }, | |
473 { X86::TEST32rr, X86::TEST32rm, 0 }, | |
474 { X86::TEST64rr, X86::TEST64rm, 0 }, | |
475 { X86::TEST8rr, X86::TEST8rm, 0 }, | |
476 // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0 | |
477 { X86::UCOMISDrr, X86::UCOMISDrm, 0 }, | |
478 { X86::UCOMISSrr, X86::UCOMISSrm, 0 }, | |
479 // AVX 128-bit versions of foldable instructions | |
480 { X86::Int_VCOMISDrr, X86::Int_VCOMISDrm, 0 }, | |
481 { X86::Int_VCOMISSrr, X86::Int_VCOMISSrm, 0 }, | |
482 { X86::Int_VUCOMISDrr, X86::Int_VUCOMISDrm, 0 }, | |
483 { X86::Int_VUCOMISSrr, X86::Int_VUCOMISSrm, 0 }, | |
484 { X86::VCVTTSD2SI64rr, X86::VCVTTSD2SI64rm, 0 }, | |
485 { X86::Int_VCVTTSD2SI64rr,X86::Int_VCVTTSD2SI64rm,0 }, | |
486 { X86::VCVTTSD2SIrr, X86::VCVTTSD2SIrm, 0 }, | |
487 { X86::Int_VCVTTSD2SIrr,X86::Int_VCVTTSD2SIrm, 0 }, | |
488 { X86::VCVTTSS2SI64rr, X86::VCVTTSS2SI64rm, 0 }, | |
489 { X86::Int_VCVTTSS2SI64rr,X86::Int_VCVTTSS2SI64rm,0 }, | |
490 { X86::VCVTTSS2SIrr, X86::VCVTTSS2SIrm, 0 }, | |
491 { X86::Int_VCVTTSS2SIrr,X86::Int_VCVTTSS2SIrm, 0 }, | |
492 { X86::VCVTSD2SI64rr, X86::VCVTSD2SI64rm, 0 }, | |
493 { X86::VCVTSD2SIrr, X86::VCVTSD2SIrm, 0 }, | |
494 { X86::VCVTSS2SI64rr, X86::VCVTSS2SI64rm, 0 }, | |
495 { X86::VCVTSS2SIrr, X86::VCVTSS2SIrm, 0 }, | |
496 { X86::VMOV64toPQIrr, X86::VMOVQI2PQIrm, 0 }, | |
497 { X86::VMOV64toSDrr, X86::VMOV64toSDrm, 0 }, | |
498 { X86::VMOVAPDrr, X86::VMOVAPDrm, TB_ALIGN_16 }, | |
499 { X86::VMOVAPSrr, X86::VMOVAPSrm, TB_ALIGN_16 }, | |
500 { X86::VMOVDDUPrr, X86::VMOVDDUPrm, 0 }, | |
501 { X86::VMOVDI2PDIrr, X86::VMOVDI2PDIrm, 0 }, | |
502 { X86::VMOVDI2SSrr, X86::VMOVDI2SSrm, 0 }, | |
503 { X86::VMOVDQArr, X86::VMOVDQArm, TB_ALIGN_16 }, | |
504 { X86::VMOVSLDUPrr, X86::VMOVSLDUPrm, TB_ALIGN_16 }, | |
505 { X86::VMOVSHDUPrr, X86::VMOVSHDUPrm, TB_ALIGN_16 }, | |
506 { X86::VMOVUPDrr, X86::VMOVUPDrm, 0 }, | |
507 { X86::VMOVUPSrr, X86::VMOVUPSrm, 0 }, | |
508 { X86::VMOVZQI2PQIrr, X86::VMOVZQI2PQIrm, 0 }, | |
509 { X86::VMOVZPQILo2PQIrr,X86::VMOVZPQILo2PQIrm, TB_ALIGN_16 }, | |
510 { X86::VPABSBrr128, X86::VPABSBrm128, 0 }, | |
511 { X86::VPABSDrr128, X86::VPABSDrm128, 0 }, | |
512 { X86::VPABSWrr128, X86::VPABSWrm128, 0 }, | |
513 { X86::VPERMILPDri, X86::VPERMILPDmi, 0 }, | |
514 { X86::VPERMILPSri, X86::VPERMILPSmi, 0 }, | |
515 { X86::VPSHUFDri, X86::VPSHUFDmi, 0 }, | |
516 { X86::VPSHUFHWri, X86::VPSHUFHWmi, 0 }, | |
517 { X86::VPSHUFLWri, X86::VPSHUFLWmi, 0 }, | |
518 { X86::VRCPPSr, X86::VRCPPSm, 0 }, | |
519 { X86::VRCPPSr_Int, X86::VRCPPSm_Int, 0 }, | |
520 { X86::VRSQRTPSr, X86::VRSQRTPSm, 0 }, | |
521 { X86::VRSQRTPSr_Int, X86::VRSQRTPSm_Int, 0 }, | |
522 { X86::VSQRTPDr, X86::VSQRTPDm, 0 }, | |
523 { X86::VSQRTPSr, X86::VSQRTPSm, 0 }, | |
524 { X86::VUCOMISDrr, X86::VUCOMISDrm, 0 }, | |
525 { X86::VUCOMISSrr, X86::VUCOMISSrm, 0 }, | |
526 { X86::VBROADCASTSSrr, X86::VBROADCASTSSrm, TB_NO_REVERSE }, | |
527 | |
528 // AVX 256-bit foldable instructions | |
529 { X86::VMOVAPDYrr, X86::VMOVAPDYrm, TB_ALIGN_32 }, | |
530 { X86::VMOVAPSYrr, X86::VMOVAPSYrm, TB_ALIGN_32 }, | |
531 { X86::VMOVDQAYrr, X86::VMOVDQAYrm, TB_ALIGN_32 }, | |
532 { X86::VMOVUPDYrr, X86::VMOVUPDYrm, 0 }, | |
533 { X86::VMOVUPSYrr, X86::VMOVUPSYrm, 0 }, | |
534 { X86::VPERMILPDYri, X86::VPERMILPDYmi, 0 }, | |
535 { X86::VPERMILPSYri, X86::VPERMILPSYmi, 0 }, | |
536 | |
537 // AVX2 foldable instructions | |
538 { X86::VPABSBrr256, X86::VPABSBrm256, 0 }, | |
539 { X86::VPABSDrr256, X86::VPABSDrm256, 0 }, | |
540 { X86::VPABSWrr256, X86::VPABSWrm256, 0 }, | |
541 { X86::VPSHUFDYri, X86::VPSHUFDYmi, 0 }, | |
542 { X86::VPSHUFHWYri, X86::VPSHUFHWYmi, 0 }, | |
543 { X86::VPSHUFLWYri, X86::VPSHUFLWYmi, 0 }, | |
544 { X86::VRCPPSYr, X86::VRCPPSYm, 0 }, | |
545 { X86::VRCPPSYr_Int, X86::VRCPPSYm_Int, 0 }, | |
546 { X86::VRSQRTPSYr, X86::VRSQRTPSYm, 0 }, | |
547 { X86::VSQRTPDYr, X86::VSQRTPDYm, 0 }, | |
548 { X86::VSQRTPSYr, X86::VSQRTPSYm, 0 }, | |
549 { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrm, TB_NO_REVERSE }, | |
550 { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrm, TB_NO_REVERSE }, | |
551 | |
552 // BMI/BMI2/LZCNT/POPCNT/TBM foldable instructions | |
553 { X86::BEXTR32rr, X86::BEXTR32rm, 0 }, | |
554 { X86::BEXTR64rr, X86::BEXTR64rm, 0 }, | |
555 { X86::BEXTRI32ri, X86::BEXTRI32mi, 0 }, | |
556 { X86::BEXTRI64ri, X86::BEXTRI64mi, 0 }, | |
557 { X86::BLCFILL32rr, X86::BLCFILL32rm, 0 }, | |
558 { X86::BLCFILL64rr, X86::BLCFILL64rm, 0 }, | |
559 { X86::BLCI32rr, X86::BLCI32rm, 0 }, | |
560 { X86::BLCI64rr, X86::BLCI64rm, 0 }, | |
561 { X86::BLCIC32rr, X86::BLCIC32rm, 0 }, | |
562 { X86::BLCIC64rr, X86::BLCIC64rm, 0 }, | |
563 { X86::BLCMSK32rr, X86::BLCMSK32rm, 0 }, | |
564 { X86::BLCMSK64rr, X86::BLCMSK64rm, 0 }, | |
565 { X86::BLCS32rr, X86::BLCS32rm, 0 }, | |
566 { X86::BLCS64rr, X86::BLCS64rm, 0 }, | |
567 { X86::BLSFILL32rr, X86::BLSFILL32rm, 0 }, | |
568 { X86::BLSFILL64rr, X86::BLSFILL64rm, 0 }, | |
569 { X86::BLSI32rr, X86::BLSI32rm, 0 }, | |
570 { X86::BLSI64rr, X86::BLSI64rm, 0 }, | |
571 { X86::BLSIC32rr, X86::BLSIC32rm, 0 }, | |
572 { X86::BLSIC64rr, X86::BLSIC64rm, 0 }, | |
573 { X86::BLSMSK32rr, X86::BLSMSK32rm, 0 }, | |
574 { X86::BLSMSK64rr, X86::BLSMSK64rm, 0 }, | |
575 { X86::BLSR32rr, X86::BLSR32rm, 0 }, | |
576 { X86::BLSR64rr, X86::BLSR64rm, 0 }, | |
577 { X86::BZHI32rr, X86::BZHI32rm, 0 }, | |
578 { X86::BZHI64rr, X86::BZHI64rm, 0 }, | |
579 { X86::LZCNT16rr, X86::LZCNT16rm, 0 }, | |
580 { X86::LZCNT32rr, X86::LZCNT32rm, 0 }, | |
581 { X86::LZCNT64rr, X86::LZCNT64rm, 0 }, | |
582 { X86::POPCNT16rr, X86::POPCNT16rm, 0 }, | |
583 { X86::POPCNT32rr, X86::POPCNT32rm, 0 }, | |
584 { X86::POPCNT64rr, X86::POPCNT64rm, 0 }, | |
585 { X86::RORX32ri, X86::RORX32mi, 0 }, | |
586 { X86::RORX64ri, X86::RORX64mi, 0 }, | |
587 { X86::SARX32rr, X86::SARX32rm, 0 }, | |
588 { X86::SARX64rr, X86::SARX64rm, 0 }, | |
589 { X86::SHRX32rr, X86::SHRX32rm, 0 }, | |
590 { X86::SHRX64rr, X86::SHRX64rm, 0 }, | |
591 { X86::SHLX32rr, X86::SHLX32rm, 0 }, | |
592 { X86::SHLX64rr, X86::SHLX64rm, 0 }, | |
593 { X86::T1MSKC32rr, X86::T1MSKC32rm, 0 }, | |
594 { X86::T1MSKC64rr, X86::T1MSKC64rm, 0 }, | |
595 { X86::TZCNT16rr, X86::TZCNT16rm, 0 }, | |
596 { X86::TZCNT32rr, X86::TZCNT32rm, 0 }, | |
597 { X86::TZCNT64rr, X86::TZCNT64rm, 0 }, | |
598 { X86::TZMSK32rr, X86::TZMSK32rm, 0 }, | |
599 { X86::TZMSK64rr, X86::TZMSK64rm, 0 }, | |
600 | |
601 // AVX-512 foldable instructions | |
602 { X86::VMOV64toPQIZrr, X86::VMOVQI2PQIZrm, 0 }, | |
603 { X86::VMOVDI2SSZrr, X86::VMOVDI2SSZrm, 0 }, | |
604 { X86::VMOVDQA32rr, X86::VMOVDQA32rm, TB_ALIGN_64 }, | |
605 { X86::VMOVDQA64rr, X86::VMOVDQA64rm, TB_ALIGN_64 }, | |
606 { X86::VMOVDQU32rr, X86::VMOVDQU32rm, 0 }, | |
607 { X86::VMOVDQU64rr, X86::VMOVDQU64rm, 0 }, | |
608 | |
609 // AES foldable instructions | |
610 { X86::AESIMCrr, X86::AESIMCrm, TB_ALIGN_16 }, | |
611 { X86::AESKEYGENASSIST128rr, X86::AESKEYGENASSIST128rm, TB_ALIGN_16 }, | |
612 { X86::VAESIMCrr, X86::VAESIMCrm, TB_ALIGN_16 }, | |
613 { X86::VAESKEYGENASSIST128rr, X86::VAESKEYGENASSIST128rm, TB_ALIGN_16 }, | |
614 }; | |
615 | |
616 for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) { | |
617 unsigned RegOp = OpTbl1[i].RegOp; | |
618 unsigned MemOp = OpTbl1[i].MemOp; | |
619 unsigned Flags = OpTbl1[i].Flags; | |
620 AddTableEntry(RegOp2MemOpTable1, MemOp2RegOpTable, | |
621 RegOp, MemOp, | |
622 // Index 1, folded load | |
623 Flags | TB_INDEX_1 | TB_FOLDED_LOAD); | |
624 } | |
625 | |
626 static const X86OpTblEntry OpTbl2[] = { | |
627 { X86::ADC32rr, X86::ADC32rm, 0 }, | |
628 { X86::ADC64rr, X86::ADC64rm, 0 }, | |
629 { X86::ADD16rr, X86::ADD16rm, 0 }, | |
630 { X86::ADD16rr_DB, X86::ADD16rm, TB_NO_REVERSE }, | |
631 { X86::ADD32rr, X86::ADD32rm, 0 }, | |
632 { X86::ADD32rr_DB, X86::ADD32rm, TB_NO_REVERSE }, | |
633 { X86::ADD64rr, X86::ADD64rm, 0 }, | |
634 { X86::ADD64rr_DB, X86::ADD64rm, TB_NO_REVERSE }, | |
635 { X86::ADD8rr, X86::ADD8rm, 0 }, | |
636 { X86::ADDPDrr, X86::ADDPDrm, TB_ALIGN_16 }, | |
637 { X86::ADDPSrr, X86::ADDPSrm, TB_ALIGN_16 }, | |
638 { X86::ADDSDrr, X86::ADDSDrm, 0 }, | |
639 { X86::ADDSSrr, X86::ADDSSrm, 0 }, | |
640 { X86::ADDSUBPDrr, X86::ADDSUBPDrm, TB_ALIGN_16 }, | |
641 { X86::ADDSUBPSrr, X86::ADDSUBPSrm, TB_ALIGN_16 }, | |
642 { X86::AND16rr, X86::AND16rm, 0 }, | |
643 { X86::AND32rr, X86::AND32rm, 0 }, | |
644 { X86::AND64rr, X86::AND64rm, 0 }, | |
645 { X86::AND8rr, X86::AND8rm, 0 }, | |
646 { X86::ANDNPDrr, X86::ANDNPDrm, TB_ALIGN_16 }, | |
647 { X86::ANDNPSrr, X86::ANDNPSrm, TB_ALIGN_16 }, | |
648 { X86::ANDPDrr, X86::ANDPDrm, TB_ALIGN_16 }, | |
649 { X86::ANDPSrr, X86::ANDPSrm, TB_ALIGN_16 }, | |
650 { X86::BLENDPDrri, X86::BLENDPDrmi, TB_ALIGN_16 }, | |
651 { X86::BLENDPSrri, X86::BLENDPSrmi, TB_ALIGN_16 }, | |
652 { X86::BLENDVPDrr0, X86::BLENDVPDrm0, TB_ALIGN_16 }, | |
653 { X86::BLENDVPSrr0, X86::BLENDVPSrm0, TB_ALIGN_16 }, | |
654 { X86::CMOVA16rr, X86::CMOVA16rm, 0 }, | |
655 { X86::CMOVA32rr, X86::CMOVA32rm, 0 }, | |
656 { X86::CMOVA64rr, X86::CMOVA64rm, 0 }, | |
657 { X86::CMOVAE16rr, X86::CMOVAE16rm, 0 }, | |
658 { X86::CMOVAE32rr, X86::CMOVAE32rm, 0 }, | |
659 { X86::CMOVAE64rr, X86::CMOVAE64rm, 0 }, | |
660 { X86::CMOVB16rr, X86::CMOVB16rm, 0 }, | |
661 { X86::CMOVB32rr, X86::CMOVB32rm, 0 }, | |
662 { X86::CMOVB64rr, X86::CMOVB64rm, 0 }, | |
663 { X86::CMOVBE16rr, X86::CMOVBE16rm, 0 }, | |
664 { X86::CMOVBE32rr, X86::CMOVBE32rm, 0 }, | |
665 { X86::CMOVBE64rr, X86::CMOVBE64rm, 0 }, | |
666 { X86::CMOVE16rr, X86::CMOVE16rm, 0 }, | |
667 { X86::CMOVE32rr, X86::CMOVE32rm, 0 }, | |
668 { X86::CMOVE64rr, X86::CMOVE64rm, 0 }, | |
669 { X86::CMOVG16rr, X86::CMOVG16rm, 0 }, | |
670 { X86::CMOVG32rr, X86::CMOVG32rm, 0 }, | |
671 { X86::CMOVG64rr, X86::CMOVG64rm, 0 }, | |
672 { X86::CMOVGE16rr, X86::CMOVGE16rm, 0 }, | |
673 { X86::CMOVGE32rr, X86::CMOVGE32rm, 0 }, | |
674 { X86::CMOVGE64rr, X86::CMOVGE64rm, 0 }, | |
675 { X86::CMOVL16rr, X86::CMOVL16rm, 0 }, | |
676 { X86::CMOVL32rr, X86::CMOVL32rm, 0 }, | |
677 { X86::CMOVL64rr, X86::CMOVL64rm, 0 }, | |
678 { X86::CMOVLE16rr, X86::CMOVLE16rm, 0 }, | |
679 { X86::CMOVLE32rr, X86::CMOVLE32rm, 0 }, | |
680 { X86::CMOVLE64rr, X86::CMOVLE64rm, 0 }, | |
681 { X86::CMOVNE16rr, X86::CMOVNE16rm, 0 }, | |
682 { X86::CMOVNE32rr, X86::CMOVNE32rm, 0 }, | |
683 { X86::CMOVNE64rr, X86::CMOVNE64rm, 0 }, | |
684 { X86::CMOVNO16rr, X86::CMOVNO16rm, 0 }, | |
685 { X86::CMOVNO32rr, X86::CMOVNO32rm, 0 }, | |
686 { X86::CMOVNO64rr, X86::CMOVNO64rm, 0 }, | |
687 { X86::CMOVNP16rr, X86::CMOVNP16rm, 0 }, | |
688 { X86::CMOVNP32rr, X86::CMOVNP32rm, 0 }, | |
689 { X86::CMOVNP64rr, X86::CMOVNP64rm, 0 }, | |
690 { X86::CMOVNS16rr, X86::CMOVNS16rm, 0 }, | |
691 { X86::CMOVNS32rr, X86::CMOVNS32rm, 0 }, | |
692 { X86::CMOVNS64rr, X86::CMOVNS64rm, 0 }, | |
693 { X86::CMOVO16rr, X86::CMOVO16rm, 0 }, | |
694 { X86::CMOVO32rr, X86::CMOVO32rm, 0 }, | |
695 { X86::CMOVO64rr, X86::CMOVO64rm, 0 }, | |
696 { X86::CMOVP16rr, X86::CMOVP16rm, 0 }, | |
697 { X86::CMOVP32rr, X86::CMOVP32rm, 0 }, | |
698 { X86::CMOVP64rr, X86::CMOVP64rm, 0 }, | |
699 { X86::CMOVS16rr, X86::CMOVS16rm, 0 }, | |
700 { X86::CMOVS32rr, X86::CMOVS32rm, 0 }, | |
701 { X86::CMOVS64rr, X86::CMOVS64rm, 0 }, | |
702 { X86::CMPPDrri, X86::CMPPDrmi, TB_ALIGN_16 }, | |
703 { X86::CMPPSrri, X86::CMPPSrmi, TB_ALIGN_16 }, | |
704 { X86::CMPSDrr, X86::CMPSDrm, 0 }, | |
705 { X86::CMPSSrr, X86::CMPSSrm, 0 }, | |
706 { X86::DIVPDrr, X86::DIVPDrm, TB_ALIGN_16 }, | |
707 { X86::DIVPSrr, X86::DIVPSrm, TB_ALIGN_16 }, | |
708 { X86::DIVSDrr, X86::DIVSDrm, 0 }, | |
709 { X86::DIVSSrr, X86::DIVSSrm, 0 }, | |
710 { X86::FsANDNPDrr, X86::FsANDNPDrm, TB_ALIGN_16 }, | |
711 { X86::FsANDNPSrr, X86::FsANDNPSrm, TB_ALIGN_16 }, | |
712 { X86::FsANDPDrr, X86::FsANDPDrm, TB_ALIGN_16 }, | |
713 { X86::FsANDPSrr, X86::FsANDPSrm, TB_ALIGN_16 }, | |
714 { X86::FsORPDrr, X86::FsORPDrm, TB_ALIGN_16 }, | |
715 { X86::FsORPSrr, X86::FsORPSrm, TB_ALIGN_16 }, | |
716 { X86::FsXORPDrr, X86::FsXORPDrm, TB_ALIGN_16 }, | |
717 { X86::FsXORPSrr, X86::FsXORPSrm, TB_ALIGN_16 }, | |
718 { X86::HADDPDrr, X86::HADDPDrm, TB_ALIGN_16 }, | |
719 { X86::HADDPSrr, X86::HADDPSrm, TB_ALIGN_16 }, | |
720 { X86::HSUBPDrr, X86::HSUBPDrm, TB_ALIGN_16 }, | |
721 { X86::HSUBPSrr, X86::HSUBPSrm, TB_ALIGN_16 }, | |
722 { X86::IMUL16rr, X86::IMUL16rm, 0 }, | |
723 { X86::IMUL32rr, X86::IMUL32rm, 0 }, | |
724 { X86::IMUL64rr, X86::IMUL64rm, 0 }, | |
725 { X86::Int_CMPSDrr, X86::Int_CMPSDrm, 0 }, | |
726 { X86::Int_CMPSSrr, X86::Int_CMPSSrm, 0 }, | |
727 { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm, 0 }, | |
728 { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm, 0 }, | |
729 { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm, 0 }, | |
730 { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm, 0 }, | |
731 { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm, 0 }, | |
732 { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm, 0 }, | |
733 { X86::MAXPDrr, X86::MAXPDrm, TB_ALIGN_16 }, | |
734 { X86::MAXPSrr, X86::MAXPSrm, TB_ALIGN_16 }, | |
735 { X86::MAXSDrr, X86::MAXSDrm, 0 }, | |
736 { X86::MAXSSrr, X86::MAXSSrm, 0 }, | |
737 { X86::MINPDrr, X86::MINPDrm, TB_ALIGN_16 }, | |
738 { X86::MINPSrr, X86::MINPSrm, TB_ALIGN_16 }, | |
739 { X86::MINSDrr, X86::MINSDrm, 0 }, | |
740 { X86::MINSSrr, X86::MINSSrm, 0 }, | |
741 { X86::MPSADBWrri, X86::MPSADBWrmi, TB_ALIGN_16 }, | |
742 { X86::MULPDrr, X86::MULPDrm, TB_ALIGN_16 }, | |
743 { X86::MULPSrr, X86::MULPSrm, TB_ALIGN_16 }, | |
744 { X86::MULSDrr, X86::MULSDrm, 0 }, | |
745 { X86::MULSSrr, X86::MULSSrm, 0 }, | |
746 { X86::OR16rr, X86::OR16rm, 0 }, | |
747 { X86::OR32rr, X86::OR32rm, 0 }, | |
748 { X86::OR64rr, X86::OR64rm, 0 }, | |
749 { X86::OR8rr, X86::OR8rm, 0 }, | |
750 { X86::ORPDrr, X86::ORPDrm, TB_ALIGN_16 }, | |
751 { X86::ORPSrr, X86::ORPSrm, TB_ALIGN_16 }, | |
752 { X86::PACKSSDWrr, X86::PACKSSDWrm, TB_ALIGN_16 }, | |
753 { X86::PACKSSWBrr, X86::PACKSSWBrm, TB_ALIGN_16 }, | |
754 { X86::PACKUSDWrr, X86::PACKUSDWrm, TB_ALIGN_16 }, | |
755 { X86::PACKUSWBrr, X86::PACKUSWBrm, TB_ALIGN_16 }, | |
756 { X86::PADDBrr, X86::PADDBrm, TB_ALIGN_16 }, | |
757 { X86::PADDDrr, X86::PADDDrm, TB_ALIGN_16 }, | |
758 { X86::PADDQrr, X86::PADDQrm, TB_ALIGN_16 }, | |
759 { X86::PADDSBrr, X86::PADDSBrm, TB_ALIGN_16 }, | |
760 { X86::PADDSWrr, X86::PADDSWrm, TB_ALIGN_16 }, | |
761 { X86::PADDUSBrr, X86::PADDUSBrm, TB_ALIGN_16 }, | |
762 { X86::PADDUSWrr, X86::PADDUSWrm, TB_ALIGN_16 }, | |
763 { X86::PADDWrr, X86::PADDWrm, TB_ALIGN_16 }, | |
764 { X86::PALIGNR128rr, X86::PALIGNR128rm, TB_ALIGN_16 }, | |
765 { X86::PANDNrr, X86::PANDNrm, TB_ALIGN_16 }, | |
766 { X86::PANDrr, X86::PANDrm, TB_ALIGN_16 }, | |
767 { X86::PAVGBrr, X86::PAVGBrm, TB_ALIGN_16 }, | |
768 { X86::PAVGWrr, X86::PAVGWrm, TB_ALIGN_16 }, | |
769 { X86::PBLENDWrri, X86::PBLENDWrmi, TB_ALIGN_16 }, | |
770 { X86::PCMPEQBrr, X86::PCMPEQBrm, TB_ALIGN_16 }, | |
771 { X86::PCMPEQDrr, X86::PCMPEQDrm, TB_ALIGN_16 }, | |
772 { X86::PCMPEQQrr, X86::PCMPEQQrm, TB_ALIGN_16 }, | |
773 { X86::PCMPEQWrr, X86::PCMPEQWrm, TB_ALIGN_16 }, | |
774 { X86::PCMPGTBrr, X86::PCMPGTBrm, TB_ALIGN_16 }, | |
775 { X86::PCMPGTDrr, X86::PCMPGTDrm, TB_ALIGN_16 }, | |
776 { X86::PCMPGTQrr, X86::PCMPGTQrm, TB_ALIGN_16 }, | |
777 { X86::PCMPGTWrr, X86::PCMPGTWrm, TB_ALIGN_16 }, | |
778 { X86::PHADDDrr, X86::PHADDDrm, TB_ALIGN_16 }, | |
779 { X86::PHADDWrr, X86::PHADDWrm, TB_ALIGN_16 }, | |
780 { X86::PHADDSWrr128, X86::PHADDSWrm128, TB_ALIGN_16 }, | |
781 { X86::PHSUBDrr, X86::PHSUBDrm, TB_ALIGN_16 }, | |
782 { X86::PHSUBSWrr128, X86::PHSUBSWrm128, TB_ALIGN_16 }, | |
783 { X86::PHSUBWrr, X86::PHSUBWrm, TB_ALIGN_16 }, | |
784 { X86::PINSRWrri, X86::PINSRWrmi, TB_ALIGN_16 }, | |
785 { X86::PMADDUBSWrr128, X86::PMADDUBSWrm128, TB_ALIGN_16 }, | |
786 { X86::PMADDWDrr, X86::PMADDWDrm, TB_ALIGN_16 }, | |
787 { X86::PMAXSWrr, X86::PMAXSWrm, TB_ALIGN_16 }, | |
788 { X86::PMAXUBrr, X86::PMAXUBrm, TB_ALIGN_16 }, | |
789 { X86::PMINSWrr, X86::PMINSWrm, TB_ALIGN_16 }, | |
790 { X86::PMINUBrr, X86::PMINUBrm, TB_ALIGN_16 }, | |
791 { X86::PMINSBrr, X86::PMINSBrm, TB_ALIGN_16 }, | |
792 { X86::PMINSDrr, X86::PMINSDrm, TB_ALIGN_16 }, | |
793 { X86::PMINUDrr, X86::PMINUDrm, TB_ALIGN_16 }, | |
794 { X86::PMINUWrr, X86::PMINUWrm, TB_ALIGN_16 }, | |
795 { X86::PMAXSBrr, X86::PMAXSBrm, TB_ALIGN_16 }, | |
796 { X86::PMAXSDrr, X86::PMAXSDrm, TB_ALIGN_16 }, | |
797 { X86::PMAXUDrr, X86::PMAXUDrm, TB_ALIGN_16 }, | |
798 { X86::PMAXUWrr, X86::PMAXUWrm, TB_ALIGN_16 }, | |
799 { X86::PMULDQrr, X86::PMULDQrm, TB_ALIGN_16 }, | |
800 { X86::PMULHRSWrr128, X86::PMULHRSWrm128, TB_ALIGN_16 }, | |
801 { X86::PMULHUWrr, X86::PMULHUWrm, TB_ALIGN_16 }, | |
802 { X86::PMULHWrr, X86::PMULHWrm, TB_ALIGN_16 }, | |
803 { X86::PMULLDrr, X86::PMULLDrm, TB_ALIGN_16 }, | |
804 { X86::PMULLWrr, X86::PMULLWrm, TB_ALIGN_16 }, | |
805 { X86::PMULUDQrr, X86::PMULUDQrm, TB_ALIGN_16 }, | |
806 { X86::PORrr, X86::PORrm, TB_ALIGN_16 }, | |
807 { X86::PSADBWrr, X86::PSADBWrm, TB_ALIGN_16 }, | |
808 { X86::PSHUFBrr, X86::PSHUFBrm, TB_ALIGN_16 }, | |
809 { X86::PSIGNBrr, X86::PSIGNBrm, TB_ALIGN_16 }, | |
810 { X86::PSIGNWrr, X86::PSIGNWrm, TB_ALIGN_16 }, | |
811 { X86::PSIGNDrr, X86::PSIGNDrm, TB_ALIGN_16 }, | |
812 { X86::PSLLDrr, X86::PSLLDrm, TB_ALIGN_16 }, | |
813 { X86::PSLLQrr, X86::PSLLQrm, TB_ALIGN_16 }, | |
814 { X86::PSLLWrr, X86::PSLLWrm, TB_ALIGN_16 }, | |
815 { X86::PSRADrr, X86::PSRADrm, TB_ALIGN_16 }, | |
816 { X86::PSRAWrr, X86::PSRAWrm, TB_ALIGN_16 }, | |
817 { X86::PSRLDrr, X86::PSRLDrm, TB_ALIGN_16 }, | |
818 { X86::PSRLQrr, X86::PSRLQrm, TB_ALIGN_16 }, | |
819 { X86::PSRLWrr, X86::PSRLWrm, TB_ALIGN_16 }, | |
820 { X86::PSUBBrr, X86::PSUBBrm, TB_ALIGN_16 }, | |
821 { X86::PSUBDrr, X86::PSUBDrm, TB_ALIGN_16 }, | |
822 { X86::PSUBSBrr, X86::PSUBSBrm, TB_ALIGN_16 }, | |
823 { X86::PSUBSWrr, X86::PSUBSWrm, TB_ALIGN_16 }, | |
824 { X86::PSUBWrr, X86::PSUBWrm, TB_ALIGN_16 }, | |
825 { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm, TB_ALIGN_16 }, | |
826 { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm, TB_ALIGN_16 }, | |
827 { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm, TB_ALIGN_16 }, | |
828 { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm, TB_ALIGN_16 }, | |
829 { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm, TB_ALIGN_16 }, | |
830 { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm, TB_ALIGN_16 }, | |
831 { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm, TB_ALIGN_16 }, | |
832 { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm, TB_ALIGN_16 }, | |
833 { X86::PXORrr, X86::PXORrm, TB_ALIGN_16 }, | |
834 { X86::SBB32rr, X86::SBB32rm, 0 }, | |
835 { X86::SBB64rr, X86::SBB64rm, 0 }, | |
836 { X86::SHUFPDrri, X86::SHUFPDrmi, TB_ALIGN_16 }, | |
837 { X86::SHUFPSrri, X86::SHUFPSrmi, TB_ALIGN_16 }, | |
838 { X86::SUB16rr, X86::SUB16rm, 0 }, | |
839 { X86::SUB32rr, X86::SUB32rm, 0 }, | |
840 { X86::SUB64rr, X86::SUB64rm, 0 }, | |
841 { X86::SUB8rr, X86::SUB8rm, 0 }, | |
842 { X86::SUBPDrr, X86::SUBPDrm, TB_ALIGN_16 }, | |
843 { X86::SUBPSrr, X86::SUBPSrm, TB_ALIGN_16 }, | |
844 { X86::SUBSDrr, X86::SUBSDrm, 0 }, | |
845 { X86::SUBSSrr, X86::SUBSSrm, 0 }, | |
846 // FIXME: TEST*rr -> swapped operand of TEST*mr. | |
847 { X86::UNPCKHPDrr, X86::UNPCKHPDrm, TB_ALIGN_16 }, | |
848 { X86::UNPCKHPSrr, X86::UNPCKHPSrm, TB_ALIGN_16 }, | |
849 { X86::UNPCKLPDrr, X86::UNPCKLPDrm, TB_ALIGN_16 }, | |
850 { X86::UNPCKLPSrr, X86::UNPCKLPSrm, TB_ALIGN_16 }, | |
851 { X86::XOR16rr, X86::XOR16rm, 0 }, | |
852 { X86::XOR32rr, X86::XOR32rm, 0 }, | |
853 { X86::XOR64rr, X86::XOR64rm, 0 }, | |
854 { X86::XOR8rr, X86::XOR8rm, 0 }, | |
855 { X86::XORPDrr, X86::XORPDrm, TB_ALIGN_16 }, | |
856 { X86::XORPSrr, X86::XORPSrm, TB_ALIGN_16 }, | |
857 // AVX 128-bit versions of foldable instructions | |
858 { X86::VCVTSD2SSrr, X86::VCVTSD2SSrm, 0 }, | |
859 { X86::Int_VCVTSD2SSrr, X86::Int_VCVTSD2SSrm, 0 }, | |
860 { X86::VCVTSI2SD64rr, X86::VCVTSI2SD64rm, 0 }, | |
861 { X86::Int_VCVTSI2SD64rr, X86::Int_VCVTSI2SD64rm, 0 }, | |
862 { X86::VCVTSI2SDrr, X86::VCVTSI2SDrm, 0 }, | |
863 { X86::Int_VCVTSI2SDrr, X86::Int_VCVTSI2SDrm, 0 }, | |
864 { X86::VCVTSI2SS64rr, X86::VCVTSI2SS64rm, 0 }, | |
865 { X86::Int_VCVTSI2SS64rr, X86::Int_VCVTSI2SS64rm, 0 }, | |
866 { X86::VCVTSI2SSrr, X86::VCVTSI2SSrm, 0 }, | |
867 { X86::Int_VCVTSI2SSrr, X86::Int_VCVTSI2SSrm, 0 }, | |
868 { X86::VCVTSS2SDrr, X86::VCVTSS2SDrm, 0 }, | |
869 { X86::Int_VCVTSS2SDrr, X86::Int_VCVTSS2SDrm, 0 }, | |
870 { X86::VCVTTPD2DQrr, X86::VCVTTPD2DQXrm, 0 }, | |
871 { X86::VCVTTPS2DQrr, X86::VCVTTPS2DQrm, 0 }, | |
872 { X86::VRSQRTSSr, X86::VRSQRTSSm, 0 }, | |
873 { X86::VSQRTSDr, X86::VSQRTSDm, 0 }, | |
874 { X86::VSQRTSSr, X86::VSQRTSSm, 0 }, | |
875 { X86::VADDPDrr, X86::VADDPDrm, 0 }, | |
876 { X86::VADDPSrr, X86::VADDPSrm, 0 }, | |
877 { X86::VADDSDrr, X86::VADDSDrm, 0 }, | |
878 { X86::VADDSSrr, X86::VADDSSrm, 0 }, | |
879 { X86::VADDSUBPDrr, X86::VADDSUBPDrm, 0 }, | |
880 { X86::VADDSUBPSrr, X86::VADDSUBPSrm, 0 }, | |
881 { X86::VANDNPDrr, X86::VANDNPDrm, 0 }, | |
882 { X86::VANDNPSrr, X86::VANDNPSrm, 0 }, | |
883 { X86::VANDPDrr, X86::VANDPDrm, 0 }, | |
884 { X86::VANDPSrr, X86::VANDPSrm, 0 }, | |
885 { X86::VBLENDPDrri, X86::VBLENDPDrmi, 0 }, | |
886 { X86::VBLENDPSrri, X86::VBLENDPSrmi, 0 }, | |
887 { X86::VBLENDVPDrr, X86::VBLENDVPDrm, 0 }, | |
888 { X86::VBLENDVPSrr, X86::VBLENDVPSrm, 0 }, | |
889 { X86::VCMPPDrri, X86::VCMPPDrmi, 0 }, | |
890 { X86::VCMPPSrri, X86::VCMPPSrmi, 0 }, | |
891 { X86::VCMPSDrr, X86::VCMPSDrm, 0 }, | |
892 { X86::VCMPSSrr, X86::VCMPSSrm, 0 }, | |
893 { X86::VDIVPDrr, X86::VDIVPDrm, 0 }, | |
894 { X86::VDIVPSrr, X86::VDIVPSrm, 0 }, | |
895 { X86::VDIVSDrr, X86::VDIVSDrm, 0 }, | |
896 { X86::VDIVSSrr, X86::VDIVSSrm, 0 }, | |
897 { X86::VFsANDNPDrr, X86::VFsANDNPDrm, TB_ALIGN_16 }, | |
898 { X86::VFsANDNPSrr, X86::VFsANDNPSrm, TB_ALIGN_16 }, | |
899 { X86::VFsANDPDrr, X86::VFsANDPDrm, TB_ALIGN_16 }, | |
900 { X86::VFsANDPSrr, X86::VFsANDPSrm, TB_ALIGN_16 }, | |
901 { X86::VFsORPDrr, X86::VFsORPDrm, TB_ALIGN_16 }, | |
902 { X86::VFsORPSrr, X86::VFsORPSrm, TB_ALIGN_16 }, | |
903 { X86::VFsXORPDrr, X86::VFsXORPDrm, TB_ALIGN_16 }, | |
904 { X86::VFsXORPSrr, X86::VFsXORPSrm, TB_ALIGN_16 }, | |
905 { X86::VHADDPDrr, X86::VHADDPDrm, 0 }, | |
906 { X86::VHADDPSrr, X86::VHADDPSrm, 0 }, | |
907 { X86::VHSUBPDrr, X86::VHSUBPDrm, 0 }, | |
908 { X86::VHSUBPSrr, X86::VHSUBPSrm, 0 }, | |
909 { X86::Int_VCMPSDrr, X86::Int_VCMPSDrm, 0 }, | |
910 { X86::Int_VCMPSSrr, X86::Int_VCMPSSrm, 0 }, | |
911 { X86::VMAXPDrr, X86::VMAXPDrm, 0 }, | |
912 { X86::VMAXPSrr, X86::VMAXPSrm, 0 }, | |
913 { X86::VMAXSDrr, X86::VMAXSDrm, 0 }, | |
914 { X86::VMAXSSrr, X86::VMAXSSrm, 0 }, | |
915 { X86::VMINPDrr, X86::VMINPDrm, 0 }, | |
916 { X86::VMINPSrr, X86::VMINPSrm, 0 }, | |
917 { X86::VMINSDrr, X86::VMINSDrm, 0 }, | |
918 { X86::VMINSSrr, X86::VMINSSrm, 0 }, | |
919 { X86::VMPSADBWrri, X86::VMPSADBWrmi, 0 }, | |
920 { X86::VMULPDrr, X86::VMULPDrm, 0 }, | |
921 { X86::VMULPSrr, X86::VMULPSrm, 0 }, | |
922 { X86::VMULSDrr, X86::VMULSDrm, 0 }, | |
923 { X86::VMULSSrr, X86::VMULSSrm, 0 }, | |
924 { X86::VORPDrr, X86::VORPDrm, 0 }, | |
925 { X86::VORPSrr, X86::VORPSrm, 0 }, | |
926 { X86::VPACKSSDWrr, X86::VPACKSSDWrm, 0 }, | |
927 { X86::VPACKSSWBrr, X86::VPACKSSWBrm, 0 }, | |
928 { X86::VPACKUSDWrr, X86::VPACKUSDWrm, 0 }, | |
929 { X86::VPACKUSWBrr, X86::VPACKUSWBrm, 0 }, | |
930 { X86::VPADDBrr, X86::VPADDBrm, 0 }, | |
931 { X86::VPADDDrr, X86::VPADDDrm, 0 }, | |
932 { X86::VPADDQrr, X86::VPADDQrm, 0 }, | |
933 { X86::VPADDSBrr, X86::VPADDSBrm, 0 }, | |
934 { X86::VPADDSWrr, X86::VPADDSWrm, 0 }, | |
935 { X86::VPADDUSBrr, X86::VPADDUSBrm, 0 }, | |
936 { X86::VPADDUSWrr, X86::VPADDUSWrm, 0 }, | |
937 { X86::VPADDWrr, X86::VPADDWrm, 0 }, | |
938 { X86::VPALIGNR128rr, X86::VPALIGNR128rm, 0 }, | |
939 { X86::VPANDNrr, X86::VPANDNrm, 0 }, | |
940 { X86::VPANDrr, X86::VPANDrm, 0 }, | |
941 { X86::VPAVGBrr, X86::VPAVGBrm, 0 }, | |
942 { X86::VPAVGWrr, X86::VPAVGWrm, 0 }, | |
943 { X86::VPBLENDWrri, X86::VPBLENDWrmi, 0 }, | |
944 { X86::VPCMPEQBrr, X86::VPCMPEQBrm, 0 }, | |
945 { X86::VPCMPEQDrr, X86::VPCMPEQDrm, 0 }, | |
946 { X86::VPCMPEQQrr, X86::VPCMPEQQrm, 0 }, | |
947 { X86::VPCMPEQWrr, X86::VPCMPEQWrm, 0 }, | |
948 { X86::VPCMPGTBrr, X86::VPCMPGTBrm, 0 }, | |
949 { X86::VPCMPGTDrr, X86::VPCMPGTDrm, 0 }, | |
950 { X86::VPCMPGTQrr, X86::VPCMPGTQrm, 0 }, | |
951 { X86::VPCMPGTWrr, X86::VPCMPGTWrm, 0 }, | |
952 { X86::VPHADDDrr, X86::VPHADDDrm, 0 }, | |
953 { X86::VPHADDSWrr128, X86::VPHADDSWrm128, 0 }, | |
954 { X86::VPHADDWrr, X86::VPHADDWrm, 0 }, | |
955 { X86::VPHSUBDrr, X86::VPHSUBDrm, 0 }, | |
956 { X86::VPHSUBSWrr128, X86::VPHSUBSWrm128, 0 }, | |
957 { X86::VPHSUBWrr, X86::VPHSUBWrm, 0 }, | |
958 { X86::VPERMILPDrr, X86::VPERMILPDrm, 0 }, | |
959 { X86::VPERMILPSrr, X86::VPERMILPSrm, 0 }, | |
960 { X86::VPINSRWrri, X86::VPINSRWrmi, 0 }, | |
961 { X86::VPMADDUBSWrr128, X86::VPMADDUBSWrm128, 0 }, | |
962 { X86::VPMADDWDrr, X86::VPMADDWDrm, 0 }, | |
963 { X86::VPMAXSWrr, X86::VPMAXSWrm, 0 }, | |
964 { X86::VPMAXUBrr, X86::VPMAXUBrm, 0 }, | |
965 { X86::VPMINSWrr, X86::VPMINSWrm, 0 }, | |
966 { X86::VPMINUBrr, X86::VPMINUBrm, 0 }, | |
967 { X86::VPMINSBrr, X86::VPMINSBrm, 0 }, | |
968 { X86::VPMINSDrr, X86::VPMINSDrm, 0 }, | |
969 { X86::VPMINUDrr, X86::VPMINUDrm, 0 }, | |
970 { X86::VPMINUWrr, X86::VPMINUWrm, 0 }, | |
971 { X86::VPMAXSBrr, X86::VPMAXSBrm, 0 }, | |
972 { X86::VPMAXSDrr, X86::VPMAXSDrm, 0 }, | |
973 { X86::VPMAXUDrr, X86::VPMAXUDrm, 0 }, | |
974 { X86::VPMAXUWrr, X86::VPMAXUWrm, 0 }, | |
975 { X86::VPMULDQrr, X86::VPMULDQrm, 0 }, | |
976 { X86::VPMULHRSWrr128, X86::VPMULHRSWrm128, 0 }, | |
977 { X86::VPMULHUWrr, X86::VPMULHUWrm, 0 }, | |
978 { X86::VPMULHWrr, X86::VPMULHWrm, 0 }, | |
979 { X86::VPMULLDrr, X86::VPMULLDrm, 0 }, | |
980 { X86::VPMULLWrr, X86::VPMULLWrm, 0 }, | |
981 { X86::VPMULUDQrr, X86::VPMULUDQrm, 0 }, | |
982 { X86::VPORrr, X86::VPORrm, 0 }, | |
983 { X86::VPSADBWrr, X86::VPSADBWrm, 0 }, | |
984 { X86::VPSHUFBrr, X86::VPSHUFBrm, 0 }, | |
985 { X86::VPSIGNBrr, X86::VPSIGNBrm, 0 }, | |
986 { X86::VPSIGNWrr, X86::VPSIGNWrm, 0 }, | |
987 { X86::VPSIGNDrr, X86::VPSIGNDrm, 0 }, | |
988 { X86::VPSLLDrr, X86::VPSLLDrm, 0 }, | |
989 { X86::VPSLLQrr, X86::VPSLLQrm, 0 }, | |
990 { X86::VPSLLWrr, X86::VPSLLWrm, 0 }, | |
991 { X86::VPSRADrr, X86::VPSRADrm, 0 }, | |
992 { X86::VPSRAWrr, X86::VPSRAWrm, 0 }, | |
993 { X86::VPSRLDrr, X86::VPSRLDrm, 0 }, | |
994 { X86::VPSRLQrr, X86::VPSRLQrm, 0 }, | |
995 { X86::VPSRLWrr, X86::VPSRLWrm, 0 }, | |
996 { X86::VPSUBBrr, X86::VPSUBBrm, 0 }, | |
997 { X86::VPSUBDrr, X86::VPSUBDrm, 0 }, | |
998 { X86::VPSUBSBrr, X86::VPSUBSBrm, 0 }, | |
999 { X86::VPSUBSWrr, X86::VPSUBSWrm, 0 }, | |
1000 { X86::VPSUBWrr, X86::VPSUBWrm, 0 }, | |
1001 { X86::VPUNPCKHBWrr, X86::VPUNPCKHBWrm, 0 }, | |
1002 { X86::VPUNPCKHDQrr, X86::VPUNPCKHDQrm, 0 }, | |
1003 { X86::VPUNPCKHQDQrr, X86::VPUNPCKHQDQrm, 0 }, | |
1004 { X86::VPUNPCKHWDrr, X86::VPUNPCKHWDrm, 0 }, | |
1005 { X86::VPUNPCKLBWrr, X86::VPUNPCKLBWrm, 0 }, | |
1006 { X86::VPUNPCKLDQrr, X86::VPUNPCKLDQrm, 0 }, | |
1007 { X86::VPUNPCKLQDQrr, X86::VPUNPCKLQDQrm, 0 }, | |
1008 { X86::VPUNPCKLWDrr, X86::VPUNPCKLWDrm, 0 }, | |
1009 { X86::VPXORrr, X86::VPXORrm, 0 }, | |
1010 { X86::VSHUFPDrri, X86::VSHUFPDrmi, 0 }, | |
1011 { X86::VSHUFPSrri, X86::VSHUFPSrmi, 0 }, | |
1012 { X86::VSUBPDrr, X86::VSUBPDrm, 0 }, | |
1013 { X86::VSUBPSrr, X86::VSUBPSrm, 0 }, | |
1014 { X86::VSUBSDrr, X86::VSUBSDrm, 0 }, | |
1015 { X86::VSUBSSrr, X86::VSUBSSrm, 0 }, | |
1016 { X86::VUNPCKHPDrr, X86::VUNPCKHPDrm, 0 }, | |
1017 { X86::VUNPCKHPSrr, X86::VUNPCKHPSrm, 0 }, | |
1018 { X86::VUNPCKLPDrr, X86::VUNPCKLPDrm, 0 }, | |
1019 { X86::VUNPCKLPSrr, X86::VUNPCKLPSrm, 0 }, | |
1020 { X86::VXORPDrr, X86::VXORPDrm, 0 }, | |
1021 { X86::VXORPSrr, X86::VXORPSrm, 0 }, | |
1022 // AVX 256-bit foldable instructions | |
1023 { X86::VADDPDYrr, X86::VADDPDYrm, 0 }, | |
1024 { X86::VADDPSYrr, X86::VADDPSYrm, 0 }, | |
1025 { X86::VADDSUBPDYrr, X86::VADDSUBPDYrm, 0 }, | |
1026 { X86::VADDSUBPSYrr, X86::VADDSUBPSYrm, 0 }, | |
1027 { X86::VANDNPDYrr, X86::VANDNPDYrm, 0 }, | |
1028 { X86::VANDNPSYrr, X86::VANDNPSYrm, 0 }, | |
1029 { X86::VANDPDYrr, X86::VANDPDYrm, 0 }, | |
1030 { X86::VANDPSYrr, X86::VANDPSYrm, 0 }, | |
1031 { X86::VBLENDPDYrri, X86::VBLENDPDYrmi, 0 }, | |
1032 { X86::VBLENDPSYrri, X86::VBLENDPSYrmi, 0 }, | |
1033 { X86::VBLENDVPDYrr, X86::VBLENDVPDYrm, 0 }, | |
1034 { X86::VBLENDVPSYrr, X86::VBLENDVPSYrm, 0 }, | |
1035 { X86::VCMPPDYrri, X86::VCMPPDYrmi, 0 }, | |
1036 { X86::VCMPPSYrri, X86::VCMPPSYrmi, 0 }, | |
1037 { X86::VDIVPDYrr, X86::VDIVPDYrm, 0 }, | |
1038 { X86::VDIVPSYrr, X86::VDIVPSYrm, 0 }, | |
1039 { X86::VHADDPDYrr, X86::VHADDPDYrm, 0 }, | |
1040 { X86::VHADDPSYrr, X86::VHADDPSYrm, 0 }, | |
1041 { X86::VHSUBPDYrr, X86::VHSUBPDYrm, 0 }, | |
1042 { X86::VHSUBPSYrr, X86::VHSUBPSYrm, 0 }, | |
1043 { X86::VINSERTF128rr, X86::VINSERTF128rm, 0 }, | |
1044 { X86::VMAXPDYrr, X86::VMAXPDYrm, 0 }, | |
1045 { X86::VMAXPSYrr, X86::VMAXPSYrm, 0 }, | |
1046 { X86::VMINPDYrr, X86::VMINPDYrm, 0 }, | |
1047 { X86::VMINPSYrr, X86::VMINPSYrm, 0 }, | |
1048 { X86::VMULPDYrr, X86::VMULPDYrm, 0 }, | |
1049 { X86::VMULPSYrr, X86::VMULPSYrm, 0 }, | |
1050 { X86::VORPDYrr, X86::VORPDYrm, 0 }, | |
1051 { X86::VORPSYrr, X86::VORPSYrm, 0 }, | |
1052 { X86::VPERM2F128rr, X86::VPERM2F128rm, 0 }, | |
1053 { X86::VPERMILPDYrr, X86::VPERMILPDYrm, 0 }, | |
1054 { X86::VPERMILPSYrr, X86::VPERMILPSYrm, 0 }, | |
1055 { X86::VSHUFPDYrri, X86::VSHUFPDYrmi, 0 }, | |
1056 { X86::VSHUFPSYrri, X86::VSHUFPSYrmi, 0 }, | |
1057 { X86::VSUBPDYrr, X86::VSUBPDYrm, 0 }, | |
1058 { X86::VSUBPSYrr, X86::VSUBPSYrm, 0 }, | |
1059 { X86::VUNPCKHPDYrr, X86::VUNPCKHPDYrm, 0 }, | |
1060 { X86::VUNPCKHPSYrr, X86::VUNPCKHPSYrm, 0 }, | |
1061 { X86::VUNPCKLPDYrr, X86::VUNPCKLPDYrm, 0 }, | |
1062 { X86::VUNPCKLPSYrr, X86::VUNPCKLPSYrm, 0 }, | |
1063 { X86::VXORPDYrr, X86::VXORPDYrm, 0 }, | |
1064 { X86::VXORPSYrr, X86::VXORPSYrm, 0 }, | |
1065 // AVX2 foldable instructions | |
1066 { X86::VINSERTI128rr, X86::VINSERTI128rm, 0 }, | |
1067 { X86::VPACKSSDWYrr, X86::VPACKSSDWYrm, 0 }, | |
1068 { X86::VPACKSSWBYrr, X86::VPACKSSWBYrm, 0 }, | |
1069 { X86::VPACKUSDWYrr, X86::VPACKUSDWYrm, 0 }, | |
1070 { X86::VPACKUSWBYrr, X86::VPACKUSWBYrm, 0 }, | |
1071 { X86::VPADDBYrr, X86::VPADDBYrm, 0 }, | |
1072 { X86::VPADDDYrr, X86::VPADDDYrm, 0 }, | |
1073 { X86::VPADDQYrr, X86::VPADDQYrm, 0 }, | |
1074 { X86::VPADDSBYrr, X86::VPADDSBYrm, 0 }, | |
1075 { X86::VPADDSWYrr, X86::VPADDSWYrm, 0 }, | |
1076 { X86::VPADDUSBYrr, X86::VPADDUSBYrm, 0 }, | |
1077 { X86::VPADDUSWYrr, X86::VPADDUSWYrm, 0 }, | |
1078 { X86::VPADDWYrr, X86::VPADDWYrm, 0 }, | |
1079 { X86::VPALIGNR256rr, X86::VPALIGNR256rm, 0 }, | |
1080 { X86::VPANDNYrr, X86::VPANDNYrm, 0 }, | |
1081 { X86::VPANDYrr, X86::VPANDYrm, 0 }, | |
1082 { X86::VPAVGBYrr, X86::VPAVGBYrm, 0 }, | |
1083 { X86::VPAVGWYrr, X86::VPAVGWYrm, 0 }, | |
1084 { X86::VPBLENDDrri, X86::VPBLENDDrmi, 0 }, | |
1085 { X86::VPBLENDDYrri, X86::VPBLENDDYrmi, 0 }, | |
1086 { X86::VPBLENDWYrri, X86::VPBLENDWYrmi, 0 }, | |
1087 { X86::VPCMPEQBYrr, X86::VPCMPEQBYrm, 0 }, | |
1088 { X86::VPCMPEQDYrr, X86::VPCMPEQDYrm, 0 }, | |
1089 { X86::VPCMPEQQYrr, X86::VPCMPEQQYrm, 0 }, | |
1090 { X86::VPCMPEQWYrr, X86::VPCMPEQWYrm, 0 }, | |
1091 { X86::VPCMPGTBYrr, X86::VPCMPGTBYrm, 0 }, | |
1092 { X86::VPCMPGTDYrr, X86::VPCMPGTDYrm, 0 }, | |
1093 { X86::VPCMPGTQYrr, X86::VPCMPGTQYrm, 0 }, | |
1094 { X86::VPCMPGTWYrr, X86::VPCMPGTWYrm, 0 }, | |
1095 { X86::VPERM2I128rr, X86::VPERM2I128rm, 0 }, | |
1096 { X86::VPERMDYrr, X86::VPERMDYrm, 0 }, | |
1097 { X86::VPERMPDYri, X86::VPERMPDYmi, 0 }, | |
1098 { X86::VPERMPSYrr, X86::VPERMPSYrm, 0 }, | |
1099 { X86::VPERMQYri, X86::VPERMQYmi, 0 }, | |
1100 { X86::VPHADDDYrr, X86::VPHADDDYrm, 0 }, | |
1101 { X86::VPHADDSWrr256, X86::VPHADDSWrm256, 0 }, | |
1102 { X86::VPHADDWYrr, X86::VPHADDWYrm, 0 }, | |
1103 { X86::VPHSUBDYrr, X86::VPHSUBDYrm, 0 }, | |
1104 { X86::VPHSUBSWrr256, X86::VPHSUBSWrm256, 0 }, | |
1105 { X86::VPHSUBWYrr, X86::VPHSUBWYrm, 0 }, | |
1106 { X86::VPMADDUBSWrr256, X86::VPMADDUBSWrm256, 0 }, | |
1107 { X86::VPMADDWDYrr, X86::VPMADDWDYrm, 0 }, | |
1108 { X86::VPMAXSWYrr, X86::VPMAXSWYrm, 0 }, | |
1109 { X86::VPMAXUBYrr, X86::VPMAXUBYrm, 0 }, | |
1110 { X86::VPMINSWYrr, X86::VPMINSWYrm, 0 }, | |
1111 { X86::VPMINUBYrr, X86::VPMINUBYrm, 0 }, | |
1112 { X86::VPMINSBYrr, X86::VPMINSBYrm, 0 }, | |
1113 { X86::VPMINSDYrr, X86::VPMINSDYrm, 0 }, | |
1114 { X86::VPMINUDYrr, X86::VPMINUDYrm, 0 }, | |
1115 { X86::VPMINUWYrr, X86::VPMINUWYrm, 0 }, | |
1116 { X86::VPMAXSBYrr, X86::VPMAXSBYrm, 0 }, | |
1117 { X86::VPMAXSDYrr, X86::VPMAXSDYrm, 0 }, | |
1118 { X86::VPMAXUDYrr, X86::VPMAXUDYrm, 0 }, | |
1119 { X86::VPMAXUWYrr, X86::VPMAXUWYrm, 0 }, | |
1120 { X86::VMPSADBWYrri, X86::VMPSADBWYrmi, 0 }, | |
1121 { X86::VPMULDQYrr, X86::VPMULDQYrm, 0 }, | |
1122 { X86::VPMULHRSWrr256, X86::VPMULHRSWrm256, 0 }, | |
1123 { X86::VPMULHUWYrr, X86::VPMULHUWYrm, 0 }, | |
1124 { X86::VPMULHWYrr, X86::VPMULHWYrm, 0 }, | |
1125 { X86::VPMULLDYrr, X86::VPMULLDYrm, 0 }, | |
1126 { X86::VPMULLWYrr, X86::VPMULLWYrm, 0 }, | |
1127 { X86::VPMULUDQYrr, X86::VPMULUDQYrm, 0 }, | |
1128 { X86::VPORYrr, X86::VPORYrm, 0 }, | |
1129 { X86::VPSADBWYrr, X86::VPSADBWYrm, 0 }, | |
1130 { X86::VPSHUFBYrr, X86::VPSHUFBYrm, 0 }, | |
1131 { X86::VPSIGNBYrr, X86::VPSIGNBYrm, 0 }, | |
1132 { X86::VPSIGNWYrr, X86::VPSIGNWYrm, 0 }, | |
1133 { X86::VPSIGNDYrr, X86::VPSIGNDYrm, 0 }, | |
1134 { X86::VPSLLDYrr, X86::VPSLLDYrm, 0 }, | |
1135 { X86::VPSLLQYrr, X86::VPSLLQYrm, 0 }, | |
1136 { X86::VPSLLWYrr, X86::VPSLLWYrm, 0 }, | |
1137 { X86::VPSLLVDrr, X86::VPSLLVDrm, 0 }, | |
1138 { X86::VPSLLVDYrr, X86::VPSLLVDYrm, 0 }, | |
1139 { X86::VPSLLVQrr, X86::VPSLLVQrm, 0 }, | |
1140 { X86::VPSLLVQYrr, X86::VPSLLVQYrm, 0 }, | |
1141 { X86::VPSRADYrr, X86::VPSRADYrm, 0 }, | |
1142 { X86::VPSRAWYrr, X86::VPSRAWYrm, 0 }, | |
1143 { X86::VPSRAVDrr, X86::VPSRAVDrm, 0 }, | |
1144 { X86::VPSRAVDYrr, X86::VPSRAVDYrm, 0 }, | |
1145 { X86::VPSRLDYrr, X86::VPSRLDYrm, 0 }, | |
1146 { X86::VPSRLQYrr, X86::VPSRLQYrm, 0 }, | |
1147 { X86::VPSRLWYrr, X86::VPSRLWYrm, 0 }, | |
1148 { X86::VPSRLVDrr, X86::VPSRLVDrm, 0 }, | |
1149 { X86::VPSRLVDYrr, X86::VPSRLVDYrm, 0 }, | |
1150 { X86::VPSRLVQrr, X86::VPSRLVQrm, 0 }, | |
1151 { X86::VPSRLVQYrr, X86::VPSRLVQYrm, 0 }, | |
1152 { X86::VPSUBBYrr, X86::VPSUBBYrm, 0 }, | |
1153 { X86::VPSUBDYrr, X86::VPSUBDYrm, 0 }, | |
1154 { X86::VPSUBSBYrr, X86::VPSUBSBYrm, 0 }, | |
1155 { X86::VPSUBSWYrr, X86::VPSUBSWYrm, 0 }, | |
1156 { X86::VPSUBWYrr, X86::VPSUBWYrm, 0 }, | |
1157 { X86::VPUNPCKHBWYrr, X86::VPUNPCKHBWYrm, 0 }, | |
1158 { X86::VPUNPCKHDQYrr, X86::VPUNPCKHDQYrm, 0 }, | |
1159 { X86::VPUNPCKHQDQYrr, X86::VPUNPCKHQDQYrm, 0 }, | |
1160 { X86::VPUNPCKHWDYrr, X86::VPUNPCKHWDYrm, 0 }, | |
1161 { X86::VPUNPCKLBWYrr, X86::VPUNPCKLBWYrm, 0 }, | |
1162 { X86::VPUNPCKLDQYrr, X86::VPUNPCKLDQYrm, 0 }, | |
1163 { X86::VPUNPCKLQDQYrr, X86::VPUNPCKLQDQYrm, 0 }, | |
1164 { X86::VPUNPCKLWDYrr, X86::VPUNPCKLWDYrm, 0 }, | |
1165 { X86::VPXORYrr, X86::VPXORYrm, 0 }, | |
1166 // FIXME: add AVX 256-bit foldable instructions | |
1167 | |
1168 // FMA4 foldable patterns | |
1169 { X86::VFMADDSS4rr, X86::VFMADDSS4mr, 0 }, | |
1170 { X86::VFMADDSD4rr, X86::VFMADDSD4mr, 0 }, | |
1171 { X86::VFMADDPS4rr, X86::VFMADDPS4mr, TB_ALIGN_16 }, | |
1172 { X86::VFMADDPD4rr, X86::VFMADDPD4mr, TB_ALIGN_16 }, | |
1173 { X86::VFMADDPS4rrY, X86::VFMADDPS4mrY, TB_ALIGN_32 }, | |
1174 { X86::VFMADDPD4rrY, X86::VFMADDPD4mrY, TB_ALIGN_32 }, | |
1175 { X86::VFNMADDSS4rr, X86::VFNMADDSS4mr, 0 }, | |
1176 { X86::VFNMADDSD4rr, X86::VFNMADDSD4mr, 0 }, | |
1177 { X86::VFNMADDPS4rr, X86::VFNMADDPS4mr, TB_ALIGN_16 }, | |
1178 { X86::VFNMADDPD4rr, X86::VFNMADDPD4mr, TB_ALIGN_16 }, | |
1179 { X86::VFNMADDPS4rrY, X86::VFNMADDPS4mrY, TB_ALIGN_32 }, | |
1180 { X86::VFNMADDPD4rrY, X86::VFNMADDPD4mrY, TB_ALIGN_32 }, | |
1181 { X86::VFMSUBSS4rr, X86::VFMSUBSS4mr, 0 }, | |
1182 { X86::VFMSUBSD4rr, X86::VFMSUBSD4mr, 0 }, | |
1183 { X86::VFMSUBPS4rr, X86::VFMSUBPS4mr, TB_ALIGN_16 }, | |
1184 { X86::VFMSUBPD4rr, X86::VFMSUBPD4mr, TB_ALIGN_16 }, | |
1185 { X86::VFMSUBPS4rrY, X86::VFMSUBPS4mrY, TB_ALIGN_32 }, | |
1186 { X86::VFMSUBPD4rrY, X86::VFMSUBPD4mrY, TB_ALIGN_32 }, | |
1187 { X86::VFNMSUBSS4rr, X86::VFNMSUBSS4mr, 0 }, | |
1188 { X86::VFNMSUBSD4rr, X86::VFNMSUBSD4mr, 0 }, | |
1189 { X86::VFNMSUBPS4rr, X86::VFNMSUBPS4mr, TB_ALIGN_16 }, | |
1190 { X86::VFNMSUBPD4rr, X86::VFNMSUBPD4mr, TB_ALIGN_16 }, | |
1191 { X86::VFNMSUBPS4rrY, X86::VFNMSUBPS4mrY, TB_ALIGN_32 }, | |
1192 { X86::VFNMSUBPD4rrY, X86::VFNMSUBPD4mrY, TB_ALIGN_32 }, | |
1193 { X86::VFMADDSUBPS4rr, X86::VFMADDSUBPS4mr, TB_ALIGN_16 }, | |
1194 { X86::VFMADDSUBPD4rr, X86::VFMADDSUBPD4mr, TB_ALIGN_16 }, | |
1195 { X86::VFMADDSUBPS4rrY, X86::VFMADDSUBPS4mrY, TB_ALIGN_32 }, | |
1196 { X86::VFMADDSUBPD4rrY, X86::VFMADDSUBPD4mrY, TB_ALIGN_32 }, | |
1197 { X86::VFMSUBADDPS4rr, X86::VFMSUBADDPS4mr, TB_ALIGN_16 }, | |
1198 { X86::VFMSUBADDPD4rr, X86::VFMSUBADDPD4mr, TB_ALIGN_16 }, | |
1199 { X86::VFMSUBADDPS4rrY, X86::VFMSUBADDPS4mrY, TB_ALIGN_32 }, | |
1200 { X86::VFMSUBADDPD4rrY, X86::VFMSUBADDPD4mrY, TB_ALIGN_32 }, | |
1201 | |
1202 // BMI/BMI2 foldable instructions | |
1203 { X86::ANDN32rr, X86::ANDN32rm, 0 }, | |
1204 { X86::ANDN64rr, X86::ANDN64rm, 0 }, | |
1205 { X86::MULX32rr, X86::MULX32rm, 0 }, | |
1206 { X86::MULX64rr, X86::MULX64rm, 0 }, | |
1207 { X86::PDEP32rr, X86::PDEP32rm, 0 }, | |
1208 { X86::PDEP64rr, X86::PDEP64rm, 0 }, | |
1209 { X86::PEXT32rr, X86::PEXT32rm, 0 }, | |
1210 { X86::PEXT64rr, X86::PEXT64rm, 0 }, | |
1211 | |
1212 // AVX-512 foldable instructions | |
1213 { X86::VPADDDZrr, X86::VPADDDZrm, 0 }, | |
1214 { X86::VPADDQZrr, X86::VPADDQZrm, 0 }, | |
1215 { X86::VADDPSZrr, X86::VADDPSZrm, 0 }, | |
1216 { X86::VADDPDZrr, X86::VADDPDZrm, 0 }, | |
1217 { X86::VSUBPSZrr, X86::VSUBPSZrm, 0 }, | |
1218 { X86::VSUBPDZrr, X86::VSUBPDZrm, 0 }, | |
1219 { X86::VMULPSZrr, X86::VMULPSZrm, 0 }, | |
1220 { X86::VMULPDZrr, X86::VMULPDZrm, 0 }, | |
1221 { X86::VDIVPSZrr, X86::VDIVPSZrm, 0 }, | |
1222 { X86::VDIVPDZrr, X86::VDIVPDZrm, 0 }, | |
1223 { X86::VMINPSZrr, X86::VMINPSZrm, 0 }, | |
1224 { X86::VMINPDZrr, X86::VMINPDZrm, 0 }, | |
1225 { X86::VMAXPSZrr, X86::VMAXPSZrm, 0 }, | |
1226 { X86::VMAXPDZrr, X86::VMAXPDZrm, 0 }, | |
1227 { X86::VPERMPDZri, X86::VPERMPDZmi, 0 }, | |
1228 { X86::VPERMPSZrr, X86::VPERMPSZrm, 0 }, | |
1229 { X86::VPSLLVDZrr, X86::VPSLLVDZrm, 0 }, | |
1230 { X86::VPSLLVQZrr, X86::VPSLLVQZrm, 0 }, | |
1231 { X86::VPSRAVDZrr, X86::VPSRAVDZrm, 0 }, | |
1232 { X86::VPSRLVDZrr, X86::VPSRLVDZrm, 0 }, | |
1233 { X86::VPSRLVQZrr, X86::VPSRLVQZrm, 0 }, | |
1234 { X86::VSHUFPDZrri, X86::VSHUFPDZrmi, 0 }, | |
1235 { X86::VSHUFPSZrri, X86::VSHUFPSZrmi, 0 }, | |
1236 { X86::VALIGNQrri, X86::VALIGNQrmi, 0 }, | |
1237 { X86::VALIGNDrri, X86::VALIGNDrmi, 0 }, | |
1238 | |
1239 // AES foldable instructions | |
1240 { X86::AESDECLASTrr, X86::AESDECLASTrm, TB_ALIGN_16 }, | |
1241 { X86::AESDECrr, X86::AESDECrm, TB_ALIGN_16 }, | |
1242 { X86::AESENCLASTrr, X86::AESENCLASTrm, TB_ALIGN_16 }, | |
1243 { X86::AESENCrr, X86::AESENCrm, TB_ALIGN_16 }, | |
1244 { X86::VAESDECLASTrr, X86::VAESDECLASTrm, TB_ALIGN_16 }, | |
1245 { X86::VAESDECrr, X86::VAESDECrm, TB_ALIGN_16 }, | |
1246 { X86::VAESENCLASTrr, X86::VAESENCLASTrm, TB_ALIGN_16 }, | |
1247 { X86::VAESENCrr, X86::VAESENCrm, TB_ALIGN_16 }, | |
1248 | |
1249 // SHA foldable instructions | |
1250 { X86::SHA1MSG1rr, X86::SHA1MSG1rm, TB_ALIGN_16 }, | |
1251 { X86::SHA1MSG2rr, X86::SHA1MSG2rm, TB_ALIGN_16 }, | |
1252 { X86::SHA1NEXTErr, X86::SHA1NEXTErm, TB_ALIGN_16 }, | |
1253 { X86::SHA1RNDS4rri, X86::SHA1RNDS4rmi, TB_ALIGN_16 }, | |
1254 { X86::SHA256MSG1rr, X86::SHA256MSG1rm, TB_ALIGN_16 }, | |
1255 { X86::SHA256MSG2rr, X86::SHA256MSG2rm, TB_ALIGN_16 }, | |
1256 { X86::SHA256RNDS2rr, X86::SHA256RNDS2rm, TB_ALIGN_16 }, | |
1257 }; | |
1258 | |
1259 for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) { | |
1260 unsigned RegOp = OpTbl2[i].RegOp; | |
1261 unsigned MemOp = OpTbl2[i].MemOp; | |
1262 unsigned Flags = OpTbl2[i].Flags; | |
1263 AddTableEntry(RegOp2MemOpTable2, MemOp2RegOpTable, | |
1264 RegOp, MemOp, | |
1265 // Index 2, folded load | |
1266 Flags | TB_INDEX_2 | TB_FOLDED_LOAD); | |
1267 } | |
1268 | |
1269 static const X86OpTblEntry OpTbl3[] = { | |
1270 // FMA foldable instructions | |
1271 { X86::VFMADDSSr231r, X86::VFMADDSSr231m, 0 }, | |
1272 { X86::VFMADDSDr231r, X86::VFMADDSDr231m, 0 }, | |
1273 { X86::VFMADDSSr132r, X86::VFMADDSSr132m, 0 }, | |
1274 { X86::VFMADDSDr132r, X86::VFMADDSDr132m, 0 }, | |
1275 { X86::VFMADDSSr213r, X86::VFMADDSSr213m, 0 }, | |
1276 { X86::VFMADDSDr213r, X86::VFMADDSDr213m, 0 }, | |
1277 { X86::VFMADDSSr213r_Int, X86::VFMADDSSr213m_Int, 0 }, | |
1278 { X86::VFMADDSDr213r_Int, X86::VFMADDSDr213m_Int, 0 }, | |
1279 | |
1280 { X86::VFMADDPSr231r, X86::VFMADDPSr231m, TB_ALIGN_16 }, | |
1281 { X86::VFMADDPDr231r, X86::VFMADDPDr231m, TB_ALIGN_16 }, | |
1282 { X86::VFMADDPSr132r, X86::VFMADDPSr132m, TB_ALIGN_16 }, | |
1283 { X86::VFMADDPDr132r, X86::VFMADDPDr132m, TB_ALIGN_16 }, | |
1284 { X86::VFMADDPSr213r, X86::VFMADDPSr213m, TB_ALIGN_16 }, | |
1285 { X86::VFMADDPDr213r, X86::VFMADDPDr213m, TB_ALIGN_16 }, | |
1286 { X86::VFMADDPSr231rY, X86::VFMADDPSr231mY, TB_ALIGN_32 }, | |
1287 { X86::VFMADDPDr231rY, X86::VFMADDPDr231mY, TB_ALIGN_32 }, | |
1288 { X86::VFMADDPSr132rY, X86::VFMADDPSr132mY, TB_ALIGN_32 }, | |
1289 { X86::VFMADDPDr132rY, X86::VFMADDPDr132mY, TB_ALIGN_32 }, | |
1290 { X86::VFMADDPSr213rY, X86::VFMADDPSr213mY, TB_ALIGN_32 }, | |
1291 { X86::VFMADDPDr213rY, X86::VFMADDPDr213mY, TB_ALIGN_32 }, | |
1292 | |
1293 { X86::VFNMADDSSr231r, X86::VFNMADDSSr231m, 0 }, | |
1294 { X86::VFNMADDSDr231r, X86::VFNMADDSDr231m, 0 }, | |
1295 { X86::VFNMADDSSr132r, X86::VFNMADDSSr132m, 0 }, | |
1296 { X86::VFNMADDSDr132r, X86::VFNMADDSDr132m, 0 }, | |
1297 { X86::VFNMADDSSr213r, X86::VFNMADDSSr213m, 0 }, | |
1298 { X86::VFNMADDSDr213r, X86::VFNMADDSDr213m, 0 }, | |
1299 { X86::VFNMADDSSr213r_Int, X86::VFNMADDSSr213m_Int, 0 }, | |
1300 { X86::VFNMADDSDr213r_Int, X86::VFNMADDSDr213m_Int, 0 }, | |
1301 | |
1302 { X86::VFNMADDPSr231r, X86::VFNMADDPSr231m, TB_ALIGN_16 }, | |
1303 { X86::VFNMADDPDr231r, X86::VFNMADDPDr231m, TB_ALIGN_16 }, | |
1304 { X86::VFNMADDPSr132r, X86::VFNMADDPSr132m, TB_ALIGN_16 }, | |
1305 { X86::VFNMADDPDr132r, X86::VFNMADDPDr132m, TB_ALIGN_16 }, | |
1306 { X86::VFNMADDPSr213r, X86::VFNMADDPSr213m, TB_ALIGN_16 }, | |
1307 { X86::VFNMADDPDr213r, X86::VFNMADDPDr213m, TB_ALIGN_16 }, | |
1308 { X86::VFNMADDPSr231rY, X86::VFNMADDPSr231mY, TB_ALIGN_32 }, | |
1309 { X86::VFNMADDPDr231rY, X86::VFNMADDPDr231mY, TB_ALIGN_32 }, | |
1310 { X86::VFNMADDPSr132rY, X86::VFNMADDPSr132mY, TB_ALIGN_32 }, | |
1311 { X86::VFNMADDPDr132rY, X86::VFNMADDPDr132mY, TB_ALIGN_32 }, | |
1312 { X86::VFNMADDPSr213rY, X86::VFNMADDPSr213mY, TB_ALIGN_32 }, | |
1313 { X86::VFNMADDPDr213rY, X86::VFNMADDPDr213mY, TB_ALIGN_32 }, | |
1314 | |
1315 { X86::VFMSUBSSr231r, X86::VFMSUBSSr231m, 0 }, | |
1316 { X86::VFMSUBSDr231r, X86::VFMSUBSDr231m, 0 }, | |
1317 { X86::VFMSUBSSr132r, X86::VFMSUBSSr132m, 0 }, | |
1318 { X86::VFMSUBSDr132r, X86::VFMSUBSDr132m, 0 }, | |
1319 { X86::VFMSUBSSr213r, X86::VFMSUBSSr213m, 0 }, | |
1320 { X86::VFMSUBSDr213r, X86::VFMSUBSDr213m, 0 }, | |
1321 { X86::VFMSUBSSr213r_Int, X86::VFMSUBSSr213m_Int, 0 }, | |
1322 { X86::VFMSUBSDr213r_Int, X86::VFMSUBSDr213m_Int, 0 }, | |
1323 | |
1324 { X86::VFMSUBPSr231r, X86::VFMSUBPSr231m, TB_ALIGN_16 }, | |
1325 { X86::VFMSUBPDr231r, X86::VFMSUBPDr231m, TB_ALIGN_16 }, | |
1326 { X86::VFMSUBPSr132r, X86::VFMSUBPSr132m, TB_ALIGN_16 }, | |
1327 { X86::VFMSUBPDr132r, X86::VFMSUBPDr132m, TB_ALIGN_16 }, | |
1328 { X86::VFMSUBPSr213r, X86::VFMSUBPSr213m, TB_ALIGN_16 }, | |
1329 { X86::VFMSUBPDr213r, X86::VFMSUBPDr213m, TB_ALIGN_16 }, | |
1330 { X86::VFMSUBPSr231rY, X86::VFMSUBPSr231mY, TB_ALIGN_32 }, | |
1331 { X86::VFMSUBPDr231rY, X86::VFMSUBPDr231mY, TB_ALIGN_32 }, | |
1332 { X86::VFMSUBPSr132rY, X86::VFMSUBPSr132mY, TB_ALIGN_32 }, | |
1333 { X86::VFMSUBPDr132rY, X86::VFMSUBPDr132mY, TB_ALIGN_32 }, | |
1334 { X86::VFMSUBPSr213rY, X86::VFMSUBPSr213mY, TB_ALIGN_32 }, | |
1335 { X86::VFMSUBPDr213rY, X86::VFMSUBPDr213mY, TB_ALIGN_32 }, | |
1336 | |
1337 { X86::VFNMSUBSSr231r, X86::VFNMSUBSSr231m, 0 }, | |
1338 { X86::VFNMSUBSDr231r, X86::VFNMSUBSDr231m, 0 }, | |
1339 { X86::VFNMSUBSSr132r, X86::VFNMSUBSSr132m, 0 }, | |
1340 { X86::VFNMSUBSDr132r, X86::VFNMSUBSDr132m, 0 }, | |
1341 { X86::VFNMSUBSSr213r, X86::VFNMSUBSSr213m, 0 }, | |
1342 { X86::VFNMSUBSDr213r, X86::VFNMSUBSDr213m, 0 }, | |
1343 { X86::VFNMSUBSSr213r_Int, X86::VFNMSUBSSr213m_Int, 0 }, | |
1344 { X86::VFNMSUBSDr213r_Int, X86::VFNMSUBSDr213m_Int, 0 }, | |
1345 | |
1346 { X86::VFNMSUBPSr231r, X86::VFNMSUBPSr231m, TB_ALIGN_16 }, | |
1347 { X86::VFNMSUBPDr231r, X86::VFNMSUBPDr231m, TB_ALIGN_16 }, | |
1348 { X86::VFNMSUBPSr132r, X86::VFNMSUBPSr132m, TB_ALIGN_16 }, | |
1349 { X86::VFNMSUBPDr132r, X86::VFNMSUBPDr132m, TB_ALIGN_16 }, | |
1350 { X86::VFNMSUBPSr213r, X86::VFNMSUBPSr213m, TB_ALIGN_16 }, | |
1351 { X86::VFNMSUBPDr213r, X86::VFNMSUBPDr213m, TB_ALIGN_16 }, | |
1352 { X86::VFNMSUBPSr231rY, X86::VFNMSUBPSr231mY, TB_ALIGN_32 }, | |
1353 { X86::VFNMSUBPDr231rY, X86::VFNMSUBPDr231mY, TB_ALIGN_32 }, | |
1354 { X86::VFNMSUBPSr132rY, X86::VFNMSUBPSr132mY, TB_ALIGN_32 }, | |
1355 { X86::VFNMSUBPDr132rY, X86::VFNMSUBPDr132mY, TB_ALIGN_32 }, | |
1356 { X86::VFNMSUBPSr213rY, X86::VFNMSUBPSr213mY, TB_ALIGN_32 }, | |
1357 { X86::VFNMSUBPDr213rY, X86::VFNMSUBPDr213mY, TB_ALIGN_32 }, | |
1358 | |
1359 { X86::VFMADDSUBPSr231r, X86::VFMADDSUBPSr231m, TB_ALIGN_16 }, | |
1360 { X86::VFMADDSUBPDr231r, X86::VFMADDSUBPDr231m, TB_ALIGN_16 }, | |
1361 { X86::VFMADDSUBPSr132r, X86::VFMADDSUBPSr132m, TB_ALIGN_16 }, | |
1362 { X86::VFMADDSUBPDr132r, X86::VFMADDSUBPDr132m, TB_ALIGN_16 }, | |
1363 { X86::VFMADDSUBPSr213r, X86::VFMADDSUBPSr213m, TB_ALIGN_16 }, | |
1364 { X86::VFMADDSUBPDr213r, X86::VFMADDSUBPDr213m, TB_ALIGN_16 }, | |
1365 { X86::VFMADDSUBPSr231rY, X86::VFMADDSUBPSr231mY, TB_ALIGN_32 }, | |
1366 { X86::VFMADDSUBPDr231rY, X86::VFMADDSUBPDr231mY, TB_ALIGN_32 }, | |
1367 { X86::VFMADDSUBPSr132rY, X86::VFMADDSUBPSr132mY, TB_ALIGN_32 }, | |
1368 { X86::VFMADDSUBPDr132rY, X86::VFMADDSUBPDr132mY, TB_ALIGN_32 }, | |
1369 { X86::VFMADDSUBPSr213rY, X86::VFMADDSUBPSr213mY, TB_ALIGN_32 }, | |
1370 { X86::VFMADDSUBPDr213rY, X86::VFMADDSUBPDr213mY, TB_ALIGN_32 }, | |
1371 | |
1372 { X86::VFMSUBADDPSr231r, X86::VFMSUBADDPSr231m, TB_ALIGN_16 }, | |
1373 { X86::VFMSUBADDPDr231r, X86::VFMSUBADDPDr231m, TB_ALIGN_16 }, | |
1374 { X86::VFMSUBADDPSr132r, X86::VFMSUBADDPSr132m, TB_ALIGN_16 }, | |
1375 { X86::VFMSUBADDPDr132r, X86::VFMSUBADDPDr132m, TB_ALIGN_16 }, | |
1376 { X86::VFMSUBADDPSr213r, X86::VFMSUBADDPSr213m, TB_ALIGN_16 }, | |
1377 { X86::VFMSUBADDPDr213r, X86::VFMSUBADDPDr213m, TB_ALIGN_16 }, | |
1378 { X86::VFMSUBADDPSr231rY, X86::VFMSUBADDPSr231mY, TB_ALIGN_32 }, | |
1379 { X86::VFMSUBADDPDr231rY, X86::VFMSUBADDPDr231mY, TB_ALIGN_32 }, | |
1380 { X86::VFMSUBADDPSr132rY, X86::VFMSUBADDPSr132mY, TB_ALIGN_32 }, | |
1381 { X86::VFMSUBADDPDr132rY, X86::VFMSUBADDPDr132mY, TB_ALIGN_32 }, | |
1382 { X86::VFMSUBADDPSr213rY, X86::VFMSUBADDPSr213mY, TB_ALIGN_32 }, | |
1383 { X86::VFMSUBADDPDr213rY, X86::VFMSUBADDPDr213mY, TB_ALIGN_32 }, | |
1384 | |
1385 // FMA4 foldable patterns | |
1386 { X86::VFMADDSS4rr, X86::VFMADDSS4rm, 0 }, | |
1387 { X86::VFMADDSD4rr, X86::VFMADDSD4rm, 0 }, | |
1388 { X86::VFMADDPS4rr, X86::VFMADDPS4rm, TB_ALIGN_16 }, | |
1389 { X86::VFMADDPD4rr, X86::VFMADDPD4rm, TB_ALIGN_16 }, | |
1390 { X86::VFMADDPS4rrY, X86::VFMADDPS4rmY, TB_ALIGN_32 }, | |
1391 { X86::VFMADDPD4rrY, X86::VFMADDPD4rmY, TB_ALIGN_32 }, | |
1392 { X86::VFNMADDSS4rr, X86::VFNMADDSS4rm, 0 }, | |
1393 { X86::VFNMADDSD4rr, X86::VFNMADDSD4rm, 0 }, | |
1394 { X86::VFNMADDPS4rr, X86::VFNMADDPS4rm, TB_ALIGN_16 }, | |
1395 { X86::VFNMADDPD4rr, X86::VFNMADDPD4rm, TB_ALIGN_16 }, | |
1396 { X86::VFNMADDPS4rrY, X86::VFNMADDPS4rmY, TB_ALIGN_32 }, | |
1397 { X86::VFNMADDPD4rrY, X86::VFNMADDPD4rmY, TB_ALIGN_32 }, | |
1398 { X86::VFMSUBSS4rr, X86::VFMSUBSS4rm, 0 }, | |
1399 { X86::VFMSUBSD4rr, X86::VFMSUBSD4rm, 0 }, | |
1400 { X86::VFMSUBPS4rr, X86::VFMSUBPS4rm, TB_ALIGN_16 }, | |
1401 { X86::VFMSUBPD4rr, X86::VFMSUBPD4rm, TB_ALIGN_16 }, | |
1402 { X86::VFMSUBPS4rrY, X86::VFMSUBPS4rmY, TB_ALIGN_32 }, | |
1403 { X86::VFMSUBPD4rrY, X86::VFMSUBPD4rmY, TB_ALIGN_32 }, | |
1404 { X86::VFNMSUBSS4rr, X86::VFNMSUBSS4rm, 0 }, | |
1405 { X86::VFNMSUBSD4rr, X86::VFNMSUBSD4rm, 0 }, | |
1406 { X86::VFNMSUBPS4rr, X86::VFNMSUBPS4rm, TB_ALIGN_16 }, | |
1407 { X86::VFNMSUBPD4rr, X86::VFNMSUBPD4rm, TB_ALIGN_16 }, | |
1408 { X86::VFNMSUBPS4rrY, X86::VFNMSUBPS4rmY, TB_ALIGN_32 }, | |
1409 { X86::VFNMSUBPD4rrY, X86::VFNMSUBPD4rmY, TB_ALIGN_32 }, | |
1410 { X86::VFMADDSUBPS4rr, X86::VFMADDSUBPS4rm, TB_ALIGN_16 }, | |
1411 { X86::VFMADDSUBPD4rr, X86::VFMADDSUBPD4rm, TB_ALIGN_16 }, | |
1412 { X86::VFMADDSUBPS4rrY, X86::VFMADDSUBPS4rmY, TB_ALIGN_32 }, | |
1413 { X86::VFMADDSUBPD4rrY, X86::VFMADDSUBPD4rmY, TB_ALIGN_32 }, | |
1414 { X86::VFMSUBADDPS4rr, X86::VFMSUBADDPS4rm, TB_ALIGN_16 }, | |
1415 { X86::VFMSUBADDPD4rr, X86::VFMSUBADDPD4rm, TB_ALIGN_16 }, | |
1416 { X86::VFMSUBADDPS4rrY, X86::VFMSUBADDPS4rmY, TB_ALIGN_32 }, | |
1417 { X86::VFMSUBADDPD4rrY, X86::VFMSUBADDPD4rmY, TB_ALIGN_32 }, | |
1418 // AVX-512 VPERMI instructions with 3 source operands. | |
1419 { X86::VPERMI2Drr, X86::VPERMI2Drm, 0 }, | |
1420 { X86::VPERMI2Qrr, X86::VPERMI2Qrm, 0 }, | |
1421 { X86::VPERMI2PSrr, X86::VPERMI2PSrm, 0 }, | |
1422 { X86::VPERMI2PDrr, X86::VPERMI2PDrm, 0 }, | |
1423 }; | |
1424 | |
1425 for (unsigned i = 0, e = array_lengthof(OpTbl3); i != e; ++i) { | |
1426 unsigned RegOp = OpTbl3[i].RegOp; | |
1427 unsigned MemOp = OpTbl3[i].MemOp; | |
1428 unsigned Flags = OpTbl3[i].Flags; | |
1429 AddTableEntry(RegOp2MemOpTable3, MemOp2RegOpTable, | |
1430 RegOp, MemOp, | |
1431 // Index 3, folded load | |
1432 Flags | TB_INDEX_3 | TB_FOLDED_LOAD); | |
1433 } | |
1434 | |
1435 } | |
1436 | |
1437 void | |
1438 X86InstrInfo::AddTableEntry(RegOp2MemOpTableType &R2MTable, | |
1439 MemOp2RegOpTableType &M2RTable, | |
1440 unsigned RegOp, unsigned MemOp, unsigned Flags) { | |
1441 if ((Flags & TB_NO_FORWARD) == 0) { | |
1442 assert(!R2MTable.count(RegOp) && "Duplicate entry!"); | |
1443 R2MTable[RegOp] = std::make_pair(MemOp, Flags); | |
1444 } | |
1445 if ((Flags & TB_NO_REVERSE) == 0) { | |
1446 assert(!M2RTable.count(MemOp) && | |
1447 "Duplicated entries in unfolding maps?"); | |
1448 M2RTable[MemOp] = std::make_pair(RegOp, Flags); | |
1449 } | |
1450 } | |
1451 | |
1452 bool | |
1453 X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI, | |
1454 unsigned &SrcReg, unsigned &DstReg, | |
1455 unsigned &SubIdx) const { | |
1456 switch (MI.getOpcode()) { | |
1457 default: break; | |
1458 case X86::MOVSX16rr8: | |
1459 case X86::MOVZX16rr8: | |
1460 case X86::MOVSX32rr8: | |
1461 case X86::MOVZX32rr8: | |
1462 case X86::MOVSX64rr8: | |
1463 if (!TM.getSubtarget<X86Subtarget>().is64Bit()) | |
1464 // It's not always legal to reference the low 8-bit of the larger | |
1465 // register in 32-bit mode. | |
1466 return false; | |
1467 case X86::MOVSX32rr16: | |
1468 case X86::MOVZX32rr16: | |
1469 case X86::MOVSX64rr16: | |
1470 case X86::MOVSX64rr32: { | |
1471 if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg()) | |
1472 // Be conservative. | |
1473 return false; | |
1474 SrcReg = MI.getOperand(1).getReg(); | |
1475 DstReg = MI.getOperand(0).getReg(); | |
1476 switch (MI.getOpcode()) { | |
1477 default: llvm_unreachable("Unreachable!"); | |
1478 case X86::MOVSX16rr8: | |
1479 case X86::MOVZX16rr8: | |
1480 case X86::MOVSX32rr8: | |
1481 case X86::MOVZX32rr8: | |
1482 case X86::MOVSX64rr8: | |
1483 SubIdx = X86::sub_8bit; | |
1484 break; | |
1485 case X86::MOVSX32rr16: | |
1486 case X86::MOVZX32rr16: | |
1487 case X86::MOVSX64rr16: | |
1488 SubIdx = X86::sub_16bit; | |
1489 break; | |
1490 case X86::MOVSX64rr32: | |
1491 SubIdx = X86::sub_32bit; | |
1492 break; | |
1493 } | |
1494 return true; | |
1495 } | |
1496 } | |
1497 return false; | |
1498 } | |
1499 | |
1500 /// isFrameOperand - Return true and the FrameIndex if the specified | |
1501 /// operand and follow operands form a reference to the stack frame. | |
1502 bool X86InstrInfo::isFrameOperand(const MachineInstr *MI, unsigned int Op, | |
1503 int &FrameIndex) const { | |
1504 if (MI->getOperand(Op).isFI() && MI->getOperand(Op+1).isImm() && | |
1505 MI->getOperand(Op+2).isReg() && MI->getOperand(Op+3).isImm() && | |
1506 MI->getOperand(Op+1).getImm() == 1 && | |
1507 MI->getOperand(Op+2).getReg() == 0 && | |
1508 MI->getOperand(Op+3).getImm() == 0) { | |
1509 FrameIndex = MI->getOperand(Op).getIndex(); | |
1510 return true; | |
1511 } | |
1512 return false; | |
1513 } | |
1514 | |
1515 static bool isFrameLoadOpcode(int Opcode) { | |
1516 switch (Opcode) { | |
1517 default: | |
1518 return false; | |
1519 case X86::MOV8rm: | |
1520 case X86::MOV16rm: | |
1521 case X86::MOV32rm: | |
1522 case X86::MOV64rm: | |
1523 case X86::LD_Fp64m: | |
1524 case X86::MOVSSrm: | |
1525 case X86::MOVSDrm: | |
1526 case X86::MOVAPSrm: | |
1527 case X86::MOVAPDrm: | |
1528 case X86::MOVDQArm: | |
1529 case X86::VMOVSSrm: | |
1530 case X86::VMOVSDrm: | |
1531 case X86::VMOVAPSrm: | |
1532 case X86::VMOVAPDrm: | |
1533 case X86::VMOVDQArm: | |
1534 case X86::VMOVAPSYrm: | |
1535 case X86::VMOVAPDYrm: | |
1536 case X86::VMOVDQAYrm: | |
1537 case X86::MMX_MOVD64rm: | |
1538 case X86::MMX_MOVQ64rm: | |
1539 case X86::VMOVDQA32rm: | |
1540 case X86::VMOVDQA64rm: | |
1541 return true; | |
1542 } | |
1543 } | |
1544 | |
1545 static bool isFrameStoreOpcode(int Opcode) { | |
1546 switch (Opcode) { | |
1547 default: break; | |
1548 case X86::MOV8mr: | |
1549 case X86::MOV16mr: | |
1550 case X86::MOV32mr: | |
1551 case X86::MOV64mr: | |
1552 case X86::ST_FpP64m: | |
1553 case X86::MOVSSmr: | |
1554 case X86::MOVSDmr: | |
1555 case X86::MOVAPSmr: | |
1556 case X86::MOVAPDmr: | |
1557 case X86::MOVDQAmr: | |
1558 case X86::VMOVSSmr: | |
1559 case X86::VMOVSDmr: | |
1560 case X86::VMOVAPSmr: | |
1561 case X86::VMOVAPDmr: | |
1562 case X86::VMOVDQAmr: | |
1563 case X86::VMOVAPSYmr: | |
1564 case X86::VMOVAPDYmr: | |
1565 case X86::VMOVDQAYmr: | |
1566 case X86::MMX_MOVD64mr: | |
1567 case X86::MMX_MOVQ64mr: | |
1568 case X86::MMX_MOVNTQmr: | |
1569 return true; | |
1570 } | |
1571 return false; | |
1572 } | |
1573 | |
1574 unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI, | |
1575 int &FrameIndex) const { | |
1576 if (isFrameLoadOpcode(MI->getOpcode())) | |
1577 if (MI->getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex)) | |
1578 return MI->getOperand(0).getReg(); | |
1579 return 0; | |
1580 } | |
1581 | |
1582 unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI, | |
1583 int &FrameIndex) const { | |
1584 if (isFrameLoadOpcode(MI->getOpcode())) { | |
1585 unsigned Reg; | |
1586 if ((Reg = isLoadFromStackSlot(MI, FrameIndex))) | |
1587 return Reg; | |
1588 // Check for post-frame index elimination operations | |
1589 const MachineMemOperand *Dummy; | |
1590 return hasLoadFromStackSlot(MI, Dummy, FrameIndex); | |
1591 } | |
1592 return 0; | |
1593 } | |
1594 | |
1595 unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI, | |
1596 int &FrameIndex) const { | |
1597 if (isFrameStoreOpcode(MI->getOpcode())) | |
1598 if (MI->getOperand(X86::AddrNumOperands).getSubReg() == 0 && | |
1599 isFrameOperand(MI, 0, FrameIndex)) | |
1600 return MI->getOperand(X86::AddrNumOperands).getReg(); | |
1601 return 0; | |
1602 } | |
1603 | |
1604 unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI, | |
1605 int &FrameIndex) const { | |
1606 if (isFrameStoreOpcode(MI->getOpcode())) { | |
1607 unsigned Reg; | |
1608 if ((Reg = isStoreToStackSlot(MI, FrameIndex))) | |
1609 return Reg; | |
1610 // Check for post-frame index elimination operations | |
1611 const MachineMemOperand *Dummy; | |
1612 return hasStoreToStackSlot(MI, Dummy, FrameIndex); | |
1613 } | |
1614 return 0; | |
1615 } | |
1616 | |
1617 /// regIsPICBase - Return true if register is PIC base (i.e.g defined by | |
1618 /// X86::MOVPC32r. | |
1619 static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) { | |
1620 // Don't waste compile time scanning use-def chains of physregs. | |
1621 if (!TargetRegisterInfo::isVirtualRegister(BaseReg)) | |
1622 return false; | |
1623 bool isPICBase = false; | |
1624 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg), | |
1625 E = MRI.def_end(); I != E; ++I) { | |
1626 MachineInstr *DefMI = I.getOperand().getParent(); | |
1627 if (DefMI->getOpcode() != X86::MOVPC32r) | |
1628 return false; | |
1629 assert(!isPICBase && "More than one PIC base?"); | |
1630 isPICBase = true; | |
1631 } | |
1632 return isPICBase; | |
1633 } | |
1634 | |
1635 bool | |
1636 X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI, | |
1637 AliasAnalysis *AA) const { | |
1638 switch (MI->getOpcode()) { | |
1639 default: break; | |
1640 case X86::MOV8rm: | |
1641 case X86::MOV16rm: | |
1642 case X86::MOV32rm: | |
1643 case X86::MOV64rm: | |
1644 case X86::LD_Fp64m: | |
1645 case X86::MOVSSrm: | |
1646 case X86::MOVSDrm: | |
1647 case X86::MOVAPSrm: | |
1648 case X86::MOVUPSrm: | |
1649 case X86::MOVAPDrm: | |
1650 case X86::MOVDQArm: | |
1651 case X86::MOVDQUrm: | |
1652 case X86::VMOVSSrm: | |
1653 case X86::VMOVSDrm: | |
1654 case X86::VMOVAPSrm: | |
1655 case X86::VMOVUPSrm: | |
1656 case X86::VMOVAPDrm: | |
1657 case X86::VMOVDQArm: | |
1658 case X86::VMOVDQUrm: | |
1659 case X86::VMOVAPSYrm: | |
1660 case X86::VMOVUPSYrm: | |
1661 case X86::VMOVAPDYrm: | |
1662 case X86::VMOVDQAYrm: | |
1663 case X86::VMOVDQUYrm: | |
1664 case X86::MMX_MOVD64rm: | |
1665 case X86::MMX_MOVQ64rm: | |
1666 case X86::FsVMOVAPSrm: | |
1667 case X86::FsVMOVAPDrm: | |
1668 case X86::FsMOVAPSrm: | |
1669 case X86::FsMOVAPDrm: { | |
1670 // Loads from constant pools are trivially rematerializable. | |
1671 if (MI->getOperand(1).isReg() && | |
1672 MI->getOperand(2).isImm() && | |
1673 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 && | |
1674 MI->isInvariantLoad(AA)) { | |
1675 unsigned BaseReg = MI->getOperand(1).getReg(); | |
1676 if (BaseReg == 0 || BaseReg == X86::RIP) | |
1677 return true; | |
1678 // Allow re-materialization of PIC load. | |
1679 if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal()) | |
1680 return false; | |
1681 const MachineFunction &MF = *MI->getParent()->getParent(); | |
1682 const MachineRegisterInfo &MRI = MF.getRegInfo(); | |
1683 return regIsPICBase(BaseReg, MRI); | |
1684 } | |
1685 return false; | |
1686 } | |
1687 | |
1688 case X86::LEA32r: | |
1689 case X86::LEA64r: { | |
1690 if (MI->getOperand(2).isImm() && | |
1691 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 && | |
1692 !MI->getOperand(4).isReg()) { | |
1693 // lea fi#, lea GV, etc. are all rematerializable. | |
1694 if (!MI->getOperand(1).isReg()) | |
1695 return true; | |
1696 unsigned BaseReg = MI->getOperand(1).getReg(); | |
1697 if (BaseReg == 0) | |
1698 return true; | |
1699 // Allow re-materialization of lea PICBase + x. | |
1700 const MachineFunction &MF = *MI->getParent()->getParent(); | |
1701 const MachineRegisterInfo &MRI = MF.getRegInfo(); | |
1702 return regIsPICBase(BaseReg, MRI); | |
1703 } | |
1704 return false; | |
1705 } | |
1706 } | |
1707 | |
1708 // All other instructions marked M_REMATERIALIZABLE are always trivially | |
1709 // rematerializable. | |
1710 return true; | |
1711 } | |
1712 | |
1713 /// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that | |
1714 /// would clobber the EFLAGS condition register. Note the result may be | |
1715 /// conservative. If it cannot definitely determine the safety after visiting | |
1716 /// a few instructions in each direction it assumes it's not safe. | |
1717 static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB, | |
1718 MachineBasicBlock::iterator I) { | |
1719 MachineBasicBlock::iterator E = MBB.end(); | |
1720 | |
1721 // For compile time consideration, if we are not able to determine the | |
1722 // safety after visiting 4 instructions in each direction, we will assume | |
1723 // it's not safe. | |
1724 MachineBasicBlock::iterator Iter = I; | |
1725 for (unsigned i = 0; Iter != E && i < 4; ++i) { | |
1726 bool SeenDef = false; | |
1727 for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) { | |
1728 MachineOperand &MO = Iter->getOperand(j); | |
1729 if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS)) | |
1730 SeenDef = true; | |
1731 if (!MO.isReg()) | |
1732 continue; | |
1733 if (MO.getReg() == X86::EFLAGS) { | |
1734 if (MO.isUse()) | |
1735 return false; | |
1736 SeenDef = true; | |
1737 } | |
1738 } | |
1739 | |
1740 if (SeenDef) | |
1741 // This instruction defines EFLAGS, no need to look any further. | |
1742 return true; | |
1743 ++Iter; | |
1744 // Skip over DBG_VALUE. | |
1745 while (Iter != E && Iter->isDebugValue()) | |
1746 ++Iter; | |
1747 } | |
1748 | |
1749 // It is safe to clobber EFLAGS at the end of a block of no successor has it | |
1750 // live in. | |
1751 if (Iter == E) { | |
1752 for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(), | |
1753 SE = MBB.succ_end(); SI != SE; ++SI) | |
1754 if ((*SI)->isLiveIn(X86::EFLAGS)) | |
1755 return false; | |
1756 return true; | |
1757 } | |
1758 | |
1759 MachineBasicBlock::iterator B = MBB.begin(); | |
1760 Iter = I; | |
1761 for (unsigned i = 0; i < 4; ++i) { | |
1762 // If we make it to the beginning of the block, it's safe to clobber | |
1763 // EFLAGS iff EFLAGS is not live-in. | |
1764 if (Iter == B) | |
1765 return !MBB.isLiveIn(X86::EFLAGS); | |
1766 | |
1767 --Iter; | |
1768 // Skip over DBG_VALUE. | |
1769 while (Iter != B && Iter->isDebugValue()) | |
1770 --Iter; | |
1771 | |
1772 bool SawKill = false; | |
1773 for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) { | |
1774 MachineOperand &MO = Iter->getOperand(j); | |
1775 // A register mask may clobber EFLAGS, but we should still look for a | |
1776 // live EFLAGS def. | |
1777 if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS)) | |
1778 SawKill = true; | |
1779 if (MO.isReg() && MO.getReg() == X86::EFLAGS) { | |
1780 if (MO.isDef()) return MO.isDead(); | |
1781 if (MO.isKill()) SawKill = true; | |
1782 } | |
1783 } | |
1784 | |
1785 if (SawKill) | |
1786 // This instruction kills EFLAGS and doesn't redefine it, so | |
1787 // there's no need to look further. | |
1788 return true; | |
1789 } | |
1790 | |
1791 // Conservative answer. | |
1792 return false; | |
1793 } | |
1794 | |
1795 void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB, | |
1796 MachineBasicBlock::iterator I, | |
1797 unsigned DestReg, unsigned SubIdx, | |
1798 const MachineInstr *Orig, | |
1799 const TargetRegisterInfo &TRI) const { | |
1800 // MOV32r0 is implemented with a xor which clobbers condition code. | |
1801 // Re-materialize it as movri instructions to avoid side effects. | |
1802 unsigned Opc = Orig->getOpcode(); | |
1803 if (Opc == X86::MOV32r0 && !isSafeToClobberEFLAGS(MBB, I)) { | |
1804 DebugLoc DL = Orig->getDebugLoc(); | |
1805 BuildMI(MBB, I, DL, get(X86::MOV32ri)).addOperand(Orig->getOperand(0)) | |
1806 .addImm(0); | |
1807 } else { | |
1808 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig); | |
1809 MBB.insert(I, MI); | |
1810 } | |
1811 | |
1812 MachineInstr *NewMI = prior(I); | |
1813 NewMI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI); | |
1814 } | |
1815 | |
1816 /// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that | |
1817 /// is not marked dead. | |
1818 static bool hasLiveCondCodeDef(MachineInstr *MI) { | |
1819 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | |
1820 MachineOperand &MO = MI->getOperand(i); | |
1821 if (MO.isReg() && MO.isDef() && | |
1822 MO.getReg() == X86::EFLAGS && !MO.isDead()) { | |
1823 return true; | |
1824 } | |
1825 } | |
1826 return false; | |
1827 } | |
1828 | |
1829 /// getTruncatedShiftCount - check whether the shift count for a machine operand | |
1830 /// is non-zero. | |
1831 inline static unsigned getTruncatedShiftCount(MachineInstr *MI, | |
1832 unsigned ShiftAmtOperandIdx) { | |
1833 // The shift count is six bits with the REX.W prefix and five bits without. | |
1834 unsigned ShiftCountMask = (MI->getDesc().TSFlags & X86II::REX_W) ? 63 : 31; | |
1835 unsigned Imm = MI->getOperand(ShiftAmtOperandIdx).getImm(); | |
1836 return Imm & ShiftCountMask; | |
1837 } | |
1838 | |
1839 /// isTruncatedShiftCountForLEA - check whether the given shift count is appropriate | |
1840 /// can be represented by a LEA instruction. | |
1841 inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) { | |
1842 // Left shift instructions can be transformed into load-effective-address | |
1843 // instructions if we can encode them appropriately. | |
1844 // A LEA instruction utilizes a SIB byte to encode it's scale factor. | |
1845 // The SIB.scale field is two bits wide which means that we can encode any | |
1846 // shift amount less than 4. | |
1847 return ShAmt < 4 && ShAmt > 0; | |
1848 } | |
1849 | |
1850 bool X86InstrInfo::classifyLEAReg(MachineInstr *MI, const MachineOperand &Src, | |
1851 unsigned Opc, bool AllowSP, | |
1852 unsigned &NewSrc, bool &isKill, bool &isUndef, | |
1853 MachineOperand &ImplicitOp) const { | |
1854 MachineFunction &MF = *MI->getParent()->getParent(); | |
1855 const TargetRegisterClass *RC; | |
1856 if (AllowSP) { | |
1857 RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass; | |
1858 } else { | |
1859 RC = Opc != X86::LEA32r ? | |
1860 &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass; | |
1861 } | |
1862 unsigned SrcReg = Src.getReg(); | |
1863 | |
1864 // For both LEA64 and LEA32 the register already has essentially the right | |
1865 // type (32-bit or 64-bit) we may just need to forbid SP. | |
1866 if (Opc != X86::LEA64_32r) { | |
1867 NewSrc = SrcReg; | |
1868 isKill = Src.isKill(); | |
1869 isUndef = Src.isUndef(); | |
1870 | |
1871 if (TargetRegisterInfo::isVirtualRegister(NewSrc) && | |
1872 !MF.getRegInfo().constrainRegClass(NewSrc, RC)) | |
1873 return false; | |
1874 | |
1875 return true; | |
1876 } | |
1877 | |
1878 // This is for an LEA64_32r and incoming registers are 32-bit. One way or | |
1879 // another we need to add 64-bit registers to the final MI. | |
1880 if (TargetRegisterInfo::isPhysicalRegister(SrcReg)) { | |
1881 ImplicitOp = Src; | |
1882 ImplicitOp.setImplicit(); | |
1883 | |
1884 NewSrc = getX86SubSuperRegister(Src.getReg(), MVT::i64); | |
1885 MachineBasicBlock::LivenessQueryResult LQR = | |
1886 MI->getParent()->computeRegisterLiveness(&getRegisterInfo(), NewSrc, MI); | |
1887 | |
1888 switch (LQR) { | |
1889 case MachineBasicBlock::LQR_Unknown: | |
1890 // We can't give sane liveness flags to the instruction, abandon LEA | |
1891 // formation. | |
1892 return false; | |
1893 case MachineBasicBlock::LQR_Live: | |
1894 isKill = MI->killsRegister(SrcReg); | |
1895 isUndef = false; | |
1896 break; | |
1897 default: | |
1898 // The physreg itself is dead, so we have to use it as an <undef>. | |
1899 isKill = false; | |
1900 isUndef = true; | |
1901 break; | |
1902 } | |
1903 } else { | |
1904 // Virtual register of the wrong class, we have to create a temporary 64-bit | |
1905 // vreg to feed into the LEA. | |
1906 NewSrc = MF.getRegInfo().createVirtualRegister(RC); | |
1907 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), | |
1908 get(TargetOpcode::COPY)) | |
1909 .addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit) | |
1910 .addOperand(Src); | |
1911 | |
1912 // Which is obviously going to be dead after we're done with it. | |
1913 isKill = true; | |
1914 isUndef = false; | |
1915 } | |
1916 | |
1917 // We've set all the parameters without issue. | |
1918 return true; | |
1919 } | |
1920 | |
1921 /// convertToThreeAddressWithLEA - Helper for convertToThreeAddress when | |
1922 /// 16-bit LEA is disabled, use 32-bit LEA to form 3-address code by promoting | |
1923 /// to a 32-bit superregister and then truncating back down to a 16-bit | |
1924 /// subregister. | |
1925 MachineInstr * | |
1926 X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc, | |
1927 MachineFunction::iterator &MFI, | |
1928 MachineBasicBlock::iterator &MBBI, | |
1929 LiveVariables *LV) const { | |
1930 MachineInstr *MI = MBBI; | |
1931 unsigned Dest = MI->getOperand(0).getReg(); | |
1932 unsigned Src = MI->getOperand(1).getReg(); | |
1933 bool isDead = MI->getOperand(0).isDead(); | |
1934 bool isKill = MI->getOperand(1).isKill(); | |
1935 | |
1936 MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo(); | |
1937 unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass); | |
1938 unsigned Opc, leaInReg; | |
1939 if (TM.getSubtarget<X86Subtarget>().is64Bit()) { | |
1940 Opc = X86::LEA64_32r; | |
1941 leaInReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass); | |
1942 } else { | |
1943 Opc = X86::LEA32r; | |
1944 leaInReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass); | |
1945 } | |
1946 | |
1947 // Build and insert into an implicit UNDEF value. This is OK because | |
1948 // well be shifting and then extracting the lower 16-bits. | |
1949 // This has the potential to cause partial register stall. e.g. | |
1950 // movw (%rbp,%rcx,2), %dx | |
1951 // leal -65(%rdx), %esi | |
1952 // But testing has shown this *does* help performance in 64-bit mode (at | |
1953 // least on modern x86 machines). | |
1954 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg); | |
1955 MachineInstr *InsMI = | |
1956 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY)) | |
1957 .addReg(leaInReg, RegState::Define, X86::sub_16bit) | |
1958 .addReg(Src, getKillRegState(isKill)); | |
1959 | |
1960 MachineInstrBuilder MIB = BuildMI(*MFI, MBBI, MI->getDebugLoc(), | |
1961 get(Opc), leaOutReg); | |
1962 switch (MIOpc) { | |
1963 default: llvm_unreachable("Unreachable!"); | |
1964 case X86::SHL16ri: { | |
1965 unsigned ShAmt = MI->getOperand(2).getImm(); | |
1966 MIB.addReg(0).addImm(1 << ShAmt) | |
1967 .addReg(leaInReg, RegState::Kill).addImm(0).addReg(0); | |
1968 break; | |
1969 } | |
1970 case X86::INC16r: | |
1971 case X86::INC64_16r: | |
1972 addRegOffset(MIB, leaInReg, true, 1); | |
1973 break; | |
1974 case X86::DEC16r: | |
1975 case X86::DEC64_16r: | |
1976 addRegOffset(MIB, leaInReg, true, -1); | |
1977 break; | |
1978 case X86::ADD16ri: | |
1979 case X86::ADD16ri8: | |
1980 case X86::ADD16ri_DB: | |
1981 case X86::ADD16ri8_DB: | |
1982 addRegOffset(MIB, leaInReg, true, MI->getOperand(2).getImm()); | |
1983 break; | |
1984 case X86::ADD16rr: | |
1985 case X86::ADD16rr_DB: { | |
1986 unsigned Src2 = MI->getOperand(2).getReg(); | |
1987 bool isKill2 = MI->getOperand(2).isKill(); | |
1988 unsigned leaInReg2 = 0; | |
1989 MachineInstr *InsMI2 = 0; | |
1990 if (Src == Src2) { | |
1991 // ADD16rr %reg1028<kill>, %reg1028 | |
1992 // just a single insert_subreg. | |
1993 addRegReg(MIB, leaInReg, true, leaInReg, false); | |
1994 } else { | |
1995 if (TM.getSubtarget<X86Subtarget>().is64Bit()) | |
1996 leaInReg2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass); | |
1997 else | |
1998 leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass); | |
1999 // Build and insert into an implicit UNDEF value. This is OK because | |
2000 // well be shifting and then extracting the lower 16-bits. | |
2001 BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(X86::IMPLICIT_DEF),leaInReg2); | |
2002 InsMI2 = | |
2003 BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(TargetOpcode::COPY)) | |
2004 .addReg(leaInReg2, RegState::Define, X86::sub_16bit) | |
2005 .addReg(Src2, getKillRegState(isKill2)); | |
2006 addRegReg(MIB, leaInReg, true, leaInReg2, true); | |
2007 } | |
2008 if (LV && isKill2 && InsMI2) | |
2009 LV->replaceKillInstruction(Src2, MI, InsMI2); | |
2010 break; | |
2011 } | |
2012 } | |
2013 | |
2014 MachineInstr *NewMI = MIB; | |
2015 MachineInstr *ExtMI = | |
2016 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY)) | |
2017 .addReg(Dest, RegState::Define | getDeadRegState(isDead)) | |
2018 .addReg(leaOutReg, RegState::Kill, X86::sub_16bit); | |
2019 | |
2020 if (LV) { | |
2021 // Update live variables | |
2022 LV->getVarInfo(leaInReg).Kills.push_back(NewMI); | |
2023 LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI); | |
2024 if (isKill) | |
2025 LV->replaceKillInstruction(Src, MI, InsMI); | |
2026 if (isDead) | |
2027 LV->replaceKillInstruction(Dest, MI, ExtMI); | |
2028 } | |
2029 | |
2030 return ExtMI; | |
2031 } | |
2032 | |
2033 /// convertToThreeAddress - This method must be implemented by targets that | |
2034 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target | |
2035 /// may be able to convert a two-address instruction into a true | |
2036 /// three-address instruction on demand. This allows the X86 target (for | |
2037 /// example) to convert ADD and SHL instructions into LEA instructions if they | |
2038 /// would require register copies due to two-addressness. | |
2039 /// | |
2040 /// This method returns a null pointer if the transformation cannot be | |
2041 /// performed, otherwise it returns the new instruction. | |
2042 /// | |
2043 MachineInstr * | |
2044 X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, | |
2045 MachineBasicBlock::iterator &MBBI, | |
2046 LiveVariables *LV) const { | |
2047 MachineInstr *MI = MBBI; | |
2048 | |
2049 // The following opcodes also sets the condition code register(s). Only | |
2050 // convert them to equivalent lea if the condition code register def's | |
2051 // are dead! | |
2052 if (hasLiveCondCodeDef(MI)) | |
2053 return 0; | |
2054 | |
2055 MachineFunction &MF = *MI->getParent()->getParent(); | |
2056 // All instructions input are two-addr instructions. Get the known operands. | |
2057 const MachineOperand &Dest = MI->getOperand(0); | |
2058 const MachineOperand &Src = MI->getOperand(1); | |
2059 | |
2060 MachineInstr *NewMI = NULL; | |
2061 // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When | |
2062 // we have better subtarget support, enable the 16-bit LEA generation here. | |
2063 // 16-bit LEA is also slow on Core2. | |
2064 bool DisableLEA16 = true; | |
2065 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit(); | |
2066 | |
2067 unsigned MIOpc = MI->getOpcode(); | |
2068 switch (MIOpc) { | |
2069 case X86::SHUFPSrri: { | |
2070 assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!"); | |
2071 if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0; | |
2072 | |
2073 unsigned B = MI->getOperand(1).getReg(); | |
2074 unsigned C = MI->getOperand(2).getReg(); | |
2075 if (B != C) return 0; | |
2076 unsigned M = MI->getOperand(3).getImm(); | |
2077 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri)) | |
2078 .addOperand(Dest).addOperand(Src).addImm(M); | |
2079 break; | |
2080 } | |
2081 case X86::SHUFPDrri: { | |
2082 assert(MI->getNumOperands() == 4 && "Unknown shufpd instruction!"); | |
2083 if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0; | |
2084 | |
2085 unsigned B = MI->getOperand(1).getReg(); | |
2086 unsigned C = MI->getOperand(2).getReg(); | |
2087 if (B != C) return 0; | |
2088 unsigned M = MI->getOperand(3).getImm(); | |
2089 | |
2090 // Convert to PSHUFD mask. | |
2091 M = ((M & 1) << 1) | ((M & 1) << 3) | ((M & 2) << 4) | ((M & 2) << 6)| 0x44; | |
2092 | |
2093 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri)) | |
2094 .addOperand(Dest).addOperand(Src).addImm(M); | |
2095 break; | |
2096 } | |
2097 case X86::SHL64ri: { | |
2098 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!"); | |
2099 unsigned ShAmt = getTruncatedShiftCount(MI, 2); | |
2100 if (!isTruncatedShiftCountForLEA(ShAmt)) return 0; | |
2101 | |
2102 // LEA can't handle RSP. | |
2103 if (TargetRegisterInfo::isVirtualRegister(Src.getReg()) && | |
2104 !MF.getRegInfo().constrainRegClass(Src.getReg(), | |
2105 &X86::GR64_NOSPRegClass)) | |
2106 return 0; | |
2107 | |
2108 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r)) | |
2109 .addOperand(Dest) | |
2110 .addReg(0).addImm(1 << ShAmt).addOperand(Src).addImm(0).addReg(0); | |
2111 break; | |
2112 } | |
2113 case X86::SHL32ri: { | |
2114 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!"); | |
2115 unsigned ShAmt = getTruncatedShiftCount(MI, 2); | |
2116 if (!isTruncatedShiftCountForLEA(ShAmt)) return 0; | |
2117 | |
2118 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r; | |
2119 | |
2120 // LEA can't handle ESP. | |
2121 bool isKill, isUndef; | |
2122 unsigned SrcReg; | |
2123 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); | |
2124 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false, | |
2125 SrcReg, isKill, isUndef, ImplicitOp)) | |
2126 return 0; | |
2127 | |
2128 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc)) | |
2129 .addOperand(Dest) | |
2130 .addReg(0).addImm(1 << ShAmt) | |
2131 .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef)) | |
2132 .addImm(0).addReg(0); | |
2133 if (ImplicitOp.getReg() != 0) | |
2134 MIB.addOperand(ImplicitOp); | |
2135 NewMI = MIB; | |
2136 | |
2137 break; | |
2138 } | |
2139 case X86::SHL16ri: { | |
2140 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!"); | |
2141 unsigned ShAmt = getTruncatedShiftCount(MI, 2); | |
2142 if (!isTruncatedShiftCountForLEA(ShAmt)) return 0; | |
2143 | |
2144 if (DisableLEA16) | |
2145 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0; | |
2146 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) | |
2147 .addOperand(Dest) | |
2148 .addReg(0).addImm(1 << ShAmt).addOperand(Src).addImm(0).addReg(0); | |
2149 break; | |
2150 } | |
2151 default: { | |
2152 | |
2153 switch (MIOpc) { | |
2154 default: return 0; | |
2155 case X86::INC64r: | |
2156 case X86::INC32r: | |
2157 case X86::INC64_32r: { | |
2158 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!"); | |
2159 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r | |
2160 : (is64Bit ? X86::LEA64_32r : X86::LEA32r); | |
2161 bool isKill, isUndef; | |
2162 unsigned SrcReg; | |
2163 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); | |
2164 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false, | |
2165 SrcReg, isKill, isUndef, ImplicitOp)) | |
2166 return 0; | |
2167 | |
2168 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc)) | |
2169 .addOperand(Dest) | |
2170 .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef)); | |
2171 if (ImplicitOp.getReg() != 0) | |
2172 MIB.addOperand(ImplicitOp); | |
2173 | |
2174 NewMI = addOffset(MIB, 1); | |
2175 break; | |
2176 } | |
2177 case X86::INC16r: | |
2178 case X86::INC64_16r: | |
2179 if (DisableLEA16) | |
2180 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0; | |
2181 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!"); | |
2182 NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) | |
2183 .addOperand(Dest).addOperand(Src), 1); | |
2184 break; | |
2185 case X86::DEC64r: | |
2186 case X86::DEC32r: | |
2187 case X86::DEC64_32r: { | |
2188 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!"); | |
2189 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r | |
2190 : (is64Bit ? X86::LEA64_32r : X86::LEA32r); | |
2191 | |
2192 bool isKill, isUndef; | |
2193 unsigned SrcReg; | |
2194 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); | |
2195 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false, | |
2196 SrcReg, isKill, isUndef, ImplicitOp)) | |
2197 return 0; | |
2198 | |
2199 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc)) | |
2200 .addOperand(Dest) | |
2201 .addReg(SrcReg, getUndefRegState(isUndef) | getKillRegState(isKill)); | |
2202 if (ImplicitOp.getReg() != 0) | |
2203 MIB.addOperand(ImplicitOp); | |
2204 | |
2205 NewMI = addOffset(MIB, -1); | |
2206 | |
2207 break; | |
2208 } | |
2209 case X86::DEC16r: | |
2210 case X86::DEC64_16r: | |
2211 if (DisableLEA16) | |
2212 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0; | |
2213 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!"); | |
2214 NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) | |
2215 .addOperand(Dest).addOperand(Src), -1); | |
2216 break; | |
2217 case X86::ADD64rr: | |
2218 case X86::ADD64rr_DB: | |
2219 case X86::ADD32rr: | |
2220 case X86::ADD32rr_DB: { | |
2221 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); | |
2222 unsigned Opc; | |
2223 if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB) | |
2224 Opc = X86::LEA64r; | |
2225 else | |
2226 Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r; | |
2227 | |
2228 bool isKill, isUndef; | |
2229 unsigned SrcReg; | |
2230 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); | |
2231 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true, | |
2232 SrcReg, isKill, isUndef, ImplicitOp)) | |
2233 return 0; | |
2234 | |
2235 const MachineOperand &Src2 = MI->getOperand(2); | |
2236 bool isKill2, isUndef2; | |
2237 unsigned SrcReg2; | |
2238 MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false); | |
2239 if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/ false, | |
2240 SrcReg2, isKill2, isUndef2, ImplicitOp2)) | |
2241 return 0; | |
2242 | |
2243 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc)) | |
2244 .addOperand(Dest); | |
2245 if (ImplicitOp.getReg() != 0) | |
2246 MIB.addOperand(ImplicitOp); | |
2247 if (ImplicitOp2.getReg() != 0) | |
2248 MIB.addOperand(ImplicitOp2); | |
2249 | |
2250 NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2); | |
2251 | |
2252 // Preserve undefness of the operands. | |
2253 NewMI->getOperand(1).setIsUndef(isUndef); | |
2254 NewMI->getOperand(3).setIsUndef(isUndef2); | |
2255 | |
2256 if (LV && Src2.isKill()) | |
2257 LV->replaceKillInstruction(SrcReg2, MI, NewMI); | |
2258 break; | |
2259 } | |
2260 case X86::ADD16rr: | |
2261 case X86::ADD16rr_DB: { | |
2262 if (DisableLEA16) | |
2263 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0; | |
2264 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); | |
2265 unsigned Src2 = MI->getOperand(2).getReg(); | |
2266 bool isKill2 = MI->getOperand(2).isKill(); | |
2267 NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) | |
2268 .addOperand(Dest), | |
2269 Src.getReg(), Src.isKill(), Src2, isKill2); | |
2270 | |
2271 // Preserve undefness of the operands. | |
2272 bool isUndef = MI->getOperand(1).isUndef(); | |
2273 bool isUndef2 = MI->getOperand(2).isUndef(); | |
2274 NewMI->getOperand(1).setIsUndef(isUndef); | |
2275 NewMI->getOperand(3).setIsUndef(isUndef2); | |
2276 | |
2277 if (LV && isKill2) | |
2278 LV->replaceKillInstruction(Src2, MI, NewMI); | |
2279 break; | |
2280 } | |
2281 case X86::ADD64ri32: | |
2282 case X86::ADD64ri8: | |
2283 case X86::ADD64ri32_DB: | |
2284 case X86::ADD64ri8_DB: | |
2285 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); | |
2286 NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r)) | |
2287 .addOperand(Dest).addOperand(Src), | |
2288 MI->getOperand(2).getImm()); | |
2289 break; | |
2290 case X86::ADD32ri: | |
2291 case X86::ADD32ri8: | |
2292 case X86::ADD32ri_DB: | |
2293 case X86::ADD32ri8_DB: { | |
2294 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); | |
2295 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r; | |
2296 | |
2297 bool isKill, isUndef; | |
2298 unsigned SrcReg; | |
2299 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); | |
2300 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true, | |
2301 SrcReg, isKill, isUndef, ImplicitOp)) | |
2302 return 0; | |
2303 | |
2304 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc)) | |
2305 .addOperand(Dest) | |
2306 .addReg(SrcReg, getUndefRegState(isUndef) | getKillRegState(isKill)); | |
2307 if (ImplicitOp.getReg() != 0) | |
2308 MIB.addOperand(ImplicitOp); | |
2309 | |
2310 NewMI = addOffset(MIB, MI->getOperand(2).getImm()); | |
2311 break; | |
2312 } | |
2313 case X86::ADD16ri: | |
2314 case X86::ADD16ri8: | |
2315 case X86::ADD16ri_DB: | |
2316 case X86::ADD16ri8_DB: | |
2317 if (DisableLEA16) | |
2318 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0; | |
2319 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); | |
2320 NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) | |
2321 .addOperand(Dest).addOperand(Src), | |
2322 MI->getOperand(2).getImm()); | |
2323 break; | |
2324 } | |
2325 } | |
2326 } | |
2327 | |
2328 if (!NewMI) return 0; | |
2329 | |
2330 if (LV) { // Update live variables | |
2331 if (Src.isKill()) | |
2332 LV->replaceKillInstruction(Src.getReg(), MI, NewMI); | |
2333 if (Dest.isDead()) | |
2334 LV->replaceKillInstruction(Dest.getReg(), MI, NewMI); | |
2335 } | |
2336 | |
2337 MFI->insert(MBBI, NewMI); // Insert the new inst | |
2338 return NewMI; | |
2339 } | |
2340 | |
2341 /// commuteInstruction - We have a few instructions that must be hacked on to | |
2342 /// commute them. | |
2343 /// | |
2344 MachineInstr * | |
2345 X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const { | |
2346 switch (MI->getOpcode()) { | |
2347 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I) | |
2348 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I) | |
2349 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I) | |
2350 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I) | |
2351 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I) | |
2352 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I) | |
2353 unsigned Opc; | |
2354 unsigned Size; | |
2355 switch (MI->getOpcode()) { | |
2356 default: llvm_unreachable("Unreachable!"); | |
2357 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break; | |
2358 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break; | |
2359 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break; | |
2360 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break; | |
2361 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break; | |
2362 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break; | |
2363 } | |
2364 unsigned Amt = MI->getOperand(3).getImm(); | |
2365 if (NewMI) { | |
2366 MachineFunction &MF = *MI->getParent()->getParent(); | |
2367 MI = MF.CloneMachineInstr(MI); | |
2368 NewMI = false; | |
2369 } | |
2370 MI->setDesc(get(Opc)); | |
2371 MI->getOperand(3).setImm(Size-Amt); | |
2372 return TargetInstrInfo::commuteInstruction(MI, NewMI); | |
2373 } | |
2374 case X86::CMOVB16rr: case X86::CMOVB32rr: case X86::CMOVB64rr: | |
2375 case X86::CMOVAE16rr: case X86::CMOVAE32rr: case X86::CMOVAE64rr: | |
2376 case X86::CMOVE16rr: case X86::CMOVE32rr: case X86::CMOVE64rr: | |
2377 case X86::CMOVNE16rr: case X86::CMOVNE32rr: case X86::CMOVNE64rr: | |
2378 case X86::CMOVBE16rr: case X86::CMOVBE32rr: case X86::CMOVBE64rr: | |
2379 case X86::CMOVA16rr: case X86::CMOVA32rr: case X86::CMOVA64rr: | |
2380 case X86::CMOVL16rr: case X86::CMOVL32rr: case X86::CMOVL64rr: | |
2381 case X86::CMOVGE16rr: case X86::CMOVGE32rr: case X86::CMOVGE64rr: | |
2382 case X86::CMOVLE16rr: case X86::CMOVLE32rr: case X86::CMOVLE64rr: | |
2383 case X86::CMOVG16rr: case X86::CMOVG32rr: case X86::CMOVG64rr: | |
2384 case X86::CMOVS16rr: case X86::CMOVS32rr: case X86::CMOVS64rr: | |
2385 case X86::CMOVNS16rr: case X86::CMOVNS32rr: case X86::CMOVNS64rr: | |
2386 case X86::CMOVP16rr: case X86::CMOVP32rr: case X86::CMOVP64rr: | |
2387 case X86::CMOVNP16rr: case X86::CMOVNP32rr: case X86::CMOVNP64rr: | |
2388 case X86::CMOVO16rr: case X86::CMOVO32rr: case X86::CMOVO64rr: | |
2389 case X86::CMOVNO16rr: case X86::CMOVNO32rr: case X86::CMOVNO64rr: { | |
2390 unsigned Opc; | |
2391 switch (MI->getOpcode()) { | |
2392 default: llvm_unreachable("Unreachable!"); | |
2393 case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break; | |
2394 case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break; | |
2395 case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break; | |
2396 case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break; | |
2397 case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break; | |
2398 case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break; | |
2399 case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break; | |
2400 case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break; | |
2401 case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break; | |
2402 case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break; | |
2403 case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break; | |
2404 case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break; | |
2405 case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break; | |
2406 case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break; | |
2407 case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break; | |
2408 case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break; | |
2409 case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break; | |
2410 case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break; | |
2411 case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break; | |
2412 case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break; | |
2413 case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break; | |
2414 case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break; | |
2415 case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break; | |
2416 case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break; | |
2417 case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break; | |
2418 case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break; | |
2419 case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break; | |
2420 case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break; | |
2421 case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break; | |
2422 case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break; | |
2423 case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break; | |
2424 case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break; | |
2425 case X86::CMOVS64rr: Opc = X86::CMOVNS64rr; break; | |
2426 case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break; | |
2427 case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break; | |
2428 case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break; | |
2429 case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break; | |
2430 case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break; | |
2431 case X86::CMOVP64rr: Opc = X86::CMOVNP64rr; break; | |
2432 case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break; | |
2433 case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break; | |
2434 case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break; | |
2435 case X86::CMOVO16rr: Opc = X86::CMOVNO16rr; break; | |
2436 case X86::CMOVO32rr: Opc = X86::CMOVNO32rr; break; | |
2437 case X86::CMOVO64rr: Opc = X86::CMOVNO64rr; break; | |
2438 case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break; | |
2439 case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break; | |
2440 case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break; | |
2441 } | |
2442 if (NewMI) { | |
2443 MachineFunction &MF = *MI->getParent()->getParent(); | |
2444 MI = MF.CloneMachineInstr(MI); | |
2445 NewMI = false; | |
2446 } | |
2447 MI->setDesc(get(Opc)); | |
2448 // Fallthrough intended. | |
2449 } | |
2450 default: | |
2451 return TargetInstrInfo::commuteInstruction(MI, NewMI); | |
2452 } | |
2453 } | |
2454 | |
2455 static X86::CondCode getCondFromBranchOpc(unsigned BrOpc) { | |
2456 switch (BrOpc) { | |
2457 default: return X86::COND_INVALID; | |
2458 case X86::JE_4: return X86::COND_E; | |
2459 case X86::JNE_4: return X86::COND_NE; | |
2460 case X86::JL_4: return X86::COND_L; | |
2461 case X86::JLE_4: return X86::COND_LE; | |
2462 case X86::JG_4: return X86::COND_G; | |
2463 case X86::JGE_4: return X86::COND_GE; | |
2464 case X86::JB_4: return X86::COND_B; | |
2465 case X86::JBE_4: return X86::COND_BE; | |
2466 case X86::JA_4: return X86::COND_A; | |
2467 case X86::JAE_4: return X86::COND_AE; | |
2468 case X86::JS_4: return X86::COND_S; | |
2469 case X86::JNS_4: return X86::COND_NS; | |
2470 case X86::JP_4: return X86::COND_P; | |
2471 case X86::JNP_4: return X86::COND_NP; | |
2472 case X86::JO_4: return X86::COND_O; | |
2473 case X86::JNO_4: return X86::COND_NO; | |
2474 } | |
2475 } | |
2476 | |
2477 /// getCondFromSETOpc - return condition code of a SET opcode. | |
2478 static X86::CondCode getCondFromSETOpc(unsigned Opc) { | |
2479 switch (Opc) { | |
2480 default: return X86::COND_INVALID; | |
2481 case X86::SETAr: case X86::SETAm: return X86::COND_A; | |
2482 case X86::SETAEr: case X86::SETAEm: return X86::COND_AE; | |
2483 case X86::SETBr: case X86::SETBm: return X86::COND_B; | |
2484 case X86::SETBEr: case X86::SETBEm: return X86::COND_BE; | |
2485 case X86::SETEr: case X86::SETEm: return X86::COND_E; | |
2486 case X86::SETGr: case X86::SETGm: return X86::COND_G; | |
2487 case X86::SETGEr: case X86::SETGEm: return X86::COND_GE; | |
2488 case X86::SETLr: case X86::SETLm: return X86::COND_L; | |
2489 case X86::SETLEr: case X86::SETLEm: return X86::COND_LE; | |
2490 case X86::SETNEr: case X86::SETNEm: return X86::COND_NE; | |
2491 case X86::SETNOr: case X86::SETNOm: return X86::COND_NO; | |
2492 case X86::SETNPr: case X86::SETNPm: return X86::COND_NP; | |
2493 case X86::SETNSr: case X86::SETNSm: return X86::COND_NS; | |
2494 case X86::SETOr: case X86::SETOm: return X86::COND_O; | |
2495 case X86::SETPr: case X86::SETPm: return X86::COND_P; | |
2496 case X86::SETSr: case X86::SETSm: return X86::COND_S; | |
2497 } | |
2498 } | |
2499 | |
2500 /// getCondFromCmovOpc - return condition code of a CMov opcode. | |
2501 X86::CondCode X86::getCondFromCMovOpc(unsigned Opc) { | |
2502 switch (Opc) { | |
2503 default: return X86::COND_INVALID; | |
2504 case X86::CMOVA16rm: case X86::CMOVA16rr: case X86::CMOVA32rm: | |
2505 case X86::CMOVA32rr: case X86::CMOVA64rm: case X86::CMOVA64rr: | |
2506 return X86::COND_A; | |
2507 case X86::CMOVAE16rm: case X86::CMOVAE16rr: case X86::CMOVAE32rm: | |
2508 case X86::CMOVAE32rr: case X86::CMOVAE64rm: case X86::CMOVAE64rr: | |
2509 return X86::COND_AE; | |
2510 case X86::CMOVB16rm: case X86::CMOVB16rr: case X86::CMOVB32rm: | |
2511 case X86::CMOVB32rr: case X86::CMOVB64rm: case X86::CMOVB64rr: | |
2512 return X86::COND_B; | |
2513 case X86::CMOVBE16rm: case X86::CMOVBE16rr: case X86::CMOVBE32rm: | |
2514 case X86::CMOVBE32rr: case X86::CMOVBE64rm: case X86::CMOVBE64rr: | |
2515 return X86::COND_BE; | |
2516 case X86::CMOVE16rm: case X86::CMOVE16rr: case X86::CMOVE32rm: | |
2517 case X86::CMOVE32rr: case X86::CMOVE64rm: case X86::CMOVE64rr: | |
2518 return X86::COND_E; | |
2519 case X86::CMOVG16rm: case X86::CMOVG16rr: case X86::CMOVG32rm: | |
2520 case X86::CMOVG32rr: case X86::CMOVG64rm: case X86::CMOVG64rr: | |
2521 return X86::COND_G; | |
2522 case X86::CMOVGE16rm: case X86::CMOVGE16rr: case X86::CMOVGE32rm: | |
2523 case X86::CMOVGE32rr: case X86::CMOVGE64rm: case X86::CMOVGE64rr: | |
2524 return X86::COND_GE; | |
2525 case X86::CMOVL16rm: case X86::CMOVL16rr: case X86::CMOVL32rm: | |
2526 case X86::CMOVL32rr: case X86::CMOVL64rm: case X86::CMOVL64rr: | |
2527 return X86::COND_L; | |
2528 case X86::CMOVLE16rm: case X86::CMOVLE16rr: case X86::CMOVLE32rm: | |
2529 case X86::CMOVLE32rr: case X86::CMOVLE64rm: case X86::CMOVLE64rr: | |
2530 return X86::COND_LE; | |
2531 case X86::CMOVNE16rm: case X86::CMOVNE16rr: case X86::CMOVNE32rm: | |
2532 case X86::CMOVNE32rr: case X86::CMOVNE64rm: case X86::CMOVNE64rr: | |
2533 return X86::COND_NE; | |
2534 case X86::CMOVNO16rm: case X86::CMOVNO16rr: case X86::CMOVNO32rm: | |
2535 case X86::CMOVNO32rr: case X86::CMOVNO64rm: case X86::CMOVNO64rr: | |
2536 return X86::COND_NO; | |
2537 case X86::CMOVNP16rm: case X86::CMOVNP16rr: case X86::CMOVNP32rm: | |
2538 case X86::CMOVNP32rr: case X86::CMOVNP64rm: case X86::CMOVNP64rr: | |
2539 return X86::COND_NP; | |
2540 case X86::CMOVNS16rm: case X86::CMOVNS16rr: case X86::CMOVNS32rm: | |
2541 case X86::CMOVNS32rr: case X86::CMOVNS64rm: case X86::CMOVNS64rr: | |
2542 return X86::COND_NS; | |
2543 case X86::CMOVO16rm: case X86::CMOVO16rr: case X86::CMOVO32rm: | |
2544 case X86::CMOVO32rr: case X86::CMOVO64rm: case X86::CMOVO64rr: | |
2545 return X86::COND_O; | |
2546 case X86::CMOVP16rm: case X86::CMOVP16rr: case X86::CMOVP32rm: | |
2547 case X86::CMOVP32rr: case X86::CMOVP64rm: case X86::CMOVP64rr: | |
2548 return X86::COND_P; | |
2549 case X86::CMOVS16rm: case X86::CMOVS16rr: case X86::CMOVS32rm: | |
2550 case X86::CMOVS32rr: case X86::CMOVS64rm: case X86::CMOVS64rr: | |
2551 return X86::COND_S; | |
2552 } | |
2553 } | |
2554 | |
2555 unsigned X86::GetCondBranchFromCond(X86::CondCode CC) { | |
2556 switch (CC) { | |
2557 default: llvm_unreachable("Illegal condition code!"); | |
2558 case X86::COND_E: return X86::JE_4; | |
2559 case X86::COND_NE: return X86::JNE_4; | |
2560 case X86::COND_L: return X86::JL_4; | |
2561 case X86::COND_LE: return X86::JLE_4; | |
2562 case X86::COND_G: return X86::JG_4; | |
2563 case X86::COND_GE: return X86::JGE_4; | |
2564 case X86::COND_B: return X86::JB_4; | |
2565 case X86::COND_BE: return X86::JBE_4; | |
2566 case X86::COND_A: return X86::JA_4; | |
2567 case X86::COND_AE: return X86::JAE_4; | |
2568 case X86::COND_S: return X86::JS_4; | |
2569 case X86::COND_NS: return X86::JNS_4; | |
2570 case X86::COND_P: return X86::JP_4; | |
2571 case X86::COND_NP: return X86::JNP_4; | |
2572 case X86::COND_O: return X86::JO_4; | |
2573 case X86::COND_NO: return X86::JNO_4; | |
2574 } | |
2575 } | |
2576 | |
2577 /// GetOppositeBranchCondition - Return the inverse of the specified condition, | |
2578 /// e.g. turning COND_E to COND_NE. | |
2579 X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) { | |
2580 switch (CC) { | |
2581 default: llvm_unreachable("Illegal condition code!"); | |
2582 case X86::COND_E: return X86::COND_NE; | |
2583 case X86::COND_NE: return X86::COND_E; | |
2584 case X86::COND_L: return X86::COND_GE; | |
2585 case X86::COND_LE: return X86::COND_G; | |
2586 case X86::COND_G: return X86::COND_LE; | |
2587 case X86::COND_GE: return X86::COND_L; | |
2588 case X86::COND_B: return X86::COND_AE; | |
2589 case X86::COND_BE: return X86::COND_A; | |
2590 case X86::COND_A: return X86::COND_BE; | |
2591 case X86::COND_AE: return X86::COND_B; | |
2592 case X86::COND_S: return X86::COND_NS; | |
2593 case X86::COND_NS: return X86::COND_S; | |
2594 case X86::COND_P: return X86::COND_NP; | |
2595 case X86::COND_NP: return X86::COND_P; | |
2596 case X86::COND_O: return X86::COND_NO; | |
2597 case X86::COND_NO: return X86::COND_O; | |
2598 } | |
2599 } | |
2600 | |
2601 /// getSwappedCondition - assume the flags are set by MI(a,b), return | |
2602 /// the condition code if we modify the instructions such that flags are | |
2603 /// set by MI(b,a). | |
2604 static X86::CondCode getSwappedCondition(X86::CondCode CC) { | |
2605 switch (CC) { | |
2606 default: return X86::COND_INVALID; | |
2607 case X86::COND_E: return X86::COND_E; | |
2608 case X86::COND_NE: return X86::COND_NE; | |
2609 case X86::COND_L: return X86::COND_G; | |
2610 case X86::COND_LE: return X86::COND_GE; | |
2611 case X86::COND_G: return X86::COND_L; | |
2612 case X86::COND_GE: return X86::COND_LE; | |
2613 case X86::COND_B: return X86::COND_A; | |
2614 case X86::COND_BE: return X86::COND_AE; | |
2615 case X86::COND_A: return X86::COND_B; | |
2616 case X86::COND_AE: return X86::COND_BE; | |
2617 } | |
2618 } | |
2619 | |
2620 /// getSETFromCond - Return a set opcode for the given condition and | |
2621 /// whether it has memory operand. | |
2622 static unsigned getSETFromCond(X86::CondCode CC, | |
2623 bool HasMemoryOperand) { | |
2624 static const uint16_t Opc[16][2] = { | |
2625 { X86::SETAr, X86::SETAm }, | |
2626 { X86::SETAEr, X86::SETAEm }, | |
2627 { X86::SETBr, X86::SETBm }, | |
2628 { X86::SETBEr, X86::SETBEm }, | |
2629 { X86::SETEr, X86::SETEm }, | |
2630 { X86::SETGr, X86::SETGm }, | |
2631 { X86::SETGEr, X86::SETGEm }, | |
2632 { X86::SETLr, X86::SETLm }, | |
2633 { X86::SETLEr, X86::SETLEm }, | |
2634 { X86::SETNEr, X86::SETNEm }, | |
2635 { X86::SETNOr, X86::SETNOm }, | |
2636 { X86::SETNPr, X86::SETNPm }, | |
2637 { X86::SETNSr, X86::SETNSm }, | |
2638 { X86::SETOr, X86::SETOm }, | |
2639 { X86::SETPr, X86::SETPm }, | |
2640 { X86::SETSr, X86::SETSm } | |
2641 }; | |
2642 | |
2643 assert(CC < 16 && "Can only handle standard cond codes"); | |
2644 return Opc[CC][HasMemoryOperand ? 1 : 0]; | |
2645 } | |
2646 | |
2647 /// getCMovFromCond - Return a cmov opcode for the given condition, | |
2648 /// register size in bytes, and operand type. | |
2649 static unsigned getCMovFromCond(X86::CondCode CC, unsigned RegBytes, | |
2650 bool HasMemoryOperand) { | |
2651 static const uint16_t Opc[32][3] = { | |
2652 { X86::CMOVA16rr, X86::CMOVA32rr, X86::CMOVA64rr }, | |
2653 { X86::CMOVAE16rr, X86::CMOVAE32rr, X86::CMOVAE64rr }, | |
2654 { X86::CMOVB16rr, X86::CMOVB32rr, X86::CMOVB64rr }, | |
2655 { X86::CMOVBE16rr, X86::CMOVBE32rr, X86::CMOVBE64rr }, | |
2656 { X86::CMOVE16rr, X86::CMOVE32rr, X86::CMOVE64rr }, | |
2657 { X86::CMOVG16rr, X86::CMOVG32rr, X86::CMOVG64rr }, | |
2658 { X86::CMOVGE16rr, X86::CMOVGE32rr, X86::CMOVGE64rr }, | |
2659 { X86::CMOVL16rr, X86::CMOVL32rr, X86::CMOVL64rr }, | |
2660 { X86::CMOVLE16rr, X86::CMOVLE32rr, X86::CMOVLE64rr }, | |
2661 { X86::CMOVNE16rr, X86::CMOVNE32rr, X86::CMOVNE64rr }, | |
2662 { X86::CMOVNO16rr, X86::CMOVNO32rr, X86::CMOVNO64rr }, | |
2663 { X86::CMOVNP16rr, X86::CMOVNP32rr, X86::CMOVNP64rr }, | |
2664 { X86::CMOVNS16rr, X86::CMOVNS32rr, X86::CMOVNS64rr }, | |
2665 { X86::CMOVO16rr, X86::CMOVO32rr, X86::CMOVO64rr }, | |
2666 { X86::CMOVP16rr, X86::CMOVP32rr, X86::CMOVP64rr }, | |
2667 { X86::CMOVS16rr, X86::CMOVS32rr, X86::CMOVS64rr }, | |
2668 { X86::CMOVA16rm, X86::CMOVA32rm, X86::CMOVA64rm }, | |
2669 { X86::CMOVAE16rm, X86::CMOVAE32rm, X86::CMOVAE64rm }, | |
2670 { X86::CMOVB16rm, X86::CMOVB32rm, X86::CMOVB64rm }, | |
2671 { X86::CMOVBE16rm, X86::CMOVBE32rm, X86::CMOVBE64rm }, | |
2672 { X86::CMOVE16rm, X86::CMOVE32rm, X86::CMOVE64rm }, | |
2673 { X86::CMOVG16rm, X86::CMOVG32rm, X86::CMOVG64rm }, | |
2674 { X86::CMOVGE16rm, X86::CMOVGE32rm, X86::CMOVGE64rm }, | |
2675 { X86::CMOVL16rm, X86::CMOVL32rm, X86::CMOVL64rm }, | |
2676 { X86::CMOVLE16rm, X86::CMOVLE32rm, X86::CMOVLE64rm }, | |
2677 { X86::CMOVNE16rm, X86::CMOVNE32rm, X86::CMOVNE64rm }, | |
2678 { X86::CMOVNO16rm, X86::CMOVNO32rm, X86::CMOVNO64rm }, | |
2679 { X86::CMOVNP16rm, X86::CMOVNP32rm, X86::CMOVNP64rm }, | |
2680 { X86::CMOVNS16rm, X86::CMOVNS32rm, X86::CMOVNS64rm }, | |
2681 { X86::CMOVO16rm, X86::CMOVO32rm, X86::CMOVO64rm }, | |
2682 { X86::CMOVP16rm, X86::CMOVP32rm, X86::CMOVP64rm }, | |
2683 { X86::CMOVS16rm, X86::CMOVS32rm, X86::CMOVS64rm } | |
2684 }; | |
2685 | |
2686 assert(CC < 16 && "Can only handle standard cond codes"); | |
2687 unsigned Idx = HasMemoryOperand ? 16+CC : CC; | |
2688 switch(RegBytes) { | |
2689 default: llvm_unreachable("Illegal register size!"); | |
2690 case 2: return Opc[Idx][0]; | |
2691 case 4: return Opc[Idx][1]; | |
2692 case 8: return Opc[Idx][2]; | |
2693 } | |
2694 } | |
2695 | |
2696 bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const { | |
2697 if (!MI->isTerminator()) return false; | |
2698 | |
2699 // Conditional branch is a special case. | |
2700 if (MI->isBranch() && !MI->isBarrier()) | |
2701 return true; | |
2702 if (!MI->isPredicable()) | |
2703 return true; | |
2704 return !isPredicated(MI); | |
2705 } | |
2706 | |
2707 bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB, | |
2708 MachineBasicBlock *&TBB, | |
2709 MachineBasicBlock *&FBB, | |
2710 SmallVectorImpl<MachineOperand> &Cond, | |
2711 bool AllowModify) const { | |
2712 // Start from the bottom of the block and work up, examining the | |
2713 // terminator instructions. | |
2714 MachineBasicBlock::iterator I = MBB.end(); | |
2715 MachineBasicBlock::iterator UnCondBrIter = MBB.end(); | |
2716 while (I != MBB.begin()) { | |
2717 --I; | |
2718 if (I->isDebugValue()) | |
2719 continue; | |
2720 | |
2721 // Working from the bottom, when we see a non-terminator instruction, we're | |
2722 // done. | |
2723 if (!isUnpredicatedTerminator(I)) | |
2724 break; | |
2725 | |
2726 // A terminator that isn't a branch can't easily be handled by this | |
2727 // analysis. | |
2728 if (!I->isBranch()) | |
2729 return true; | |
2730 | |
2731 // Handle unconditional branches. | |
2732 if (I->getOpcode() == X86::JMP_4) { | |
2733 UnCondBrIter = I; | |
2734 | |
2735 if (!AllowModify) { | |
2736 TBB = I->getOperand(0).getMBB(); | |
2737 continue; | |
2738 } | |
2739 | |
2740 // If the block has any instructions after a JMP, delete them. | |
2741 while (llvm::next(I) != MBB.end()) | |
2742 llvm::next(I)->eraseFromParent(); | |
2743 | |
2744 Cond.clear(); | |
2745 FBB = 0; | |
2746 | |
2747 // Delete the JMP if it's equivalent to a fall-through. | |
2748 if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { | |
2749 TBB = 0; | |
2750 I->eraseFromParent(); | |
2751 I = MBB.end(); | |
2752 UnCondBrIter = MBB.end(); | |
2753 continue; | |
2754 } | |
2755 | |
2756 // TBB is used to indicate the unconditional destination. | |
2757 TBB = I->getOperand(0).getMBB(); | |
2758 continue; | |
2759 } | |
2760 | |
2761 // Handle conditional branches. | |
2762 X86::CondCode BranchCode = getCondFromBranchOpc(I->getOpcode()); | |
2763 if (BranchCode == X86::COND_INVALID) | |
2764 return true; // Can't handle indirect branch. | |
2765 | |
2766 // Working from the bottom, handle the first conditional branch. | |
2767 if (Cond.empty()) { | |
2768 MachineBasicBlock *TargetBB = I->getOperand(0).getMBB(); | |
2769 if (AllowModify && UnCondBrIter != MBB.end() && | |
2770 MBB.isLayoutSuccessor(TargetBB)) { | |
2771 // If we can modify the code and it ends in something like: | |
2772 // | |
2773 // jCC L1 | |
2774 // jmp L2 | |
2775 // L1: | |
2776 // ... | |
2777 // L2: | |
2778 // | |
2779 // Then we can change this to: | |
2780 // | |
2781 // jnCC L2 | |
2782 // L1: | |
2783 // ... | |
2784 // L2: | |
2785 // | |
2786 // Which is a bit more efficient. | |
2787 // We conditionally jump to the fall-through block. | |
2788 BranchCode = GetOppositeBranchCondition(BranchCode); | |
2789 unsigned JNCC = GetCondBranchFromCond(BranchCode); | |
2790 MachineBasicBlock::iterator OldInst = I; | |
2791 | |
2792 BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(JNCC)) | |
2793 .addMBB(UnCondBrIter->getOperand(0).getMBB()); | |
2794 BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_4)) | |
2795 .addMBB(TargetBB); | |
2796 | |
2797 OldInst->eraseFromParent(); | |
2798 UnCondBrIter->eraseFromParent(); | |
2799 | |
2800 // Restart the analysis. | |
2801 UnCondBrIter = MBB.end(); | |
2802 I = MBB.end(); | |
2803 continue; | |
2804 } | |
2805 | |
2806 FBB = TBB; | |
2807 TBB = I->getOperand(0).getMBB(); | |
2808 Cond.push_back(MachineOperand::CreateImm(BranchCode)); | |
2809 continue; | |
2810 } | |
2811 | |
2812 // Handle subsequent conditional branches. Only handle the case where all | |
2813 // conditional branches branch to the same destination and their condition | |
2814 // opcodes fit one of the special multi-branch idioms. | |
2815 assert(Cond.size() == 1); | |
2816 assert(TBB); | |
2817 | |
2818 // Only handle the case where all conditional branches branch to the same | |
2819 // destination. | |
2820 if (TBB != I->getOperand(0).getMBB()) | |
2821 return true; | |
2822 | |
2823 // If the conditions are the same, we can leave them alone. | |
2824 X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm(); | |
2825 if (OldBranchCode == BranchCode) | |
2826 continue; | |
2827 | |
2828 // If they differ, see if they fit one of the known patterns. Theoretically, | |
2829 // we could handle more patterns here, but we shouldn't expect to see them | |
2830 // if instruction selection has done a reasonable job. | |
2831 if ((OldBranchCode == X86::COND_NP && | |
2832 BranchCode == X86::COND_E) || | |
2833 (OldBranchCode == X86::COND_E && | |
2834 BranchCode == X86::COND_NP)) | |
2835 BranchCode = X86::COND_NP_OR_E; | |
2836 else if ((OldBranchCode == X86::COND_P && | |
2837 BranchCode == X86::COND_NE) || | |
2838 (OldBranchCode == X86::COND_NE && | |
2839 BranchCode == X86::COND_P)) | |
2840 BranchCode = X86::COND_NE_OR_P; | |
2841 else | |
2842 return true; | |
2843 | |
2844 // Update the MachineOperand. | |
2845 Cond[0].setImm(BranchCode); | |
2846 } | |
2847 | |
2848 return false; | |
2849 } | |
2850 | |
2851 unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { | |
2852 MachineBasicBlock::iterator I = MBB.end(); | |
2853 unsigned Count = 0; | |
2854 | |
2855 while (I != MBB.begin()) { | |
2856 --I; | |
2857 if (I->isDebugValue()) | |
2858 continue; | |
2859 if (I->getOpcode() != X86::JMP_4 && | |
2860 getCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID) | |
2861 break; | |
2862 // Remove the branch. | |
2863 I->eraseFromParent(); | |
2864 I = MBB.end(); | |
2865 ++Count; | |
2866 } | |
2867 | |
2868 return Count; | |
2869 } | |
2870 | |
2871 unsigned | |
2872 X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, | |
2873 MachineBasicBlock *FBB, | |
2874 const SmallVectorImpl<MachineOperand> &Cond, | |
2875 DebugLoc DL) const { | |
2876 // Shouldn't be a fall through. | |
2877 assert(TBB && "InsertBranch must not be told to insert a fallthrough"); | |
2878 assert((Cond.size() == 1 || Cond.size() == 0) && | |
2879 "X86 branch conditions have one component!"); | |
2880 | |
2881 if (Cond.empty()) { | |
2882 // Unconditional branch? | |
2883 assert(!FBB && "Unconditional branch with multiple successors!"); | |
2884 BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(TBB); | |
2885 return 1; | |
2886 } | |
2887 | |
2888 // Conditional branch. | |
2889 unsigned Count = 0; | |
2890 X86::CondCode CC = (X86::CondCode)Cond[0].getImm(); | |
2891 switch (CC) { | |
2892 case X86::COND_NP_OR_E: | |
2893 // Synthesize NP_OR_E with two branches. | |
2894 BuildMI(&MBB, DL, get(X86::JNP_4)).addMBB(TBB); | |
2895 ++Count; | |
2896 BuildMI(&MBB, DL, get(X86::JE_4)).addMBB(TBB); | |
2897 ++Count; | |
2898 break; | |
2899 case X86::COND_NE_OR_P: | |
2900 // Synthesize NE_OR_P with two branches. | |
2901 BuildMI(&MBB, DL, get(X86::JNE_4)).addMBB(TBB); | |
2902 ++Count; | |
2903 BuildMI(&MBB, DL, get(X86::JP_4)).addMBB(TBB); | |
2904 ++Count; | |
2905 break; | |
2906 default: { | |
2907 unsigned Opc = GetCondBranchFromCond(CC); | |
2908 BuildMI(&MBB, DL, get(Opc)).addMBB(TBB); | |
2909 ++Count; | |
2910 } | |
2911 } | |
2912 if (FBB) { | |
2913 // Two-way Conditional branch. Insert the second branch. | |
2914 BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(FBB); | |
2915 ++Count; | |
2916 } | |
2917 return Count; | |
2918 } | |
2919 | |
2920 bool X86InstrInfo:: | |
2921 canInsertSelect(const MachineBasicBlock &MBB, | |
2922 const SmallVectorImpl<MachineOperand> &Cond, | |
2923 unsigned TrueReg, unsigned FalseReg, | |
2924 int &CondCycles, int &TrueCycles, int &FalseCycles) const { | |
2925 // Not all subtargets have cmov instructions. | |
2926 if (!TM.getSubtarget<X86Subtarget>().hasCMov()) | |
2927 return false; | |
2928 if (Cond.size() != 1) | |
2929 return false; | |
2930 // We cannot do the composite conditions, at least not in SSA form. | |
2931 if ((X86::CondCode)Cond[0].getImm() > X86::COND_S) | |
2932 return false; | |
2933 | |
2934 // Check register classes. | |
2935 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); | |
2936 const TargetRegisterClass *RC = | |
2937 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); | |
2938 if (!RC) | |
2939 return false; | |
2940 | |
2941 // We have cmov instructions for 16, 32, and 64 bit general purpose registers. | |
2942 if (X86::GR16RegClass.hasSubClassEq(RC) || | |
2943 X86::GR32RegClass.hasSubClassEq(RC) || | |
2944 X86::GR64RegClass.hasSubClassEq(RC)) { | |
2945 // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy | |
2946 // Bridge. Probably Ivy Bridge as well. | |
2947 CondCycles = 2; | |
2948 TrueCycles = 2; | |
2949 FalseCycles = 2; | |
2950 return true; | |
2951 } | |
2952 | |
2953 // Can't do vectors. | |
2954 return false; | |
2955 } | |
2956 | |
2957 void X86InstrInfo::insertSelect(MachineBasicBlock &MBB, | |
2958 MachineBasicBlock::iterator I, DebugLoc DL, | |
2959 unsigned DstReg, | |
2960 const SmallVectorImpl<MachineOperand> &Cond, | |
2961 unsigned TrueReg, unsigned FalseReg) const { | |
2962 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); | |
2963 assert(Cond.size() == 1 && "Invalid Cond array"); | |
2964 unsigned Opc = getCMovFromCond((X86::CondCode)Cond[0].getImm(), | |
2965 MRI.getRegClass(DstReg)->getSize(), | |
2966 false/*HasMemoryOperand*/); | |
2967 BuildMI(MBB, I, DL, get(Opc), DstReg).addReg(FalseReg).addReg(TrueReg); | |
2968 } | |
2969 | |
2970 /// isHReg - Test if the given register is a physical h register. | |
2971 static bool isHReg(unsigned Reg) { | |
2972 return X86::GR8_ABCD_HRegClass.contains(Reg); | |
2973 } | |
2974 | |
2975 // Try and copy between VR128/VR64 and GR64 registers. | |
2976 static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg, | |
2977 const X86Subtarget& Subtarget) { | |
2978 | |
2979 | |
2980 // SrcReg(VR128) -> DestReg(GR64) | |
2981 // SrcReg(VR64) -> DestReg(GR64) | |
2982 // SrcReg(GR64) -> DestReg(VR128) | |
2983 // SrcReg(GR64) -> DestReg(VR64) | |
2984 | |
2985 bool HasAVX = Subtarget.hasAVX(); | |
2986 bool HasAVX512 = Subtarget.hasAVX512(); | |
2987 if (X86::GR64RegClass.contains(DestReg)) { | |
2988 if (X86::VR128XRegClass.contains(SrcReg)) | |
2989 // Copy from a VR128 register to a GR64 register. | |
2990 return HasAVX512 ? X86::VMOVPQIto64Zrr: (HasAVX ? X86::VMOVPQIto64rr : | |
2991 X86::MOVPQIto64rr); | |
2992 if (X86::VR64RegClass.contains(SrcReg)) | |
2993 // Copy from a VR64 register to a GR64 register. | |
2994 return X86::MOVSDto64rr; | |
2995 } else if (X86::GR64RegClass.contains(SrcReg)) { | |
2996 // Copy from a GR64 register to a VR128 register. | |
2997 if (X86::VR128XRegClass.contains(DestReg)) | |
2998 return HasAVX512 ? X86::VMOV64toPQIZrr: (HasAVX ? X86::VMOV64toPQIrr : | |
2999 X86::MOV64toPQIrr); | |
3000 // Copy from a GR64 register to a VR64 register. | |
3001 if (X86::VR64RegClass.contains(DestReg)) | |
3002 return X86::MOV64toSDrr; | |
3003 } | |
3004 | |
3005 // SrcReg(FR32) -> DestReg(GR32) | |
3006 // SrcReg(GR32) -> DestReg(FR32) | |
3007 | |
3008 if (X86::GR32RegClass.contains(DestReg) && X86::FR32XRegClass.contains(SrcReg)) | |
3009 // Copy from a FR32 register to a GR32 register. | |
3010 return HasAVX512 ? X86::VMOVSS2DIZrr : (HasAVX ? X86::VMOVSS2DIrr : X86::MOVSS2DIrr); | |
3011 | |
3012 if (X86::FR32XRegClass.contains(DestReg) && X86::GR32RegClass.contains(SrcReg)) | |
3013 // Copy from a GR32 register to a FR32 register. | |
3014 return HasAVX512 ? X86::VMOVDI2SSZrr : (HasAVX ? X86::VMOVDI2SSrr : X86::MOVDI2SSrr); | |
3015 return 0; | |
3016 } | |
3017 | |
3018 static | |
3019 unsigned copyPhysRegOpcode_AVX512(unsigned& DestReg, unsigned& SrcReg) { | |
3020 if (X86::VR128XRegClass.contains(DestReg, SrcReg) || | |
3021 X86::VR256XRegClass.contains(DestReg, SrcReg) || | |
3022 X86::VR512RegClass.contains(DestReg, SrcReg)) { | |
3023 DestReg = get512BitSuperRegister(DestReg); | |
3024 SrcReg = get512BitSuperRegister(SrcReg); | |
3025 return X86::VMOVAPSZrr; | |
3026 } | |
3027 if ((X86::VK8RegClass.contains(DestReg) || | |
3028 X86::VK16RegClass.contains(DestReg)) && | |
3029 (X86::VK8RegClass.contains(SrcReg) || | |
3030 X86::VK16RegClass.contains(SrcReg))) | |
3031 return X86::KMOVWkk; | |
3032 return 0; | |
3033 } | |
3034 | |
3035 void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB, | |
3036 MachineBasicBlock::iterator MI, DebugLoc DL, | |
3037 unsigned DestReg, unsigned SrcReg, | |
3038 bool KillSrc) const { | |
3039 // First deal with the normal symmetric copies. | |
3040 bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX(); | |
3041 bool HasAVX512 = TM.getSubtarget<X86Subtarget>().hasAVX512(); | |
3042 unsigned Opc = 0; | |
3043 if (X86::GR64RegClass.contains(DestReg, SrcReg)) | |
3044 Opc = X86::MOV64rr; | |
3045 else if (X86::GR32RegClass.contains(DestReg, SrcReg)) | |
3046 Opc = X86::MOV32rr; | |
3047 else if (X86::GR16RegClass.contains(DestReg, SrcReg)) | |
3048 Opc = X86::MOV16rr; | |
3049 else if (X86::GR8RegClass.contains(DestReg, SrcReg)) { | |
3050 // Copying to or from a physical H register on x86-64 requires a NOREX | |
3051 // move. Otherwise use a normal move. | |
3052 if ((isHReg(DestReg) || isHReg(SrcReg)) && | |
3053 TM.getSubtarget<X86Subtarget>().is64Bit()) { | |
3054 Opc = X86::MOV8rr_NOREX; | |
3055 // Both operands must be encodable without an REX prefix. | |
3056 assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) && | |
3057 "8-bit H register can not be copied outside GR8_NOREX"); | |
3058 } else | |
3059 Opc = X86::MOV8rr; | |
3060 } | |
3061 else if (X86::VR64RegClass.contains(DestReg, SrcReg)) | |
3062 Opc = X86::MMX_MOVQ64rr; | |
3063 else if (HasAVX512) | |
3064 Opc = copyPhysRegOpcode_AVX512(DestReg, SrcReg); | |
3065 else if (X86::VR128RegClass.contains(DestReg, SrcReg)) | |
3066 Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr; | |
3067 else if (X86::VR256RegClass.contains(DestReg, SrcReg)) | |
3068 Opc = X86::VMOVAPSYrr; | |
3069 if (!Opc) | |
3070 Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, TM.getSubtarget<X86Subtarget>()); | |
3071 | |
3072 if (Opc) { | |
3073 BuildMI(MBB, MI, DL, get(Opc), DestReg) | |
3074 .addReg(SrcReg, getKillRegState(KillSrc)); | |
3075 return; | |
3076 } | |
3077 | |
3078 // Moving EFLAGS to / from another register requires a push and a pop. | |
3079 // Notice that we have to adjust the stack if we don't want to clobber the | |
3080 // first frame index. See X86FrameLowering.cpp - colobbersTheStack. | |
3081 if (SrcReg == X86::EFLAGS) { | |
3082 if (X86::GR64RegClass.contains(DestReg)) { | |
3083 BuildMI(MBB, MI, DL, get(X86::PUSHF64)); | |
3084 BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg); | |
3085 return; | |
3086 } | |
3087 if (X86::GR32RegClass.contains(DestReg)) { | |
3088 BuildMI(MBB, MI, DL, get(X86::PUSHF32)); | |
3089 BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg); | |
3090 return; | |
3091 } | |
3092 } | |
3093 if (DestReg == X86::EFLAGS) { | |
3094 if (X86::GR64RegClass.contains(SrcReg)) { | |
3095 BuildMI(MBB, MI, DL, get(X86::PUSH64r)) | |
3096 .addReg(SrcReg, getKillRegState(KillSrc)); | |
3097 BuildMI(MBB, MI, DL, get(X86::POPF64)); | |
3098 return; | |
3099 } | |
3100 if (X86::GR32RegClass.contains(SrcReg)) { | |
3101 BuildMI(MBB, MI, DL, get(X86::PUSH32r)) | |
3102 .addReg(SrcReg, getKillRegState(KillSrc)); | |
3103 BuildMI(MBB, MI, DL, get(X86::POPF32)); | |
3104 return; | |
3105 } | |
3106 } | |
3107 | |
3108 DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg) | |
3109 << " to " << RI.getName(DestReg) << '\n'); | |
3110 llvm_unreachable("Cannot emit physreg copy instruction"); | |
3111 } | |
3112 | |
3113 static unsigned getLoadStoreRegOpcode(unsigned Reg, | |
3114 const TargetRegisterClass *RC, | |
3115 bool isStackAligned, | |
3116 const TargetMachine &TM, | |
3117 bool load) { | |
3118 if (TM.getSubtarget<X86Subtarget>().hasAVX512()) { | |
3119 if (X86::VK8RegClass.hasSubClassEq(RC) || | |
3120 X86::VK16RegClass.hasSubClassEq(RC)) | |
3121 return load ? X86::KMOVWkm : X86::KMOVWmk; | |
3122 if (RC->getSize() == 4 && X86::FR32XRegClass.hasSubClassEq(RC)) | |
3123 return load ? X86::VMOVSSZrm : X86::VMOVSSZmr; | |
3124 if (RC->getSize() == 8 && X86::FR64XRegClass.hasSubClassEq(RC)) | |
3125 return load ? X86::VMOVSDZrm : X86::VMOVSDZmr; | |
3126 if (X86::VR512RegClass.hasSubClassEq(RC)) | |
3127 return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr; | |
3128 } | |
3129 | |
3130 bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX(); | |
3131 switch (RC->getSize()) { | |
3132 default: | |
3133 llvm_unreachable("Unknown spill size"); | |
3134 case 1: | |
3135 assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass"); | |
3136 if (TM.getSubtarget<X86Subtarget>().is64Bit()) | |
3137 // Copying to or from a physical H register on x86-64 requires a NOREX | |
3138 // move. Otherwise use a normal move. | |
3139 if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC)) | |
3140 return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX; | |
3141 return load ? X86::MOV8rm : X86::MOV8mr; | |
3142 case 2: | |
3143 assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass"); | |
3144 return load ? X86::MOV16rm : X86::MOV16mr; | |
3145 case 4: | |
3146 if (X86::GR32RegClass.hasSubClassEq(RC)) | |
3147 return load ? X86::MOV32rm : X86::MOV32mr; | |
3148 if (X86::FR32RegClass.hasSubClassEq(RC)) | |
3149 return load ? | |
3150 (HasAVX ? X86::VMOVSSrm : X86::MOVSSrm) : | |
3151 (HasAVX ? X86::VMOVSSmr : X86::MOVSSmr); | |
3152 if (X86::RFP32RegClass.hasSubClassEq(RC)) | |
3153 return load ? X86::LD_Fp32m : X86::ST_Fp32m; | |
3154 llvm_unreachable("Unknown 4-byte regclass"); | |
3155 case 8: | |
3156 if (X86::GR64RegClass.hasSubClassEq(RC)) | |
3157 return load ? X86::MOV64rm : X86::MOV64mr; | |
3158 if (X86::FR64RegClass.hasSubClassEq(RC)) | |
3159 return load ? | |
3160 (HasAVX ? X86::VMOVSDrm : X86::MOVSDrm) : | |
3161 (HasAVX ? X86::VMOVSDmr : X86::MOVSDmr); | |
3162 if (X86::VR64RegClass.hasSubClassEq(RC)) | |
3163 return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr; | |
3164 if (X86::RFP64RegClass.hasSubClassEq(RC)) | |
3165 return load ? X86::LD_Fp64m : X86::ST_Fp64m; | |
3166 llvm_unreachable("Unknown 8-byte regclass"); | |
3167 case 10: | |
3168 assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass"); | |
3169 return load ? X86::LD_Fp80m : X86::ST_FpP80m; | |
3170 case 16: { | |
3171 assert((X86::VR128RegClass.hasSubClassEq(RC) || | |
3172 X86::VR128XRegClass.hasSubClassEq(RC))&& "Unknown 16-byte regclass"); | |
3173 // If stack is realigned we can use aligned stores. | |
3174 if (isStackAligned) | |
3175 return load ? | |
3176 (HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm) : | |
3177 (HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr); | |
3178 else | |
3179 return load ? | |
3180 (HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm) : | |
3181 (HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr); | |
3182 } | |
3183 case 32: | |
3184 assert((X86::VR256RegClass.hasSubClassEq(RC) || | |
3185 X86::VR256XRegClass.hasSubClassEq(RC)) && "Unknown 32-byte regclass"); | |
3186 // If stack is realigned we can use aligned stores. | |
3187 if (isStackAligned) | |
3188 return load ? X86::VMOVAPSYrm : X86::VMOVAPSYmr; | |
3189 else | |
3190 return load ? X86::VMOVUPSYrm : X86::VMOVUPSYmr; | |
3191 case 64: | |
3192 assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass"); | |
3193 if (isStackAligned) | |
3194 return load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr; | |
3195 else | |
3196 return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr; | |
3197 } | |
3198 } | |
3199 | |
3200 static unsigned getStoreRegOpcode(unsigned SrcReg, | |
3201 const TargetRegisterClass *RC, | |
3202 bool isStackAligned, | |
3203 TargetMachine &TM) { | |
3204 return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, TM, false); | |
3205 } | |
3206 | |
3207 | |
3208 static unsigned getLoadRegOpcode(unsigned DestReg, | |
3209 const TargetRegisterClass *RC, | |
3210 bool isStackAligned, | |
3211 const TargetMachine &TM) { | |
3212 return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, TM, true); | |
3213 } | |
3214 | |
3215 void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, | |
3216 MachineBasicBlock::iterator MI, | |
3217 unsigned SrcReg, bool isKill, int FrameIdx, | |
3218 const TargetRegisterClass *RC, | |
3219 const TargetRegisterInfo *TRI) const { | |
3220 const MachineFunction &MF = *MBB.getParent(); | |
3221 assert(MF.getFrameInfo()->getObjectSize(FrameIdx) >= RC->getSize() && | |
3222 "Stack slot too small for store"); | |
3223 unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16); | |
3224 bool isAligned = (TM.getFrameLowering()->getStackAlignment() >= Alignment) || | |
3225 RI.canRealignStack(MF); | |
3226 unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM); | |
3227 DebugLoc DL = MBB.findDebugLoc(MI); | |
3228 addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx) | |
3229 .addReg(SrcReg, getKillRegState(isKill)); | |
3230 } | |
3231 | |
3232 void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg, | |
3233 bool isKill, | |
3234 SmallVectorImpl<MachineOperand> &Addr, | |
3235 const TargetRegisterClass *RC, | |
3236 MachineInstr::mmo_iterator MMOBegin, | |
3237 MachineInstr::mmo_iterator MMOEnd, | |
3238 SmallVectorImpl<MachineInstr*> &NewMIs) const { | |
3239 unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16); | |
3240 bool isAligned = MMOBegin != MMOEnd && | |
3241 (*MMOBegin)->getAlignment() >= Alignment; | |
3242 unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM); | |
3243 DebugLoc DL; | |
3244 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc)); | |
3245 for (unsigned i = 0, e = Addr.size(); i != e; ++i) | |
3246 MIB.addOperand(Addr[i]); | |
3247 MIB.addReg(SrcReg, getKillRegState(isKill)); | |
3248 (*MIB).setMemRefs(MMOBegin, MMOEnd); | |
3249 NewMIs.push_back(MIB); | |
3250 } | |
3251 | |
3252 | |
3253 void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, | |
3254 MachineBasicBlock::iterator MI, | |
3255 unsigned DestReg, int FrameIdx, | |
3256 const TargetRegisterClass *RC, | |
3257 const TargetRegisterInfo *TRI) const { | |
3258 const MachineFunction &MF = *MBB.getParent(); | |
3259 unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16); | |
3260 bool isAligned = (TM.getFrameLowering()->getStackAlignment() >= Alignment) || | |
3261 RI.canRealignStack(MF); | |
3262 unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM); | |
3263 DebugLoc DL = MBB.findDebugLoc(MI); | |
3264 addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx); | |
3265 } | |
3266 | |
3267 void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg, | |
3268 SmallVectorImpl<MachineOperand> &Addr, | |
3269 const TargetRegisterClass *RC, | |
3270 MachineInstr::mmo_iterator MMOBegin, | |
3271 MachineInstr::mmo_iterator MMOEnd, | |
3272 SmallVectorImpl<MachineInstr*> &NewMIs) const { | |
3273 unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16); | |
3274 bool isAligned = MMOBegin != MMOEnd && | |
3275 (*MMOBegin)->getAlignment() >= Alignment; | |
3276 unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM); | |
3277 DebugLoc DL; | |
3278 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg); | |
3279 for (unsigned i = 0, e = Addr.size(); i != e; ++i) | |
3280 MIB.addOperand(Addr[i]); | |
3281 (*MIB).setMemRefs(MMOBegin, MMOEnd); | |
3282 NewMIs.push_back(MIB); | |
3283 } | |
3284 | |
3285 bool X86InstrInfo:: | |
3286 analyzeCompare(const MachineInstr *MI, unsigned &SrcReg, unsigned &SrcReg2, | |
3287 int &CmpMask, int &CmpValue) const { | |
3288 switch (MI->getOpcode()) { | |
3289 default: break; | |
3290 case X86::CMP64ri32: | |
3291 case X86::CMP64ri8: | |
3292 case X86::CMP32ri: | |
3293 case X86::CMP32ri8: | |
3294 case X86::CMP16ri: | |
3295 case X86::CMP16ri8: | |
3296 case X86::CMP8ri: | |
3297 SrcReg = MI->getOperand(0).getReg(); | |
3298 SrcReg2 = 0; | |
3299 CmpMask = ~0; | |
3300 CmpValue = MI->getOperand(1).getImm(); | |
3301 return true; | |
3302 // A SUB can be used to perform comparison. | |
3303 case X86::SUB64rm: | |
3304 case X86::SUB32rm: | |
3305 case X86::SUB16rm: | |
3306 case X86::SUB8rm: | |
3307 SrcReg = MI->getOperand(1).getReg(); | |
3308 SrcReg2 = 0; | |
3309 CmpMask = ~0; | |
3310 CmpValue = 0; | |
3311 return true; | |
3312 case X86::SUB64rr: | |
3313 case X86::SUB32rr: | |
3314 case X86::SUB16rr: | |
3315 case X86::SUB8rr: | |
3316 SrcReg = MI->getOperand(1).getReg(); | |
3317 SrcReg2 = MI->getOperand(2).getReg(); | |
3318 CmpMask = ~0; | |
3319 CmpValue = 0; | |
3320 return true; | |
3321 case X86::SUB64ri32: | |
3322 case X86::SUB64ri8: | |
3323 case X86::SUB32ri: | |
3324 case X86::SUB32ri8: | |
3325 case X86::SUB16ri: | |
3326 case X86::SUB16ri8: | |
3327 case X86::SUB8ri: | |
3328 SrcReg = MI->getOperand(1).getReg(); | |
3329 SrcReg2 = 0; | |
3330 CmpMask = ~0; | |
3331 CmpValue = MI->getOperand(2).getImm(); | |
3332 return true; | |
3333 case X86::CMP64rr: | |
3334 case X86::CMP32rr: | |
3335 case X86::CMP16rr: | |
3336 case X86::CMP8rr: | |
3337 SrcReg = MI->getOperand(0).getReg(); | |
3338 SrcReg2 = MI->getOperand(1).getReg(); | |
3339 CmpMask = ~0; | |
3340 CmpValue = 0; | |
3341 return true; | |
3342 case X86::TEST8rr: | |
3343 case X86::TEST16rr: | |
3344 case X86::TEST32rr: | |
3345 case X86::TEST64rr: | |
3346 SrcReg = MI->getOperand(0).getReg(); | |
3347 if (MI->getOperand(1).getReg() != SrcReg) return false; | |
3348 // Compare against zero. | |
3349 SrcReg2 = 0; | |
3350 CmpMask = ~0; | |
3351 CmpValue = 0; | |
3352 return true; | |
3353 } | |
3354 return false; | |
3355 } | |
3356 | |
3357 /// isRedundantFlagInstr - check whether the first instruction, whose only | |
3358 /// purpose is to update flags, can be made redundant. | |
3359 /// CMPrr can be made redundant by SUBrr if the operands are the same. | |
3360 /// This function can be extended later on. | |
3361 /// SrcReg, SrcRegs: register operands for FlagI. | |
3362 /// ImmValue: immediate for FlagI if it takes an immediate. | |
3363 inline static bool isRedundantFlagInstr(MachineInstr *FlagI, unsigned SrcReg, | |
3364 unsigned SrcReg2, int ImmValue, | |
3365 MachineInstr *OI) { | |
3366 if (((FlagI->getOpcode() == X86::CMP64rr && | |
3367 OI->getOpcode() == X86::SUB64rr) || | |
3368 (FlagI->getOpcode() == X86::CMP32rr && | |
3369 OI->getOpcode() == X86::SUB32rr)|| | |
3370 (FlagI->getOpcode() == X86::CMP16rr && | |
3371 OI->getOpcode() == X86::SUB16rr)|| | |
3372 (FlagI->getOpcode() == X86::CMP8rr && | |
3373 OI->getOpcode() == X86::SUB8rr)) && | |
3374 ((OI->getOperand(1).getReg() == SrcReg && | |
3375 OI->getOperand(2).getReg() == SrcReg2) || | |
3376 (OI->getOperand(1).getReg() == SrcReg2 && | |
3377 OI->getOperand(2).getReg() == SrcReg))) | |
3378 return true; | |
3379 | |
3380 if (((FlagI->getOpcode() == X86::CMP64ri32 && | |
3381 OI->getOpcode() == X86::SUB64ri32) || | |
3382 (FlagI->getOpcode() == X86::CMP64ri8 && | |
3383 OI->getOpcode() == X86::SUB64ri8) || | |
3384 (FlagI->getOpcode() == X86::CMP32ri && | |
3385 OI->getOpcode() == X86::SUB32ri) || | |
3386 (FlagI->getOpcode() == X86::CMP32ri8 && | |
3387 OI->getOpcode() == X86::SUB32ri8) || | |
3388 (FlagI->getOpcode() == X86::CMP16ri && | |
3389 OI->getOpcode() == X86::SUB16ri) || | |
3390 (FlagI->getOpcode() == X86::CMP16ri8 && | |
3391 OI->getOpcode() == X86::SUB16ri8) || | |
3392 (FlagI->getOpcode() == X86::CMP8ri && | |
3393 OI->getOpcode() == X86::SUB8ri)) && | |
3394 OI->getOperand(1).getReg() == SrcReg && | |
3395 OI->getOperand(2).getImm() == ImmValue) | |
3396 return true; | |
3397 return false; | |
3398 } | |
3399 | |
3400 /// isDefConvertible - check whether the definition can be converted | |
3401 /// to remove a comparison against zero. | |
3402 inline static bool isDefConvertible(MachineInstr *MI) { | |
3403 switch (MI->getOpcode()) { | |
3404 default: return false; | |
3405 | |
3406 // The shift instructions only modify ZF if their shift count is non-zero. | |
3407 // N.B.: The processor truncates the shift count depending on the encoding. | |
3408 case X86::SAR8ri: case X86::SAR16ri: case X86::SAR32ri:case X86::SAR64ri: | |
3409 case X86::SHR8ri: case X86::SHR16ri: case X86::SHR32ri:case X86::SHR64ri: | |
3410 return getTruncatedShiftCount(MI, 2) != 0; | |
3411 | |
3412 // Some left shift instructions can be turned into LEA instructions but only | |
3413 // if their flags aren't used. Avoid transforming such instructions. | |
3414 case X86::SHL8ri: case X86::SHL16ri: case X86::SHL32ri:case X86::SHL64ri:{ | |
3415 unsigned ShAmt = getTruncatedShiftCount(MI, 2); | |
3416 if (isTruncatedShiftCountForLEA(ShAmt)) return false; | |
3417 return ShAmt != 0; | |
3418 } | |
3419 | |
3420 case X86::SHRD16rri8:case X86::SHRD32rri8:case X86::SHRD64rri8: | |
3421 case X86::SHLD16rri8:case X86::SHLD32rri8:case X86::SHLD64rri8: | |
3422 return getTruncatedShiftCount(MI, 3) != 0; | |
3423 | |
3424 case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri: | |
3425 case X86::SUB32ri8: case X86::SUB16ri: case X86::SUB16ri8: | |
3426 case X86::SUB8ri: case X86::SUB64rr: case X86::SUB32rr: | |
3427 case X86::SUB16rr: case X86::SUB8rr: case X86::SUB64rm: | |
3428 case X86::SUB32rm: case X86::SUB16rm: case X86::SUB8rm: | |
3429 case X86::DEC64r: case X86::DEC32r: case X86::DEC16r: case X86::DEC8r: | |
3430 case X86::DEC64_32r: case X86::DEC64_16r: | |
3431 case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD32ri: | |
3432 case X86::ADD32ri8: case X86::ADD16ri: case X86::ADD16ri8: | |
3433 case X86::ADD8ri: case X86::ADD64rr: case X86::ADD32rr: | |
3434 case X86::ADD16rr: case X86::ADD8rr: case X86::ADD64rm: | |
3435 case X86::ADD32rm: case X86::ADD16rm: case X86::ADD8rm: | |
3436 case X86::INC64r: case X86::INC32r: case X86::INC16r: case X86::INC8r: | |
3437 case X86::INC64_32r: case X86::INC64_16r: | |
3438 case X86::AND64ri32: case X86::AND64ri8: case X86::AND32ri: | |
3439 case X86::AND32ri8: case X86::AND16ri: case X86::AND16ri8: | |
3440 case X86::AND8ri: case X86::AND64rr: case X86::AND32rr: | |
3441 case X86::AND16rr: case X86::AND8rr: case X86::AND64rm: | |
3442 case X86::AND32rm: case X86::AND16rm: case X86::AND8rm: | |
3443 case X86::XOR64ri32: case X86::XOR64ri8: case X86::XOR32ri: | |
3444 case X86::XOR32ri8: case X86::XOR16ri: case X86::XOR16ri8: | |
3445 case X86::XOR8ri: case X86::XOR64rr: case X86::XOR32rr: | |
3446 case X86::XOR16rr: case X86::XOR8rr: case X86::XOR64rm: | |
3447 case X86::XOR32rm: case X86::XOR16rm: case X86::XOR8rm: | |
3448 case X86::OR64ri32: case X86::OR64ri8: case X86::OR32ri: | |
3449 case X86::OR32ri8: case X86::OR16ri: case X86::OR16ri8: | |
3450 case X86::OR8ri: case X86::OR64rr: case X86::OR32rr: | |
3451 case X86::OR16rr: case X86::OR8rr: case X86::OR64rm: | |
3452 case X86::OR32rm: case X86::OR16rm: case X86::OR8rm: | |
3453 case X86::NEG8r: case X86::NEG16r: case X86::NEG32r: case X86::NEG64r: | |
3454 case X86::SAR8r1: case X86::SAR16r1: case X86::SAR32r1:case X86::SAR64r1: | |
3455 case X86::SHR8r1: case X86::SHR16r1: case X86::SHR32r1:case X86::SHR64r1: | |
3456 case X86::SHL8r1: case X86::SHL16r1: case X86::SHL32r1:case X86::SHL64r1: | |
3457 case X86::ADC32ri: case X86::ADC32ri8: | |
3458 case X86::ADC32rr: case X86::ADC64ri32: | |
3459 case X86::ADC64ri8: case X86::ADC64rr: | |
3460 case X86::SBB32ri: case X86::SBB32ri8: | |
3461 case X86::SBB32rr: case X86::SBB64ri32: | |
3462 case X86::SBB64ri8: case X86::SBB64rr: | |
3463 case X86::ANDN32rr: case X86::ANDN32rm: | |
3464 case X86::ANDN64rr: case X86::ANDN64rm: | |
3465 case X86::BEXTR32rr: case X86::BEXTR64rr: | |
3466 case X86::BEXTR32rm: case X86::BEXTR64rm: | |
3467 case X86::BLSI32rr: case X86::BLSI32rm: | |
3468 case X86::BLSI64rr: case X86::BLSI64rm: | |
3469 case X86::BLSMSK32rr:case X86::BLSMSK32rm: | |
3470 case X86::BLSMSK64rr:case X86::BLSMSK64rm: | |
3471 case X86::BLSR32rr: case X86::BLSR32rm: | |
3472 case X86::BLSR64rr: case X86::BLSR64rm: | |
3473 case X86::BZHI32rr: case X86::BZHI32rm: | |
3474 case X86::BZHI64rr: case X86::BZHI64rm: | |
3475 case X86::LZCNT16rr: case X86::LZCNT16rm: | |
3476 case X86::LZCNT32rr: case X86::LZCNT32rm: | |
3477 case X86::LZCNT64rr: case X86::LZCNT64rm: | |
3478 case X86::POPCNT16rr:case X86::POPCNT16rm: | |
3479 case X86::POPCNT32rr:case X86::POPCNT32rm: | |
3480 case X86::POPCNT64rr:case X86::POPCNT64rm: | |
3481 case X86::TZCNT16rr: case X86::TZCNT16rm: | |
3482 case X86::TZCNT32rr: case X86::TZCNT32rm: | |
3483 case X86::TZCNT64rr: case X86::TZCNT64rm: | |
3484 return true; | |
3485 } | |
3486 } | |
3487 | |
3488 /// optimizeCompareInstr - Check if there exists an earlier instruction that | |
3489 /// operates on the same source operands and sets flags in the same way as | |
3490 /// Compare; remove Compare if possible. | |
3491 bool X86InstrInfo:: | |
3492 optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2, | |
3493 int CmpMask, int CmpValue, | |
3494 const MachineRegisterInfo *MRI) const { | |
3495 // Check whether we can replace SUB with CMP. | |
3496 unsigned NewOpcode = 0; | |
3497 switch (CmpInstr->getOpcode()) { | |
3498 default: break; | |
3499 case X86::SUB64ri32: | |
3500 case X86::SUB64ri8: | |
3501 case X86::SUB32ri: | |
3502 case X86::SUB32ri8: | |
3503 case X86::SUB16ri: | |
3504 case X86::SUB16ri8: | |
3505 case X86::SUB8ri: | |
3506 case X86::SUB64rm: | |
3507 case X86::SUB32rm: | |
3508 case X86::SUB16rm: | |
3509 case X86::SUB8rm: | |
3510 case X86::SUB64rr: | |
3511 case X86::SUB32rr: | |
3512 case X86::SUB16rr: | |
3513 case X86::SUB8rr: { | |
3514 if (!MRI->use_nodbg_empty(CmpInstr->getOperand(0).getReg())) | |
3515 return false; | |
3516 // There is no use of the destination register, we can replace SUB with CMP. | |
3517 switch (CmpInstr->getOpcode()) { | |
3518 default: llvm_unreachable("Unreachable!"); | |
3519 case X86::SUB64rm: NewOpcode = X86::CMP64rm; break; | |
3520 case X86::SUB32rm: NewOpcode = X86::CMP32rm; break; | |
3521 case X86::SUB16rm: NewOpcode = X86::CMP16rm; break; | |
3522 case X86::SUB8rm: NewOpcode = X86::CMP8rm; break; | |
3523 case X86::SUB64rr: NewOpcode = X86::CMP64rr; break; | |
3524 case X86::SUB32rr: NewOpcode = X86::CMP32rr; break; | |
3525 case X86::SUB16rr: NewOpcode = X86::CMP16rr; break; | |
3526 case X86::SUB8rr: NewOpcode = X86::CMP8rr; break; | |
3527 case X86::SUB64ri32: NewOpcode = X86::CMP64ri32; break; | |
3528 case X86::SUB64ri8: NewOpcode = X86::CMP64ri8; break; | |
3529 case X86::SUB32ri: NewOpcode = X86::CMP32ri; break; | |
3530 case X86::SUB32ri8: NewOpcode = X86::CMP32ri8; break; | |
3531 case X86::SUB16ri: NewOpcode = X86::CMP16ri; break; | |
3532 case X86::SUB16ri8: NewOpcode = X86::CMP16ri8; break; | |
3533 case X86::SUB8ri: NewOpcode = X86::CMP8ri; break; | |
3534 } | |
3535 CmpInstr->setDesc(get(NewOpcode)); | |
3536 CmpInstr->RemoveOperand(0); | |
3537 // Fall through to optimize Cmp if Cmp is CMPrr or CMPri. | |
3538 if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm || | |
3539 NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm) | |
3540 return false; | |
3541 } | |
3542 } | |
3543 | |
3544 // Get the unique definition of SrcReg. | |
3545 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); | |
3546 if (!MI) return false; | |
3547 | |
3548 // CmpInstr is the first instruction of the BB. | |
3549 MachineBasicBlock::iterator I = CmpInstr, Def = MI; | |
3550 | |
3551 // If we are comparing against zero, check whether we can use MI to update | |
3552 // EFLAGS. If MI is not in the same BB as CmpInstr, do not optimize. | |
3553 bool IsCmpZero = (SrcReg2 == 0 && CmpValue == 0); | |
3554 if (IsCmpZero && (MI->getParent() != CmpInstr->getParent() || | |
3555 !isDefConvertible(MI))) | |
3556 return false; | |
3557 | |
3558 // We are searching for an earlier instruction that can make CmpInstr | |
3559 // redundant and that instruction will be saved in Sub. | |
3560 MachineInstr *Sub = NULL; | |
3561 const TargetRegisterInfo *TRI = &getRegisterInfo(); | |
3562 | |
3563 // We iterate backward, starting from the instruction before CmpInstr and | |
3564 // stop when reaching the definition of a source register or done with the BB. | |
3565 // RI points to the instruction before CmpInstr. | |
3566 // If the definition is in this basic block, RE points to the definition; | |
3567 // otherwise, RE is the rend of the basic block. | |
3568 MachineBasicBlock::reverse_iterator | |
3569 RI = MachineBasicBlock::reverse_iterator(I), | |
3570 RE = CmpInstr->getParent() == MI->getParent() ? | |
3571 MachineBasicBlock::reverse_iterator(++Def) /* points to MI */ : | |
3572 CmpInstr->getParent()->rend(); | |
3573 MachineInstr *Movr0Inst = 0; | |
3574 for (; RI != RE; ++RI) { | |
3575 MachineInstr *Instr = &*RI; | |
3576 // Check whether CmpInstr can be made redundant by the current instruction. | |
3577 if (!IsCmpZero && | |
3578 isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpValue, Instr)) { | |
3579 Sub = Instr; | |
3580 break; | |
3581 } | |
3582 | |
3583 if (Instr->modifiesRegister(X86::EFLAGS, TRI) || | |
3584 Instr->readsRegister(X86::EFLAGS, TRI)) { | |
3585 // This instruction modifies or uses EFLAGS. | |
3586 | |
3587 // MOV32r0 etc. are implemented with xor which clobbers condition code. | |
3588 // They are safe to move up, if the definition to EFLAGS is dead and | |
3589 // earlier instructions do not read or write EFLAGS. | |
3590 if (!Movr0Inst && Instr->getOpcode() == X86::MOV32r0 && | |
3591 Instr->registerDefIsDead(X86::EFLAGS, TRI)) { | |
3592 Movr0Inst = Instr; | |
3593 continue; | |
3594 } | |
3595 | |
3596 // We can't remove CmpInstr. | |
3597 return false; | |
3598 } | |
3599 } | |
3600 | |
3601 // Return false if no candidates exist. | |
3602 if (!IsCmpZero && !Sub) | |
3603 return false; | |
3604 | |
3605 bool IsSwapped = (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && | |
3606 Sub->getOperand(2).getReg() == SrcReg); | |
3607 | |
3608 // Scan forward from the instruction after CmpInstr for uses of EFLAGS. | |
3609 // It is safe to remove CmpInstr if EFLAGS is redefined or killed. | |
3610 // If we are done with the basic block, we need to check whether EFLAGS is | |
3611 // live-out. | |
3612 bool IsSafe = false; | |
3613 SmallVector<std::pair<MachineInstr*, unsigned /*NewOpc*/>, 4> OpsToUpdate; | |
3614 MachineBasicBlock::iterator E = CmpInstr->getParent()->end(); | |
3615 for (++I; I != E; ++I) { | |
3616 const MachineInstr &Instr = *I; | |
3617 bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI); | |
3618 bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI); | |
3619 // We should check the usage if this instruction uses and updates EFLAGS. | |
3620 if (!UseEFLAGS && ModifyEFLAGS) { | |
3621 // It is safe to remove CmpInstr if EFLAGS is updated again. | |
3622 IsSafe = true; | |
3623 break; | |
3624 } | |
3625 if (!UseEFLAGS && !ModifyEFLAGS) | |
3626 continue; | |
3627 | |
3628 // EFLAGS is used by this instruction. | |
3629 X86::CondCode OldCC; | |
3630 bool OpcIsSET = false; | |
3631 if (IsCmpZero || IsSwapped) { | |
3632 // We decode the condition code from opcode. | |
3633 if (Instr.isBranch()) | |
3634 OldCC = getCondFromBranchOpc(Instr.getOpcode()); | |
3635 else { | |
3636 OldCC = getCondFromSETOpc(Instr.getOpcode()); | |
3637 if (OldCC != X86::COND_INVALID) | |
3638 OpcIsSET = true; | |
3639 else | |
3640 OldCC = X86::getCondFromCMovOpc(Instr.getOpcode()); | |
3641 } | |
3642 if (OldCC == X86::COND_INVALID) return false; | |
3643 } | |
3644 if (IsCmpZero) { | |
3645 switch (OldCC) { | |
3646 default: break; | |
3647 case X86::COND_A: case X86::COND_AE: | |
3648 case X86::COND_B: case X86::COND_BE: | |
3649 case X86::COND_G: case X86::COND_GE: | |
3650 case X86::COND_L: case X86::COND_LE: | |
3651 case X86::COND_O: case X86::COND_NO: | |
3652 // CF and OF are used, we can't perform this optimization. | |
3653 return false; | |
3654 } | |
3655 } else if (IsSwapped) { | |
3656 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs | |
3657 // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. | |
3658 // We swap the condition code and synthesize the new opcode. | |
3659 X86::CondCode NewCC = getSwappedCondition(OldCC); | |
3660 if (NewCC == X86::COND_INVALID) return false; | |
3661 | |
3662 // Synthesize the new opcode. | |
3663 bool HasMemoryOperand = Instr.hasOneMemOperand(); | |
3664 unsigned NewOpc; | |
3665 if (Instr.isBranch()) | |
3666 NewOpc = GetCondBranchFromCond(NewCC); | |
3667 else if(OpcIsSET) | |
3668 NewOpc = getSETFromCond(NewCC, HasMemoryOperand); | |
3669 else { | |
3670 unsigned DstReg = Instr.getOperand(0).getReg(); | |
3671 NewOpc = getCMovFromCond(NewCC, MRI->getRegClass(DstReg)->getSize(), | |
3672 HasMemoryOperand); | |
3673 } | |
3674 | |
3675 // Push the MachineInstr to OpsToUpdate. | |
3676 // If it is safe to remove CmpInstr, the condition code of these | |
3677 // instructions will be modified. | |
3678 OpsToUpdate.push_back(std::make_pair(&*I, NewOpc)); | |
3679 } | |
3680 if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) { | |
3681 // It is safe to remove CmpInstr if EFLAGS is updated again or killed. | |
3682 IsSafe = true; | |
3683 break; | |
3684 } | |
3685 } | |
3686 | |
3687 // If EFLAGS is not killed nor re-defined, we should check whether it is | |
3688 // live-out. If it is live-out, do not optimize. | |
3689 if ((IsCmpZero || IsSwapped) && !IsSafe) { | |
3690 MachineBasicBlock *MBB = CmpInstr->getParent(); | |
3691 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(), | |
3692 SE = MBB->succ_end(); SI != SE; ++SI) | |
3693 if ((*SI)->isLiveIn(X86::EFLAGS)) | |
3694 return false; | |
3695 } | |
3696 | |
3697 // The instruction to be updated is either Sub or MI. | |
3698 Sub = IsCmpZero ? MI : Sub; | |
3699 // Move Movr0Inst to the appropriate place before Sub. | |
3700 if (Movr0Inst) { | |
3701 // Look backwards until we find a def that doesn't use the current EFLAGS. | |
3702 Def = Sub; | |
3703 MachineBasicBlock::reverse_iterator | |
3704 InsertI = MachineBasicBlock::reverse_iterator(++Def), | |
3705 InsertE = Sub->getParent()->rend(); | |
3706 for (; InsertI != InsertE; ++InsertI) { | |
3707 MachineInstr *Instr = &*InsertI; | |
3708 if (!Instr->readsRegister(X86::EFLAGS, TRI) && | |
3709 Instr->modifiesRegister(X86::EFLAGS, TRI)) { | |
3710 Sub->getParent()->remove(Movr0Inst); | |
3711 Instr->getParent()->insert(MachineBasicBlock::iterator(Instr), | |
3712 Movr0Inst); | |
3713 break; | |
3714 } | |
3715 } | |
3716 if (InsertI == InsertE) | |
3717 return false; | |
3718 } | |
3719 | |
3720 // Make sure Sub instruction defines EFLAGS and mark the def live. | |
3721 unsigned i = 0, e = Sub->getNumOperands(); | |
3722 for (; i != e; ++i) { | |
3723 MachineOperand &MO = Sub->getOperand(i); | |
3724 if (MO.isReg() && MO.isDef() && MO.getReg() == X86::EFLAGS) { | |
3725 MO.setIsDead(false); | |
3726 break; | |
3727 } | |
3728 } | |
3729 assert(i != e && "Unable to locate a def EFLAGS operand"); | |
3730 | |
3731 CmpInstr->eraseFromParent(); | |
3732 | |
3733 // Modify the condition code of instructions in OpsToUpdate. | |
3734 for (unsigned i = 0, e = OpsToUpdate.size(); i < e; i++) | |
3735 OpsToUpdate[i].first->setDesc(get(OpsToUpdate[i].second)); | |
3736 return true; | |
3737 } | |
3738 | |
3739 /// optimizeLoadInstr - Try to remove the load by folding it to a register | |
3740 /// operand at the use. We fold the load instructions if load defines a virtual | |
3741 /// register, the virtual register is used once in the same BB, and the | |
3742 /// instructions in-between do not load or store, and have no side effects. | |
3743 MachineInstr* X86InstrInfo:: | |
3744 optimizeLoadInstr(MachineInstr *MI, const MachineRegisterInfo *MRI, | |
3745 unsigned &FoldAsLoadDefReg, | |
3746 MachineInstr *&DefMI) const { | |
3747 if (FoldAsLoadDefReg == 0) | |
3748 return 0; | |
3749 // To be conservative, if there exists another load, clear the load candidate. | |
3750 if (MI->mayLoad()) { | |
3751 FoldAsLoadDefReg = 0; | |
3752 return 0; | |
3753 } | |
3754 | |
3755 // Check whether we can move DefMI here. | |
3756 DefMI = MRI->getVRegDef(FoldAsLoadDefReg); | |
3757 assert(DefMI); | |
3758 bool SawStore = false; | |
3759 if (!DefMI->isSafeToMove(this, 0, SawStore)) | |
3760 return 0; | |
3761 | |
3762 // We try to commute MI if possible. | |
3763 unsigned IdxEnd = (MI->isCommutable()) ? 2 : 1; | |
3764 for (unsigned Idx = 0; Idx < IdxEnd; Idx++) { | |
3765 // Collect information about virtual register operands of MI. | |
3766 unsigned SrcOperandId = 0; | |
3767 bool FoundSrcOperand = false; | |
3768 for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) { | |
3769 MachineOperand &MO = MI->getOperand(i); | |
3770 if (!MO.isReg()) | |
3771 continue; | |
3772 unsigned Reg = MO.getReg(); | |
3773 if (Reg != FoldAsLoadDefReg) | |
3774 continue; | |
3775 // Do not fold if we have a subreg use or a def or multiple uses. | |
3776 if (MO.getSubReg() || MO.isDef() || FoundSrcOperand) | |
3777 return 0; | |
3778 | |
3779 SrcOperandId = i; | |
3780 FoundSrcOperand = true; | |
3781 } | |
3782 if (!FoundSrcOperand) return 0; | |
3783 | |
3784 // Check whether we can fold the def into SrcOperandId. | |
3785 SmallVector<unsigned, 8> Ops; | |
3786 Ops.push_back(SrcOperandId); | |
3787 MachineInstr *FoldMI = foldMemoryOperand(MI, Ops, DefMI); | |
3788 if (FoldMI) { | |
3789 FoldAsLoadDefReg = 0; | |
3790 return FoldMI; | |
3791 } | |
3792 | |
3793 if (Idx == 1) { | |
3794 // MI was changed but it didn't help, commute it back! | |
3795 commuteInstruction(MI, false); | |
3796 return 0; | |
3797 } | |
3798 | |
3799 // Check whether we can commute MI and enable folding. | |
3800 if (MI->isCommutable()) { | |
3801 MachineInstr *NewMI = commuteInstruction(MI, false); | |
3802 // Unable to commute. | |
3803 if (!NewMI) return 0; | |
3804 if (NewMI != MI) { | |
3805 // New instruction. It doesn't need to be kept. | |
3806 NewMI->eraseFromParent(); | |
3807 return 0; | |
3808 } | |
3809 } | |
3810 } | |
3811 return 0; | |
3812 } | |
3813 | |
3814 /// Expand2AddrUndef - Expand a single-def pseudo instruction to a two-addr | |
3815 /// instruction with two undef reads of the register being defined. This is | |
3816 /// used for mapping: | |
3817 /// %xmm4 = V_SET0 | |
3818 /// to: | |
3819 /// %xmm4 = PXORrr %xmm4<undef>, %xmm4<undef> | |
3820 /// | |
3821 static bool Expand2AddrUndef(MachineInstrBuilder &MIB, | |
3822 const MCInstrDesc &Desc) { | |
3823 assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction."); | |
3824 unsigned Reg = MIB->getOperand(0).getReg(); | |
3825 MIB->setDesc(Desc); | |
3826 | |
3827 // MachineInstr::addOperand() will insert explicit operands before any | |
3828 // implicit operands. | |
3829 MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef); | |
3830 // But we don't trust that. | |
3831 assert(MIB->getOperand(1).getReg() == Reg && | |
3832 MIB->getOperand(2).getReg() == Reg && "Misplaced operand"); | |
3833 return true; | |
3834 } | |
3835 | |
3836 bool X86InstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const { | |
3837 bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX(); | |
3838 MachineInstrBuilder MIB(*MI->getParent()->getParent(), MI); | |
3839 switch (MI->getOpcode()) { | |
3840 case X86::SETB_C8r: | |
3841 return Expand2AddrUndef(MIB, get(X86::SBB8rr)); | |
3842 case X86::SETB_C16r: | |
3843 return Expand2AddrUndef(MIB, get(X86::SBB16rr)); | |
3844 case X86::SETB_C32r: | |
3845 return Expand2AddrUndef(MIB, get(X86::SBB32rr)); | |
3846 case X86::SETB_C64r: | |
3847 return Expand2AddrUndef(MIB, get(X86::SBB64rr)); | |
3848 case X86::V_SET0: | |
3849 case X86::FsFLD0SS: | |
3850 case X86::FsFLD0SD: | |
3851 return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr)); | |
3852 case X86::AVX_SET0: | |
3853 assert(HasAVX && "AVX not supported"); | |
3854 return Expand2AddrUndef(MIB, get(X86::VXORPSYrr)); | |
3855 case X86::AVX512_512_SET0: | |
3856 return Expand2AddrUndef(MIB, get(X86::VPXORDZrr)); | |
3857 case X86::V_SETALLONES: | |
3858 return Expand2AddrUndef(MIB, get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr)); | |
3859 case X86::AVX2_SETALLONES: | |
3860 return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr)); | |
3861 case X86::TEST8ri_NOREX: | |
3862 MI->setDesc(get(X86::TEST8ri)); | |
3863 return true; | |
3864 case X86::KSET0W: return Expand2AddrUndef(MIB, get(X86::KXORWrr)); | |
3865 case X86::KSET1B: | |
3866 case X86::KSET1W: return Expand2AddrUndef(MIB, get(X86::KXNORWrr)); | |
3867 } | |
3868 return false; | |
3869 } | |
3870 | |
3871 static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode, | |
3872 const SmallVectorImpl<MachineOperand> &MOs, | |
3873 MachineInstr *MI, | |
3874 const TargetInstrInfo &TII) { | |
3875 // Create the base instruction with the memory operand as the first part. | |
3876 // Omit the implicit operands, something BuildMI can't do. | |
3877 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), | |
3878 MI->getDebugLoc(), true); | |
3879 MachineInstrBuilder MIB(MF, NewMI); | |
3880 unsigned NumAddrOps = MOs.size(); | |
3881 for (unsigned i = 0; i != NumAddrOps; ++i) | |
3882 MIB.addOperand(MOs[i]); | |
3883 if (NumAddrOps < 4) // FrameIndex only | |
3884 addOffset(MIB, 0); | |
3885 | |
3886 // Loop over the rest of the ri operands, converting them over. | |
3887 unsigned NumOps = MI->getDesc().getNumOperands()-2; | |
3888 for (unsigned i = 0; i != NumOps; ++i) { | |
3889 MachineOperand &MO = MI->getOperand(i+2); | |
3890 MIB.addOperand(MO); | |
3891 } | |
3892 for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) { | |
3893 MachineOperand &MO = MI->getOperand(i); | |
3894 MIB.addOperand(MO); | |
3895 } | |
3896 return MIB; | |
3897 } | |
3898 | |
3899 static MachineInstr *FuseInst(MachineFunction &MF, | |
3900 unsigned Opcode, unsigned OpNo, | |
3901 const SmallVectorImpl<MachineOperand> &MOs, | |
3902 MachineInstr *MI, const TargetInstrInfo &TII) { | |
3903 // Omit the implicit operands, something BuildMI can't do. | |
3904 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), | |
3905 MI->getDebugLoc(), true); | |
3906 MachineInstrBuilder MIB(MF, NewMI); | |
3907 | |
3908 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | |
3909 MachineOperand &MO = MI->getOperand(i); | |
3910 if (i == OpNo) { | |
3911 assert(MO.isReg() && "Expected to fold into reg operand!"); | |
3912 unsigned NumAddrOps = MOs.size(); | |
3913 for (unsigned i = 0; i != NumAddrOps; ++i) | |
3914 MIB.addOperand(MOs[i]); | |
3915 if (NumAddrOps < 4) // FrameIndex only | |
3916 addOffset(MIB, 0); | |
3917 } else { | |
3918 MIB.addOperand(MO); | |
3919 } | |
3920 } | |
3921 return MIB; | |
3922 } | |
3923 | |
3924 static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode, | |
3925 const SmallVectorImpl<MachineOperand> &MOs, | |
3926 MachineInstr *MI) { | |
3927 MachineFunction &MF = *MI->getParent()->getParent(); | |
3928 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode)); | |
3929 | |
3930 unsigned NumAddrOps = MOs.size(); | |
3931 for (unsigned i = 0; i != NumAddrOps; ++i) | |
3932 MIB.addOperand(MOs[i]); | |
3933 if (NumAddrOps < 4) // FrameIndex only | |
3934 addOffset(MIB, 0); | |
3935 return MIB.addImm(0); | |
3936 } | |
3937 | |
3938 MachineInstr* | |
3939 X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, | |
3940 MachineInstr *MI, unsigned i, | |
3941 const SmallVectorImpl<MachineOperand> &MOs, | |
3942 unsigned Size, unsigned Align) const { | |
3943 const DenseMap<unsigned, std::pair<unsigned,unsigned> > *OpcodeTablePtr = 0; | |
3944 bool isCallRegIndirect = TM.getSubtarget<X86Subtarget>().callRegIndirect(); | |
3945 bool isTwoAddrFold = false; | |
3946 | |
3947 // Atom favors register form of call. So, we do not fold loads into calls | |
3948 // when X86Subtarget is Atom. | |
3949 if (isCallRegIndirect && | |
3950 (MI->getOpcode() == X86::CALL32r || MI->getOpcode() == X86::CALL64r)) { | |
3951 return NULL; | |
3952 } | |
3953 | |
3954 unsigned NumOps = MI->getDesc().getNumOperands(); | |
3955 bool isTwoAddr = NumOps > 1 && | |
3956 MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1; | |
3957 | |
3958 // FIXME: AsmPrinter doesn't know how to handle | |
3959 // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding. | |
3960 if (MI->getOpcode() == X86::ADD32ri && | |
3961 MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS) | |
3962 return NULL; | |
3963 | |
3964 MachineInstr *NewMI = NULL; | |
3965 // Folding a memory location into the two-address part of a two-address | |
3966 // instruction is different than folding it other places. It requires | |
3967 // replacing the *two* registers with the memory location. | |
3968 if (isTwoAddr && NumOps >= 2 && i < 2 && | |
3969 MI->getOperand(0).isReg() && | |
3970 MI->getOperand(1).isReg() && | |
3971 MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) { | |
3972 OpcodeTablePtr = &RegOp2MemOpTable2Addr; | |
3973 isTwoAddrFold = true; | |
3974 } else if (i == 0) { // If operand 0 | |
3975 if (MI->getOpcode() == X86::MOV32r0) { | |
3976 NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI); | |
3977 if (NewMI) | |
3978 return NewMI; | |
3979 } | |
3980 | |
3981 OpcodeTablePtr = &RegOp2MemOpTable0; | |
3982 } else if (i == 1) { | |
3983 OpcodeTablePtr = &RegOp2MemOpTable1; | |
3984 } else if (i == 2) { | |
3985 OpcodeTablePtr = &RegOp2MemOpTable2; | |
3986 } else if (i == 3) { | |
3987 OpcodeTablePtr = &RegOp2MemOpTable3; | |
3988 } | |
3989 | |
3990 // If table selected... | |
3991 if (OpcodeTablePtr) { | |
3992 // Find the Opcode to fuse | |
3993 DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I = | |
3994 OpcodeTablePtr->find(MI->getOpcode()); | |
3995 if (I != OpcodeTablePtr->end()) { | |
3996 unsigned Opcode = I->second.first; | |
3997 unsigned MinAlign = (I->second.second & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT; | |
3998 if (Align < MinAlign) | |
3999 return NULL; | |
4000 bool NarrowToMOV32rm = false; | |
4001 if (Size) { | |
4002 unsigned RCSize = getRegClass(MI->getDesc(), i, &RI, MF)->getSize(); | |
4003 if (Size < RCSize) { | |
4004 // Check if it's safe to fold the load. If the size of the object is | |
4005 // narrower than the load width, then it's not. | |
4006 if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4) | |
4007 return NULL; | |
4008 // If this is a 64-bit load, but the spill slot is 32, then we can do | |
4009 // a 32-bit load which is implicitly zero-extended. This likely is due | |
4010 // to liveintervalanalysis remat'ing a load from stack slot. | |
4011 if (MI->getOperand(0).getSubReg() || MI->getOperand(1).getSubReg()) | |
4012 return NULL; | |
4013 Opcode = X86::MOV32rm; | |
4014 NarrowToMOV32rm = true; | |
4015 } | |
4016 } | |
4017 | |
4018 if (isTwoAddrFold) | |
4019 NewMI = FuseTwoAddrInst(MF, Opcode, MOs, MI, *this); | |
4020 else | |
4021 NewMI = FuseInst(MF, Opcode, i, MOs, MI, *this); | |
4022 | |
4023 if (NarrowToMOV32rm) { | |
4024 // If this is the special case where we use a MOV32rm to load a 32-bit | |
4025 // value and zero-extend the top bits. Change the destination register | |
4026 // to a 32-bit one. | |
4027 unsigned DstReg = NewMI->getOperand(0).getReg(); | |
4028 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) | |
4029 NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, | |
4030 X86::sub_32bit)); | |
4031 else | |
4032 NewMI->getOperand(0).setSubReg(X86::sub_32bit); | |
4033 } | |
4034 return NewMI; | |
4035 } | |
4036 } | |
4037 | |
4038 // No fusion | |
4039 if (PrintFailedFusing && !MI->isCopy()) | |
4040 dbgs() << "We failed to fuse operand " << i << " in " << *MI; | |
4041 return NULL; | |
4042 } | |
4043 | |
4044 /// hasPartialRegUpdate - Return true for all instructions that only update | |
4045 /// the first 32 or 64-bits of the destination register and leave the rest | |
4046 /// unmodified. This can be used to avoid folding loads if the instructions | |
4047 /// only update part of the destination register, and the non-updated part is | |
4048 /// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these | |
4049 /// instructions breaks the partial register dependency and it can improve | |
4050 /// performance. e.g.: | |
4051 /// | |
4052 /// movss (%rdi), %xmm0 | |
4053 /// cvtss2sd %xmm0, %xmm0 | |
4054 /// | |
4055 /// Instead of | |
4056 /// cvtss2sd (%rdi), %xmm0 | |
4057 /// | |
4058 /// FIXME: This should be turned into a TSFlags. | |
4059 /// | |
4060 static bool hasPartialRegUpdate(unsigned Opcode) { | |
4061 switch (Opcode) { | |
4062 case X86::CVTSI2SSrr: | |
4063 case X86::CVTSI2SS64rr: | |
4064 case X86::CVTSI2SDrr: | |
4065 case X86::CVTSI2SD64rr: | |
4066 case X86::CVTSD2SSrr: | |
4067 case X86::Int_CVTSD2SSrr: | |
4068 case X86::CVTSS2SDrr: | |
4069 case X86::Int_CVTSS2SDrr: | |
4070 case X86::RCPSSr: | |
4071 case X86::RCPSSr_Int: | |
4072 case X86::ROUNDSDr: | |
4073 case X86::ROUNDSDr_Int: | |
4074 case X86::ROUNDSSr: | |
4075 case X86::ROUNDSSr_Int: | |
4076 case X86::RSQRTSSr: | |
4077 case X86::RSQRTSSr_Int: | |
4078 case X86::SQRTSSr: | |
4079 case X86::SQRTSSr_Int: | |
4080 return true; | |
4081 } | |
4082 | |
4083 return false; | |
4084 } | |
4085 | |
4086 /// getPartialRegUpdateClearance - Inform the ExeDepsFix pass how many idle | |
4087 /// instructions we would like before a partial register update. | |
4088 unsigned X86InstrInfo:: | |
4089 getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum, | |
4090 const TargetRegisterInfo *TRI) const { | |
4091 if (OpNum != 0 || !hasPartialRegUpdate(MI->getOpcode())) | |
4092 return 0; | |
4093 | |
4094 // If MI is marked as reading Reg, the partial register update is wanted. | |
4095 const MachineOperand &MO = MI->getOperand(0); | |
4096 unsigned Reg = MO.getReg(); | |
4097 if (TargetRegisterInfo::isVirtualRegister(Reg)) { | |
4098 if (MO.readsReg() || MI->readsVirtualRegister(Reg)) | |
4099 return 0; | |
4100 } else { | |
4101 if (MI->readsRegister(Reg, TRI)) | |
4102 return 0; | |
4103 } | |
4104 | |
4105 // If any of the preceding 16 instructions are reading Reg, insert a | |
4106 // dependency breaking instruction. The magic number is based on a few | |
4107 // Nehalem experiments. | |
4108 return 16; | |
4109 } | |
4110 | |
4111 // Return true for any instruction the copies the high bits of the first source | |
4112 // operand into the unused high bits of the destination operand. | |
4113 static bool hasUndefRegUpdate(unsigned Opcode) { | |
4114 switch (Opcode) { | |
4115 case X86::VCVTSI2SSrr: | |
4116 case X86::Int_VCVTSI2SSrr: | |
4117 case X86::VCVTSI2SS64rr: | |
4118 case X86::Int_VCVTSI2SS64rr: | |
4119 case X86::VCVTSI2SDrr: | |
4120 case X86::Int_VCVTSI2SDrr: | |
4121 case X86::VCVTSI2SD64rr: | |
4122 case X86::Int_VCVTSI2SD64rr: | |
4123 case X86::VCVTSD2SSrr: | |
4124 case X86::Int_VCVTSD2SSrr: | |
4125 case X86::VCVTSS2SDrr: | |
4126 case X86::Int_VCVTSS2SDrr: | |
4127 case X86::VRCPSSr: | |
4128 case X86::VROUNDSDr: | |
4129 case X86::VROUNDSDr_Int: | |
4130 case X86::VROUNDSSr: | |
4131 case X86::VROUNDSSr_Int: | |
4132 case X86::VRSQRTSSr: | |
4133 case X86::VSQRTSSr: | |
4134 | |
4135 // AVX-512 | |
4136 case X86::VCVTSD2SSZrr: | |
4137 case X86::VCVTSS2SDZrr: | |
4138 return true; | |
4139 } | |
4140 | |
4141 return false; | |
4142 } | |
4143 | |
4144 /// Inform the ExeDepsFix pass how many idle instructions we would like before | |
4145 /// certain undef register reads. | |
4146 /// | |
4147 /// This catches the VCVTSI2SD family of instructions: | |
4148 /// | |
4149 /// vcvtsi2sdq %rax, %xmm0<undef>, %xmm14 | |
4150 /// | |
4151 /// We should to be careful *not* to catch VXOR idioms which are presumably | |
4152 /// handled specially in the pipeline: | |
4153 /// | |
4154 /// vxorps %xmm1<undef>, %xmm1<undef>, %xmm1 | |
4155 /// | |
4156 /// Like getPartialRegUpdateClearance, this makes a strong assumption that the | |
4157 /// high bits that are passed-through are not live. | |
4158 unsigned X86InstrInfo:: | |
4159 getUndefRegClearance(const MachineInstr *MI, unsigned &OpNum, | |
4160 const TargetRegisterInfo *TRI) const { | |
4161 if (!hasUndefRegUpdate(MI->getOpcode())) | |
4162 return 0; | |
4163 | |
4164 // Set the OpNum parameter to the first source operand. | |
4165 OpNum = 1; | |
4166 | |
4167 const MachineOperand &MO = MI->getOperand(OpNum); | |
4168 if (MO.isUndef() && TargetRegisterInfo::isPhysicalRegister(MO.getReg())) { | |
4169 // Use the same magic number as getPartialRegUpdateClearance. | |
4170 return 16; | |
4171 } | |
4172 return 0; | |
4173 } | |
4174 | |
4175 void X86InstrInfo:: | |
4176 breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum, | |
4177 const TargetRegisterInfo *TRI) const { | |
4178 unsigned Reg = MI->getOperand(OpNum).getReg(); | |
4179 // If MI kills this register, the false dependence is already broken. | |
4180 if (MI->killsRegister(Reg, TRI)) | |
4181 return; | |
4182 if (X86::VR128RegClass.contains(Reg)) { | |
4183 // These instructions are all floating point domain, so xorps is the best | |
4184 // choice. | |
4185 bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX(); | |
4186 unsigned Opc = HasAVX ? X86::VXORPSrr : X86::XORPSrr; | |
4187 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(Opc), Reg) | |
4188 .addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef); | |
4189 } else if (X86::VR256RegClass.contains(Reg)) { | |
4190 // Use vxorps to clear the full ymm register. | |
4191 // It wants to read and write the xmm sub-register. | |
4192 unsigned XReg = TRI->getSubReg(Reg, X86::sub_xmm); | |
4193 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(X86::VXORPSrr), XReg) | |
4194 .addReg(XReg, RegState::Undef).addReg(XReg, RegState::Undef) | |
4195 .addReg(Reg, RegState::ImplicitDefine); | |
4196 } else | |
4197 return; | |
4198 MI->addRegisterKilled(Reg, TRI, true); | |
4199 } | |
4200 | |
4201 static MachineInstr* foldPatchpoint(MachineFunction &MF, | |
4202 MachineInstr *MI, | |
4203 const SmallVectorImpl<unsigned> &Ops, | |
4204 int FrameIndex, | |
4205 const TargetInstrInfo &TII) { | |
4206 unsigned StartIdx = 0; | |
4207 switch (MI->getOpcode()) { | |
4208 case TargetOpcode::STACKMAP: | |
4209 StartIdx = 2; // Skip ID, nShadowBytes. | |
4210 break; | |
4211 case TargetOpcode::PATCHPOINT: { | |
4212 // For PatchPoint, the call args are not foldable. | |
4213 PatchPointOpers opers(MI); | |
4214 StartIdx = opers.getVarIdx(); | |
4215 break; | |
4216 } | |
4217 default: | |
4218 llvm_unreachable("unexpected stackmap opcode"); | |
4219 } | |
4220 | |
4221 // Return false if any operands requested for folding are not foldable (not | |
4222 // part of the stackmap's live values). | |
4223 for (SmallVectorImpl<unsigned>::const_iterator I = Ops.begin(), E = Ops.end(); | |
4224 I != E; ++I) { | |
4225 if (*I < StartIdx) | |
4226 return 0; | |
4227 } | |
4228 | |
4229 MachineInstr *NewMI = | |
4230 MF.CreateMachineInstr(TII.get(MI->getOpcode()), MI->getDebugLoc(), true); | |
4231 MachineInstrBuilder MIB(MF, NewMI); | |
4232 | |
4233 // No need to fold return, the meta data, and function arguments | |
4234 for (unsigned i = 0; i < StartIdx; ++i) | |
4235 MIB.addOperand(MI->getOperand(i)); | |
4236 | |
4237 for (unsigned i = StartIdx; i < MI->getNumOperands(); ++i) { | |
4238 MachineOperand &MO = MI->getOperand(i); | |
4239 if (std::find(Ops.begin(), Ops.end(), i) != Ops.end()) { | |
4240 assert(MO.getReg() && "patchpoint can only fold a vreg operand"); | |
4241 // Compute the spill slot size and offset. | |
4242 const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(MO.getReg()); | |
4243 unsigned SpillSize; | |
4244 unsigned SpillOffset; | |
4245 bool Valid = TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize, | |
4246 SpillOffset, &MF.getTarget()); | |
4247 if (!Valid) | |
4248 report_fatal_error("cannot spill patchpoint subregister operand"); | |
4249 | |
4250 MIB.addOperand(MachineOperand::CreateImm(StackMaps::IndirectMemRefOp)); | |
4251 MIB.addOperand(MachineOperand::CreateImm(SpillSize)); | |
4252 MIB.addOperand(MachineOperand::CreateFI(FrameIndex)); | |
4253 addOffset(MIB, SpillOffset); | |
4254 } | |
4255 else | |
4256 MIB.addOperand(MO); | |
4257 } | |
4258 return NewMI; | |
4259 } | |
4260 | |
4261 MachineInstr* | |
4262 X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr *MI, | |
4263 const SmallVectorImpl<unsigned> &Ops, | |
4264 int FrameIndex) const { | |
4265 // Special case stack map and patch point intrinsics. | |
4266 if (MI->getOpcode() == TargetOpcode::STACKMAP | |
4267 || MI->getOpcode() == TargetOpcode::PATCHPOINT) { | |
4268 return foldPatchpoint(MF, MI, Ops, FrameIndex, *this); | |
4269 } | |
4270 // Check switch flag | |
4271 if (NoFusing) return NULL; | |
4272 | |
4273 // Unless optimizing for size, don't fold to avoid partial | |
4274 // register update stalls | |
4275 if (!MF.getFunction()->getAttributes(). | |
4276 hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize) && | |
4277 hasPartialRegUpdate(MI->getOpcode())) | |
4278 return 0; | |
4279 | |
4280 const MachineFrameInfo *MFI = MF.getFrameInfo(); | |
4281 unsigned Size = MFI->getObjectSize(FrameIndex); | |
4282 unsigned Alignment = MFI->getObjectAlignment(FrameIndex); | |
4283 // If the function stack isn't realigned we don't want to fold instructions | |
4284 // that need increased alignment. | |
4285 if (!RI.needsStackRealignment(MF)) | |
4286 Alignment = std::min(Alignment, TM.getFrameLowering()->getStackAlignment()); | |
4287 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { | |
4288 unsigned NewOpc = 0; | |
4289 unsigned RCSize = 0; | |
4290 switch (MI->getOpcode()) { | |
4291 default: return NULL; | |
4292 case X86::TEST8rr: NewOpc = X86::CMP8ri; RCSize = 1; break; | |
4293 case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break; | |
4294 case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break; | |
4295 case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break; | |
4296 } | |
4297 // Check if it's safe to fold the load. If the size of the object is | |
4298 // narrower than the load width, then it's not. | |
4299 if (Size < RCSize) | |
4300 return NULL; | |
4301 // Change to CMPXXri r, 0 first. | |
4302 MI->setDesc(get(NewOpc)); | |
4303 MI->getOperand(1).ChangeToImmediate(0); | |
4304 } else if (Ops.size() != 1) | |
4305 return NULL; | |
4306 | |
4307 SmallVector<MachineOperand,4> MOs; | |
4308 MOs.push_back(MachineOperand::CreateFI(FrameIndex)); | |
4309 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, Size, Alignment); | |
4310 } | |
4311 | |
4312 MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, | |
4313 MachineInstr *MI, | |
4314 const SmallVectorImpl<unsigned> &Ops, | |
4315 MachineInstr *LoadMI) const { | |
4316 // If loading from a FrameIndex, fold directly from the FrameIndex. | |
4317 unsigned NumOps = LoadMI->getDesc().getNumOperands(); | |
4318 int FrameIndex; | |
4319 if (isLoadFromStackSlot(LoadMI, FrameIndex)) | |
4320 return foldMemoryOperandImpl(MF, MI, Ops, FrameIndex); | |
4321 | |
4322 // Check switch flag | |
4323 if (NoFusing) return NULL; | |
4324 | |
4325 // Unless optimizing for size, don't fold to avoid partial | |
4326 // register update stalls | |
4327 if (!MF.getFunction()->getAttributes(). | |
4328 hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize) && | |
4329 hasPartialRegUpdate(MI->getOpcode())) | |
4330 return 0; | |
4331 | |
4332 // Determine the alignment of the load. | |
4333 unsigned Alignment = 0; | |
4334 if (LoadMI->hasOneMemOperand()) | |
4335 Alignment = (*LoadMI->memoperands_begin())->getAlignment(); | |
4336 else | |
4337 switch (LoadMI->getOpcode()) { | |
4338 case X86::AVX2_SETALLONES: | |
4339 case X86::AVX_SET0: | |
4340 Alignment = 32; | |
4341 break; | |
4342 case X86::V_SET0: | |
4343 case X86::V_SETALLONES: | |
4344 Alignment = 16; | |
4345 break; | |
4346 case X86::FsFLD0SD: | |
4347 Alignment = 8; | |
4348 break; | |
4349 case X86::FsFLD0SS: | |
4350 Alignment = 4; | |
4351 break; | |
4352 default: | |
4353 return 0; | |
4354 } | |
4355 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { | |
4356 unsigned NewOpc = 0; | |
4357 switch (MI->getOpcode()) { | |
4358 default: return NULL; | |
4359 case X86::TEST8rr: NewOpc = X86::CMP8ri; break; | |
4360 case X86::TEST16rr: NewOpc = X86::CMP16ri8; break; | |
4361 case X86::TEST32rr: NewOpc = X86::CMP32ri8; break; | |
4362 case X86::TEST64rr: NewOpc = X86::CMP64ri8; break; | |
4363 } | |
4364 // Change to CMPXXri r, 0 first. | |
4365 MI->setDesc(get(NewOpc)); | |
4366 MI->getOperand(1).ChangeToImmediate(0); | |
4367 } else if (Ops.size() != 1) | |
4368 return NULL; | |
4369 | |
4370 // Make sure the subregisters match. | |
4371 // Otherwise we risk changing the size of the load. | |
4372 if (LoadMI->getOperand(0).getSubReg() != MI->getOperand(Ops[0]).getSubReg()) | |
4373 return NULL; | |
4374 | |
4375 SmallVector<MachineOperand,X86::AddrNumOperands> MOs; | |
4376 switch (LoadMI->getOpcode()) { | |
4377 case X86::V_SET0: | |
4378 case X86::V_SETALLONES: | |
4379 case X86::AVX2_SETALLONES: | |
4380 case X86::AVX_SET0: | |
4381 case X86::FsFLD0SD: | |
4382 case X86::FsFLD0SS: { | |
4383 // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure. | |
4384 // Create a constant-pool entry and operands to load from it. | |
4385 | |
4386 // Medium and large mode can't fold loads this way. | |
4387 if (TM.getCodeModel() != CodeModel::Small && | |
4388 TM.getCodeModel() != CodeModel::Kernel) | |
4389 return NULL; | |
4390 | |
4391 // x86-32 PIC requires a PIC base register for constant pools. | |
4392 unsigned PICBase = 0; | |
4393 if (TM.getRelocationModel() == Reloc::PIC_) { | |
4394 if (TM.getSubtarget<X86Subtarget>().is64Bit()) | |
4395 PICBase = X86::RIP; | |
4396 else | |
4397 // FIXME: PICBase = getGlobalBaseReg(&MF); | |
4398 // This doesn't work for several reasons. | |
4399 // 1. GlobalBaseReg may have been spilled. | |
4400 // 2. It may not be live at MI. | |
4401 return NULL; | |
4402 } | |
4403 | |
4404 // Create a constant-pool entry. | |
4405 MachineConstantPool &MCP = *MF.getConstantPool(); | |
4406 Type *Ty; | |
4407 unsigned Opc = LoadMI->getOpcode(); | |
4408 if (Opc == X86::FsFLD0SS) | |
4409 Ty = Type::getFloatTy(MF.getFunction()->getContext()); | |
4410 else if (Opc == X86::FsFLD0SD) | |
4411 Ty = Type::getDoubleTy(MF.getFunction()->getContext()); | |
4412 else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX_SET0) | |
4413 Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 8); | |
4414 else | |
4415 Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4); | |
4416 | |
4417 bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX2_SETALLONES); | |
4418 const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) : | |
4419 Constant::getNullValue(Ty); | |
4420 unsigned CPI = MCP.getConstantPoolIndex(C, Alignment); | |
4421 | |
4422 // Create operands to load from the constant pool entry. | |
4423 MOs.push_back(MachineOperand::CreateReg(PICBase, false)); | |
4424 MOs.push_back(MachineOperand::CreateImm(1)); | |
4425 MOs.push_back(MachineOperand::CreateReg(0, false)); | |
4426 MOs.push_back(MachineOperand::CreateCPI(CPI, 0)); | |
4427 MOs.push_back(MachineOperand::CreateReg(0, false)); | |
4428 break; | |
4429 } | |
4430 default: { | |
4431 if ((LoadMI->getOpcode() == X86::MOVSSrm || | |
4432 LoadMI->getOpcode() == X86::VMOVSSrm) && | |
4433 MF.getRegInfo().getRegClass(LoadMI->getOperand(0).getReg())->getSize() | |
4434 > 4) | |
4435 // These instructions only load 32 bits, we can't fold them if the | |
4436 // destination register is wider than 32 bits (4 bytes). | |
4437 return NULL; | |
4438 if ((LoadMI->getOpcode() == X86::MOVSDrm || | |
4439 LoadMI->getOpcode() == X86::VMOVSDrm) && | |
4440 MF.getRegInfo().getRegClass(LoadMI->getOperand(0).getReg())->getSize() | |
4441 > 8) | |
4442 // These instructions only load 64 bits, we can't fold them if the | |
4443 // destination register is wider than 64 bits (8 bytes). | |
4444 return NULL; | |
4445 | |
4446 // Folding a normal load. Just copy the load's address operands. | |
4447 for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i) | |
4448 MOs.push_back(LoadMI->getOperand(i)); | |
4449 break; | |
4450 } | |
4451 } | |
4452 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, 0, Alignment); | |
4453 } | |
4454 | |
4455 | |
4456 bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI, | |
4457 const SmallVectorImpl<unsigned> &Ops) const { | |
4458 // Check switch flag | |
4459 if (NoFusing) return 0; | |
4460 | |
4461 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { | |
4462 switch (MI->getOpcode()) { | |
4463 default: return false; | |
4464 case X86::TEST8rr: | |
4465 case X86::TEST16rr: | |
4466 case X86::TEST32rr: | |
4467 case X86::TEST64rr: | |
4468 return true; | |
4469 case X86::ADD32ri: | |
4470 // FIXME: AsmPrinter doesn't know how to handle | |
4471 // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding. | |
4472 if (MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS) | |
4473 return false; | |
4474 break; | |
4475 } | |
4476 } | |
4477 | |
4478 if (Ops.size() != 1) | |
4479 return false; | |
4480 | |
4481 unsigned OpNum = Ops[0]; | |
4482 unsigned Opc = MI->getOpcode(); | |
4483 unsigned NumOps = MI->getDesc().getNumOperands(); | |
4484 bool isTwoAddr = NumOps > 1 && | |
4485 MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1; | |
4486 | |
4487 // Folding a memory location into the two-address part of a two-address | |
4488 // instruction is different than folding it other places. It requires | |
4489 // replacing the *two* registers with the memory location. | |
4490 const DenseMap<unsigned, std::pair<unsigned,unsigned> > *OpcodeTablePtr = 0; | |
4491 if (isTwoAddr && NumOps >= 2 && OpNum < 2) { | |
4492 OpcodeTablePtr = &RegOp2MemOpTable2Addr; | |
4493 } else if (OpNum == 0) { // If operand 0 | |
4494 if (Opc == X86::MOV32r0) | |
4495 return true; | |
4496 | |
4497 OpcodeTablePtr = &RegOp2MemOpTable0; | |
4498 } else if (OpNum == 1) { | |
4499 OpcodeTablePtr = &RegOp2MemOpTable1; | |
4500 } else if (OpNum == 2) { | |
4501 OpcodeTablePtr = &RegOp2MemOpTable2; | |
4502 } else if (OpNum == 3) { | |
4503 OpcodeTablePtr = &RegOp2MemOpTable3; | |
4504 } | |
4505 | |
4506 if (OpcodeTablePtr && OpcodeTablePtr->count(Opc)) | |
4507 return true; | |
4508 return TargetInstrInfo::canFoldMemoryOperand(MI, Ops); | |
4509 } | |
4510 | |
4511 bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI, | |
4512 unsigned Reg, bool UnfoldLoad, bool UnfoldStore, | |
4513 SmallVectorImpl<MachineInstr*> &NewMIs) const { | |
4514 DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I = | |
4515 MemOp2RegOpTable.find(MI->getOpcode()); | |
4516 if (I == MemOp2RegOpTable.end()) | |
4517 return false; | |
4518 unsigned Opc = I->second.first; | |
4519 unsigned Index = I->second.second & TB_INDEX_MASK; | |
4520 bool FoldedLoad = I->second.second & TB_FOLDED_LOAD; | |
4521 bool FoldedStore = I->second.second & TB_FOLDED_STORE; | |
4522 if (UnfoldLoad && !FoldedLoad) | |
4523 return false; | |
4524 UnfoldLoad &= FoldedLoad; | |
4525 if (UnfoldStore && !FoldedStore) | |
4526 return false; | |
4527 UnfoldStore &= FoldedStore; | |
4528 | |
4529 const MCInstrDesc &MCID = get(Opc); | |
4530 const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF); | |
4531 if (!MI->hasOneMemOperand() && | |
4532 RC == &X86::VR128RegClass && | |
4533 !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast()) | |
4534 // Without memoperands, loadRegFromAddr and storeRegToStackSlot will | |
4535 // conservatively assume the address is unaligned. That's bad for | |
4536 // performance. | |
4537 return false; | |
4538 SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps; | |
4539 SmallVector<MachineOperand,2> BeforeOps; | |
4540 SmallVector<MachineOperand,2> AfterOps; | |
4541 SmallVector<MachineOperand,4> ImpOps; | |
4542 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | |
4543 MachineOperand &Op = MI->getOperand(i); | |
4544 if (i >= Index && i < Index + X86::AddrNumOperands) | |
4545 AddrOps.push_back(Op); | |
4546 else if (Op.isReg() && Op.isImplicit()) | |
4547 ImpOps.push_back(Op); | |
4548 else if (i < Index) | |
4549 BeforeOps.push_back(Op); | |
4550 else if (i > Index) | |
4551 AfterOps.push_back(Op); | |
4552 } | |
4553 | |
4554 // Emit the load instruction. | |
4555 if (UnfoldLoad) { | |
4556 std::pair<MachineInstr::mmo_iterator, | |
4557 MachineInstr::mmo_iterator> MMOs = | |
4558 MF.extractLoadMemRefs(MI->memoperands_begin(), | |
4559 MI->memoperands_end()); | |
4560 loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs); | |
4561 if (UnfoldStore) { | |
4562 // Address operands cannot be marked isKill. | |
4563 for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) { | |
4564 MachineOperand &MO = NewMIs[0]->getOperand(i); | |
4565 if (MO.isReg()) | |
4566 MO.setIsKill(false); | |
4567 } | |
4568 } | |
4569 } | |
4570 | |
4571 // Emit the data processing instruction. | |
4572 MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI->getDebugLoc(), true); | |
4573 MachineInstrBuilder MIB(MF, DataMI); | |
4574 | |
4575 if (FoldedStore) | |
4576 MIB.addReg(Reg, RegState::Define); | |
4577 for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i) | |
4578 MIB.addOperand(BeforeOps[i]); | |
4579 if (FoldedLoad) | |
4580 MIB.addReg(Reg); | |
4581 for (unsigned i = 0, e = AfterOps.size(); i != e; ++i) | |
4582 MIB.addOperand(AfterOps[i]); | |
4583 for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) { | |
4584 MachineOperand &MO = ImpOps[i]; | |
4585 MIB.addReg(MO.getReg(), | |
4586 getDefRegState(MO.isDef()) | | |
4587 RegState::Implicit | | |
4588 getKillRegState(MO.isKill()) | | |
4589 getDeadRegState(MO.isDead()) | | |
4590 getUndefRegState(MO.isUndef())); | |
4591 } | |
4592 // Change CMP32ri r, 0 back to TEST32rr r, r, etc. | |
4593 switch (DataMI->getOpcode()) { | |
4594 default: break; | |
4595 case X86::CMP64ri32: | |
4596 case X86::CMP64ri8: | |
4597 case X86::CMP32ri: | |
4598 case X86::CMP32ri8: | |
4599 case X86::CMP16ri: | |
4600 case X86::CMP16ri8: | |
4601 case X86::CMP8ri: { | |
4602 MachineOperand &MO0 = DataMI->getOperand(0); | |
4603 MachineOperand &MO1 = DataMI->getOperand(1); | |
4604 if (MO1.getImm() == 0) { | |
4605 unsigned NewOpc; | |
4606 switch (DataMI->getOpcode()) { | |
4607 default: llvm_unreachable("Unreachable!"); | |
4608 case X86::CMP64ri8: | |
4609 case X86::CMP64ri32: NewOpc = X86::TEST64rr; break; | |
4610 case X86::CMP32ri8: | |
4611 case X86::CMP32ri: NewOpc = X86::TEST32rr; break; | |
4612 case X86::CMP16ri8: | |
4613 case X86::CMP16ri: NewOpc = X86::TEST16rr; break; | |
4614 case X86::CMP8ri: NewOpc = X86::TEST8rr; break; | |
4615 } | |
4616 DataMI->setDesc(get(NewOpc)); | |
4617 MO1.ChangeToRegister(MO0.getReg(), false); | |
4618 } | |
4619 } | |
4620 } | |
4621 NewMIs.push_back(DataMI); | |
4622 | |
4623 // Emit the store instruction. | |
4624 if (UnfoldStore) { | |
4625 const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF); | |
4626 std::pair<MachineInstr::mmo_iterator, | |
4627 MachineInstr::mmo_iterator> MMOs = | |
4628 MF.extractStoreMemRefs(MI->memoperands_begin(), | |
4629 MI->memoperands_end()); | |
4630 storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs); | |
4631 } | |
4632 | |
4633 return true; | |
4634 } | |
4635 | |
4636 bool | |
4637 X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N, | |
4638 SmallVectorImpl<SDNode*> &NewNodes) const { | |
4639 if (!N->isMachineOpcode()) | |
4640 return false; | |
4641 | |
4642 DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I = | |
4643 MemOp2RegOpTable.find(N->getMachineOpcode()); | |
4644 if (I == MemOp2RegOpTable.end()) | |
4645 return false; | |
4646 unsigned Opc = I->second.first; | |
4647 unsigned Index = I->second.second & TB_INDEX_MASK; | |
4648 bool FoldedLoad = I->second.second & TB_FOLDED_LOAD; | |
4649 bool FoldedStore = I->second.second & TB_FOLDED_STORE; | |
4650 const MCInstrDesc &MCID = get(Opc); | |
4651 MachineFunction &MF = DAG.getMachineFunction(); | |
4652 const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF); | |
4653 unsigned NumDefs = MCID.NumDefs; | |
4654 std::vector<SDValue> AddrOps; | |
4655 std::vector<SDValue> BeforeOps; | |
4656 std::vector<SDValue> AfterOps; | |
4657 SDLoc dl(N); | |
4658 unsigned NumOps = N->getNumOperands(); | |
4659 for (unsigned i = 0; i != NumOps-1; ++i) { | |
4660 SDValue Op = N->getOperand(i); | |
4661 if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands) | |
4662 AddrOps.push_back(Op); | |
4663 else if (i < Index-NumDefs) | |
4664 BeforeOps.push_back(Op); | |
4665 else if (i > Index-NumDefs) | |
4666 AfterOps.push_back(Op); | |
4667 } | |
4668 SDValue Chain = N->getOperand(NumOps-1); | |
4669 AddrOps.push_back(Chain); | |
4670 | |
4671 // Emit the load instruction. | |
4672 SDNode *Load = 0; | |
4673 if (FoldedLoad) { | |
4674 EVT VT = *RC->vt_begin(); | |
4675 std::pair<MachineInstr::mmo_iterator, | |
4676 MachineInstr::mmo_iterator> MMOs = | |
4677 MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(), | |
4678 cast<MachineSDNode>(N)->memoperands_end()); | |
4679 if (!(*MMOs.first) && | |
4680 RC == &X86::VR128RegClass && | |
4681 !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast()) | |
4682 // Do not introduce a slow unaligned load. | |
4683 return false; | |
4684 unsigned Alignment = RC->getSize() == 32 ? 32 : 16; | |
4685 bool isAligned = (*MMOs.first) && | |
4686 (*MMOs.first)->getAlignment() >= Alignment; | |
4687 Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, TM), dl, | |
4688 VT, MVT::Other, AddrOps); | |
4689 NewNodes.push_back(Load); | |
4690 | |
4691 // Preserve memory reference information. | |
4692 cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second); | |
4693 } | |
4694 | |
4695 // Emit the data processing instruction. | |
4696 std::vector<EVT> VTs; | |
4697 const TargetRegisterClass *DstRC = 0; | |
4698 if (MCID.getNumDefs() > 0) { | |
4699 DstRC = getRegClass(MCID, 0, &RI, MF); | |
4700 VTs.push_back(*DstRC->vt_begin()); | |
4701 } | |
4702 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) { | |
4703 EVT VT = N->getValueType(i); | |
4704 if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs()) | |
4705 VTs.push_back(VT); | |
4706 } | |
4707 if (Load) | |
4708 BeforeOps.push_back(SDValue(Load, 0)); | |
4709 std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps)); | |
4710 SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, BeforeOps); | |
4711 NewNodes.push_back(NewNode); | |
4712 | |
4713 // Emit the store instruction. | |
4714 if (FoldedStore) { | |
4715 AddrOps.pop_back(); | |
4716 AddrOps.push_back(SDValue(NewNode, 0)); | |
4717 AddrOps.push_back(Chain); | |
4718 std::pair<MachineInstr::mmo_iterator, | |
4719 MachineInstr::mmo_iterator> MMOs = | |
4720 MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(), | |
4721 cast<MachineSDNode>(N)->memoperands_end()); | |
4722 if (!(*MMOs.first) && | |
4723 RC == &X86::VR128RegClass && | |
4724 !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast()) | |
4725 // Do not introduce a slow unaligned store. | |
4726 return false; | |
4727 unsigned Alignment = RC->getSize() == 32 ? 32 : 16; | |
4728 bool isAligned = (*MMOs.first) && | |
4729 (*MMOs.first)->getAlignment() >= Alignment; | |
4730 SDNode *Store = DAG.getMachineNode(getStoreRegOpcode(0, DstRC, | |
4731 isAligned, TM), | |
4732 dl, MVT::Other, AddrOps); | |
4733 NewNodes.push_back(Store); | |
4734 | |
4735 // Preserve memory reference information. | |
4736 cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second); | |
4737 } | |
4738 | |
4739 return true; | |
4740 } | |
4741 | |
4742 unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc, | |
4743 bool UnfoldLoad, bool UnfoldStore, | |
4744 unsigned *LoadRegIndex) const { | |
4745 DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I = | |
4746 MemOp2RegOpTable.find(Opc); | |
4747 if (I == MemOp2RegOpTable.end()) | |
4748 return 0; | |
4749 bool FoldedLoad = I->second.second & TB_FOLDED_LOAD; | |
4750 bool FoldedStore = I->second.second & TB_FOLDED_STORE; | |
4751 if (UnfoldLoad && !FoldedLoad) | |
4752 return 0; | |
4753 if (UnfoldStore && !FoldedStore) | |
4754 return 0; | |
4755 if (LoadRegIndex) | |
4756 *LoadRegIndex = I->second.second & TB_INDEX_MASK; | |
4757 return I->second.first; | |
4758 } | |
4759 | |
4760 bool | |
4761 X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, | |
4762 int64_t &Offset1, int64_t &Offset2) const { | |
4763 if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode()) | |
4764 return false; | |
4765 unsigned Opc1 = Load1->getMachineOpcode(); | |
4766 unsigned Opc2 = Load2->getMachineOpcode(); | |
4767 switch (Opc1) { | |
4768 default: return false; | |
4769 case X86::MOV8rm: | |
4770 case X86::MOV16rm: | |
4771 case X86::MOV32rm: | |
4772 case X86::MOV64rm: | |
4773 case X86::LD_Fp32m: | |
4774 case X86::LD_Fp64m: | |
4775 case X86::LD_Fp80m: | |
4776 case X86::MOVSSrm: | |
4777 case X86::MOVSDrm: | |
4778 case X86::MMX_MOVD64rm: | |
4779 case X86::MMX_MOVQ64rm: | |
4780 case X86::FsMOVAPSrm: | |
4781 case X86::FsMOVAPDrm: | |
4782 case X86::MOVAPSrm: | |
4783 case X86::MOVUPSrm: | |
4784 case X86::MOVAPDrm: | |
4785 case X86::MOVDQArm: | |
4786 case X86::MOVDQUrm: | |
4787 // AVX load instructions | |
4788 case X86::VMOVSSrm: | |
4789 case X86::VMOVSDrm: | |
4790 case X86::FsVMOVAPSrm: | |
4791 case X86::FsVMOVAPDrm: | |
4792 case X86::VMOVAPSrm: | |
4793 case X86::VMOVUPSrm: | |
4794 case X86::VMOVAPDrm: | |
4795 case X86::VMOVDQArm: | |
4796 case X86::VMOVDQUrm: | |
4797 case X86::VMOVAPSYrm: | |
4798 case X86::VMOVUPSYrm: | |
4799 case X86::VMOVAPDYrm: | |
4800 case X86::VMOVDQAYrm: | |
4801 case X86::VMOVDQUYrm: | |
4802 break; | |
4803 } | |
4804 switch (Opc2) { | |
4805 default: return false; | |
4806 case X86::MOV8rm: | |
4807 case X86::MOV16rm: | |
4808 case X86::MOV32rm: | |
4809 case X86::MOV64rm: | |
4810 case X86::LD_Fp32m: | |
4811 case X86::LD_Fp64m: | |
4812 case X86::LD_Fp80m: | |
4813 case X86::MOVSSrm: | |
4814 case X86::MOVSDrm: | |
4815 case X86::MMX_MOVD64rm: | |
4816 case X86::MMX_MOVQ64rm: | |
4817 case X86::FsMOVAPSrm: | |
4818 case X86::FsMOVAPDrm: | |
4819 case X86::MOVAPSrm: | |
4820 case X86::MOVUPSrm: | |
4821 case X86::MOVAPDrm: | |
4822 case X86::MOVDQArm: | |
4823 case X86::MOVDQUrm: | |
4824 // AVX load instructions | |
4825 case X86::VMOVSSrm: | |
4826 case X86::VMOVSDrm: | |
4827 case X86::FsVMOVAPSrm: | |
4828 case X86::FsVMOVAPDrm: | |
4829 case X86::VMOVAPSrm: | |
4830 case X86::VMOVUPSrm: | |
4831 case X86::VMOVAPDrm: | |
4832 case X86::VMOVDQArm: | |
4833 case X86::VMOVDQUrm: | |
4834 case X86::VMOVAPSYrm: | |
4835 case X86::VMOVUPSYrm: | |
4836 case X86::VMOVAPDYrm: | |
4837 case X86::VMOVDQAYrm: | |
4838 case X86::VMOVDQUYrm: | |
4839 break; | |
4840 } | |
4841 | |
4842 // Check if chain operands and base addresses match. | |
4843 if (Load1->getOperand(0) != Load2->getOperand(0) || | |
4844 Load1->getOperand(5) != Load2->getOperand(5)) | |
4845 return false; | |
4846 // Segment operands should match as well. | |
4847 if (Load1->getOperand(4) != Load2->getOperand(4)) | |
4848 return false; | |
4849 // Scale should be 1, Index should be Reg0. | |
4850 if (Load1->getOperand(1) == Load2->getOperand(1) && | |
4851 Load1->getOperand(2) == Load2->getOperand(2)) { | |
4852 if (cast<ConstantSDNode>(Load1->getOperand(1))->getZExtValue() != 1) | |
4853 return false; | |
4854 | |
4855 // Now let's examine the displacements. | |
4856 if (isa<ConstantSDNode>(Load1->getOperand(3)) && | |
4857 isa<ConstantSDNode>(Load2->getOperand(3))) { | |
4858 Offset1 = cast<ConstantSDNode>(Load1->getOperand(3))->getSExtValue(); | |
4859 Offset2 = cast<ConstantSDNode>(Load2->getOperand(3))->getSExtValue(); | |
4860 return true; | |
4861 } | |
4862 } | |
4863 return false; | |
4864 } | |
4865 | |
4866 bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, | |
4867 int64_t Offset1, int64_t Offset2, | |
4868 unsigned NumLoads) const { | |
4869 assert(Offset2 > Offset1); | |
4870 if ((Offset2 - Offset1) / 8 > 64) | |
4871 return false; | |
4872 | |
4873 unsigned Opc1 = Load1->getMachineOpcode(); | |
4874 unsigned Opc2 = Load2->getMachineOpcode(); | |
4875 if (Opc1 != Opc2) | |
4876 return false; // FIXME: overly conservative? | |
4877 | |
4878 switch (Opc1) { | |
4879 default: break; | |
4880 case X86::LD_Fp32m: | |
4881 case X86::LD_Fp64m: | |
4882 case X86::LD_Fp80m: | |
4883 case X86::MMX_MOVD64rm: | |
4884 case X86::MMX_MOVQ64rm: | |
4885 return false; | |
4886 } | |
4887 | |
4888 EVT VT = Load1->getValueType(0); | |
4889 switch (VT.getSimpleVT().SimpleTy) { | |
4890 default: | |
4891 // XMM registers. In 64-bit mode we can be a bit more aggressive since we | |
4892 // have 16 of them to play with. | |
4893 if (TM.getSubtargetImpl()->is64Bit()) { | |
4894 if (NumLoads >= 3) | |
4895 return false; | |
4896 } else if (NumLoads) { | |
4897 return false; | |
4898 } | |
4899 break; | |
4900 case MVT::i8: | |
4901 case MVT::i16: | |
4902 case MVT::i32: | |
4903 case MVT::i64: | |
4904 case MVT::f32: | |
4905 case MVT::f64: | |
4906 if (NumLoads) | |
4907 return false; | |
4908 break; | |
4909 } | |
4910 | |
4911 return true; | |
4912 } | |
4913 | |
4914 bool X86InstrInfo::shouldScheduleAdjacent(MachineInstr* First, | |
4915 MachineInstr *Second) const { | |
4916 // Check if this processor supports macro-fusion. Since this is a minor | |
4917 // heuristic, we haven't specifically reserved a feature. hasAVX is a decent | |
4918 // proxy for SandyBridge+. | |
4919 if (!TM.getSubtarget<X86Subtarget>().hasAVX()) | |
4920 return false; | |
4921 | |
4922 enum { | |
4923 FuseTest, | |
4924 FuseCmp, | |
4925 FuseInc | |
4926 } FuseKind; | |
4927 | |
4928 switch(Second->getOpcode()) { | |
4929 default: | |
4930 return false; | |
4931 case X86::JE_4: | |
4932 case X86::JNE_4: | |
4933 case X86::JL_4: | |
4934 case X86::JLE_4: | |
4935 case X86::JG_4: | |
4936 case X86::JGE_4: | |
4937 FuseKind = FuseInc; | |
4938 break; | |
4939 case X86::JB_4: | |
4940 case X86::JBE_4: | |
4941 case X86::JA_4: | |
4942 case X86::JAE_4: | |
4943 FuseKind = FuseCmp; | |
4944 break; | |
4945 case X86::JS_4: | |
4946 case X86::JNS_4: | |
4947 case X86::JP_4: | |
4948 case X86::JNP_4: | |
4949 case X86::JO_4: | |
4950 case X86::JNO_4: | |
4951 FuseKind = FuseTest; | |
4952 break; | |
4953 } | |
4954 switch (First->getOpcode()) { | |
4955 default: | |
4956 return false; | |
4957 case X86::TEST8rr: | |
4958 case X86::TEST16rr: | |
4959 case X86::TEST32rr: | |
4960 case X86::TEST64rr: | |
4961 case X86::TEST8ri: | |
4962 case X86::TEST16ri: | |
4963 case X86::TEST32ri: | |
4964 case X86::TEST32i32: | |
4965 case X86::TEST64i32: | |
4966 case X86::TEST64ri32: | |
4967 case X86::TEST8rm: | |
4968 case X86::TEST16rm: | |
4969 case X86::TEST32rm: | |
4970 case X86::TEST64rm: | |
4971 case X86::AND16i16: | |
4972 case X86::AND16ri: | |
4973 case X86::AND16ri8: | |
4974 case X86::AND16rm: | |
4975 case X86::AND16rr: | |
4976 case X86::AND32i32: | |
4977 case X86::AND32ri: | |
4978 case X86::AND32ri8: | |
4979 case X86::AND32rm: | |
4980 case X86::AND32rr: | |
4981 case X86::AND64i32: | |
4982 case X86::AND64ri32: | |
4983 case X86::AND64ri8: | |
4984 case X86::AND64rm: | |
4985 case X86::AND64rr: | |
4986 case X86::AND8i8: | |
4987 case X86::AND8ri: | |
4988 case X86::AND8rm: | |
4989 case X86::AND8rr: | |
4990 return true; | |
4991 case X86::CMP16i16: | |
4992 case X86::CMP16ri: | |
4993 case X86::CMP16ri8: | |
4994 case X86::CMP16rm: | |
4995 case X86::CMP16rr: | |
4996 case X86::CMP32i32: | |
4997 case X86::CMP32ri: | |
4998 case X86::CMP32ri8: | |
4999 case X86::CMP32rm: | |
5000 case X86::CMP32rr: | |
5001 case X86::CMP64i32: | |
5002 case X86::CMP64ri32: | |
5003 case X86::CMP64ri8: | |
5004 case X86::CMP64rm: | |
5005 case X86::CMP64rr: | |
5006 case X86::CMP8i8: | |
5007 case X86::CMP8ri: | |
5008 case X86::CMP8rm: | |
5009 case X86::CMP8rr: | |
5010 case X86::ADD16i16: | |
5011 case X86::ADD16ri: | |
5012 case X86::ADD16ri8: | |
5013 case X86::ADD16ri8_DB: | |
5014 case X86::ADD16ri_DB: | |
5015 case X86::ADD16rm: | |
5016 case X86::ADD16rr: | |
5017 case X86::ADD16rr_DB: | |
5018 case X86::ADD32i32: | |
5019 case X86::ADD32ri: | |
5020 case X86::ADD32ri8: | |
5021 case X86::ADD32ri8_DB: | |
5022 case X86::ADD32ri_DB: | |
5023 case X86::ADD32rm: | |
5024 case X86::ADD32rr: | |
5025 case X86::ADD32rr_DB: | |
5026 case X86::ADD64i32: | |
5027 case X86::ADD64ri32: | |
5028 case X86::ADD64ri32_DB: | |
5029 case X86::ADD64ri8: | |
5030 case X86::ADD64ri8_DB: | |
5031 case X86::ADD64rm: | |
5032 case X86::ADD64rr: | |
5033 case X86::ADD64rr_DB: | |
5034 case X86::ADD8i8: | |
5035 case X86::ADD8mi: | |
5036 case X86::ADD8mr: | |
5037 case X86::ADD8ri: | |
5038 case X86::ADD8rm: | |
5039 case X86::ADD8rr: | |
5040 case X86::SUB16i16: | |
5041 case X86::SUB16ri: | |
5042 case X86::SUB16ri8: | |
5043 case X86::SUB16rm: | |
5044 case X86::SUB16rr: | |
5045 case X86::SUB32i32: | |
5046 case X86::SUB32ri: | |
5047 case X86::SUB32ri8: | |
5048 case X86::SUB32rm: | |
5049 case X86::SUB32rr: | |
5050 case X86::SUB64i32: | |
5051 case X86::SUB64ri32: | |
5052 case X86::SUB64ri8: | |
5053 case X86::SUB64rm: | |
5054 case X86::SUB64rr: | |
5055 case X86::SUB8i8: | |
5056 case X86::SUB8ri: | |
5057 case X86::SUB8rm: | |
5058 case X86::SUB8rr: | |
5059 return FuseKind == FuseCmp || FuseKind == FuseInc; | |
5060 case X86::INC16r: | |
5061 case X86::INC32r: | |
5062 case X86::INC64_16r: | |
5063 case X86::INC64_32r: | |
5064 case X86::INC64r: | |
5065 case X86::INC8r: | |
5066 case X86::DEC16r: | |
5067 case X86::DEC32r: | |
5068 case X86::DEC64_16r: | |
5069 case X86::DEC64_32r: | |
5070 case X86::DEC64r: | |
5071 case X86::DEC8r: | |
5072 return FuseKind == FuseInc; | |
5073 } | |
5074 } | |
5075 | |
5076 bool X86InstrInfo:: | |
5077 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { | |
5078 assert(Cond.size() == 1 && "Invalid X86 branch condition!"); | |
5079 X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm()); | |
5080 if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E) | |
5081 return true; | |
5082 Cond[0].setImm(GetOppositeBranchCondition(CC)); | |
5083 return false; | |
5084 } | |
5085 | |
5086 bool X86InstrInfo:: | |
5087 isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const { | |
5088 // FIXME: Return false for x87 stack register classes for now. We can't | |
5089 // allow any loads of these registers before FpGet_ST0_80. | |
5090 return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass || | |
5091 RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass); | |
5092 } | |
5093 | |
5094 /// getGlobalBaseReg - Return a virtual register initialized with the | |
5095 /// the global base register value. Output instructions required to | |
5096 /// initialize the register in the function entry block, if necessary. | |
5097 /// | |
5098 /// TODO: Eliminate this and move the code to X86MachineFunctionInfo. | |
5099 /// | |
5100 unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const { | |
5101 assert(!TM.getSubtarget<X86Subtarget>().is64Bit() && | |
5102 "X86-64 PIC uses RIP relative addressing"); | |
5103 | |
5104 X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>(); | |
5105 unsigned GlobalBaseReg = X86FI->getGlobalBaseReg(); | |
5106 if (GlobalBaseReg != 0) | |
5107 return GlobalBaseReg; | |
5108 | |
5109 // Create the register. The code to initialize it is inserted | |
5110 // later, by the CGBR pass (below). | |
5111 MachineRegisterInfo &RegInfo = MF->getRegInfo(); | |
5112 GlobalBaseReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass); | |
5113 X86FI->setGlobalBaseReg(GlobalBaseReg); | |
5114 return GlobalBaseReg; | |
5115 } | |
5116 | |
5117 // These are the replaceable SSE instructions. Some of these have Int variants | |
5118 // that we don't include here. We don't want to replace instructions selected | |
5119 // by intrinsics. | |
5120 static const uint16_t ReplaceableInstrs[][3] = { | |
5121 //PackedSingle PackedDouble PackedInt | |
5122 { X86::MOVAPSmr, X86::MOVAPDmr, X86::MOVDQAmr }, | |
5123 { X86::MOVAPSrm, X86::MOVAPDrm, X86::MOVDQArm }, | |
5124 { X86::MOVAPSrr, X86::MOVAPDrr, X86::MOVDQArr }, | |
5125 { X86::MOVUPSmr, X86::MOVUPDmr, X86::MOVDQUmr }, | |
5126 { X86::MOVUPSrm, X86::MOVUPDrm, X86::MOVDQUrm }, | |
5127 { X86::MOVNTPSmr, X86::MOVNTPDmr, X86::MOVNTDQmr }, | |
5128 { X86::ANDNPSrm, X86::ANDNPDrm, X86::PANDNrm }, | |
5129 { X86::ANDNPSrr, X86::ANDNPDrr, X86::PANDNrr }, | |
5130 { X86::ANDPSrm, X86::ANDPDrm, X86::PANDrm }, | |
5131 { X86::ANDPSrr, X86::ANDPDrr, X86::PANDrr }, | |
5132 { X86::ORPSrm, X86::ORPDrm, X86::PORrm }, | |
5133 { X86::ORPSrr, X86::ORPDrr, X86::PORrr }, | |
5134 { X86::XORPSrm, X86::XORPDrm, X86::PXORrm }, | |
5135 { X86::XORPSrr, X86::XORPDrr, X86::PXORrr }, | |
5136 // AVX 128-bit support | |
5137 { X86::VMOVAPSmr, X86::VMOVAPDmr, X86::VMOVDQAmr }, | |
5138 { X86::VMOVAPSrm, X86::VMOVAPDrm, X86::VMOVDQArm }, | |
5139 { X86::VMOVAPSrr, X86::VMOVAPDrr, X86::VMOVDQArr }, | |
5140 { X86::VMOVUPSmr, X86::VMOVUPDmr, X86::VMOVDQUmr }, | |
5141 { X86::VMOVUPSrm, X86::VMOVUPDrm, X86::VMOVDQUrm }, | |
5142 { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr }, | |
5143 { X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNrm }, | |
5144 { X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNrr }, | |
5145 { X86::VANDPSrm, X86::VANDPDrm, X86::VPANDrm }, | |
5146 { X86::VANDPSrr, X86::VANDPDrr, X86::VPANDrr }, | |
5147 { X86::VORPSrm, X86::VORPDrm, X86::VPORrm }, | |
5148 { X86::VORPSrr, X86::VORPDrr, X86::VPORrr }, | |
5149 { X86::VXORPSrm, X86::VXORPDrm, X86::VPXORrm }, | |
5150 { X86::VXORPSrr, X86::VXORPDrr, X86::VPXORrr }, | |
5151 // AVX 256-bit support | |
5152 { X86::VMOVAPSYmr, X86::VMOVAPDYmr, X86::VMOVDQAYmr }, | |
5153 { X86::VMOVAPSYrm, X86::VMOVAPDYrm, X86::VMOVDQAYrm }, | |
5154 { X86::VMOVAPSYrr, X86::VMOVAPDYrr, X86::VMOVDQAYrr }, | |
5155 { X86::VMOVUPSYmr, X86::VMOVUPDYmr, X86::VMOVDQUYmr }, | |
5156 { X86::VMOVUPSYrm, X86::VMOVUPDYrm, X86::VMOVDQUYrm }, | |
5157 { X86::VMOVNTPSYmr, X86::VMOVNTPDYmr, X86::VMOVNTDQYmr } | |
5158 }; | |
5159 | |
5160 static const uint16_t ReplaceableInstrsAVX2[][3] = { | |
5161 //PackedSingle PackedDouble PackedInt | |
5162 { X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNYrm }, | |
5163 { X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNYrr }, | |
5164 { X86::VANDPSYrm, X86::VANDPDYrm, X86::VPANDYrm }, | |
5165 { X86::VANDPSYrr, X86::VANDPDYrr, X86::VPANDYrr }, | |
5166 { X86::VORPSYrm, X86::VORPDYrm, X86::VPORYrm }, | |
5167 { X86::VORPSYrr, X86::VORPDYrr, X86::VPORYrr }, | |
5168 { X86::VXORPSYrm, X86::VXORPDYrm, X86::VPXORYrm }, | |
5169 { X86::VXORPSYrr, X86::VXORPDYrr, X86::VPXORYrr }, | |
5170 { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr }, | |
5171 { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr }, | |
5172 { X86::VINSERTF128rm, X86::VINSERTF128rm, X86::VINSERTI128rm }, | |
5173 { X86::VINSERTF128rr, X86::VINSERTF128rr, X86::VINSERTI128rr }, | |
5174 { X86::VPERM2F128rm, X86::VPERM2F128rm, X86::VPERM2I128rm }, | |
5175 { X86::VPERM2F128rr, X86::VPERM2F128rr, X86::VPERM2I128rr } | |
5176 }; | |
5177 | |
5178 // FIXME: Some shuffle and unpack instructions have equivalents in different | |
5179 // domains, but they require a bit more work than just switching opcodes. | |
5180 | |
5181 static const uint16_t *lookup(unsigned opcode, unsigned domain) { | |
5182 for (unsigned i = 0, e = array_lengthof(ReplaceableInstrs); i != e; ++i) | |
5183 if (ReplaceableInstrs[i][domain-1] == opcode) | |
5184 return ReplaceableInstrs[i]; | |
5185 return 0; | |
5186 } | |
5187 | |
5188 static const uint16_t *lookupAVX2(unsigned opcode, unsigned domain) { | |
5189 for (unsigned i = 0, e = array_lengthof(ReplaceableInstrsAVX2); i != e; ++i) | |
5190 if (ReplaceableInstrsAVX2[i][domain-1] == opcode) | |
5191 return ReplaceableInstrsAVX2[i]; | |
5192 return 0; | |
5193 } | |
5194 | |
5195 std::pair<uint16_t, uint16_t> | |
5196 X86InstrInfo::getExecutionDomain(const MachineInstr *MI) const { | |
5197 uint16_t domain = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3; | |
5198 bool hasAVX2 = TM.getSubtarget<X86Subtarget>().hasAVX2(); | |
5199 uint16_t validDomains = 0; | |
5200 if (domain && lookup(MI->getOpcode(), domain)) | |
5201 validDomains = 0xe; | |
5202 else if (domain && lookupAVX2(MI->getOpcode(), domain)) | |
5203 validDomains = hasAVX2 ? 0xe : 0x6; | |
5204 return std::make_pair(domain, validDomains); | |
5205 } | |
5206 | |
5207 void X86InstrInfo::setExecutionDomain(MachineInstr *MI, unsigned Domain) const { | |
5208 assert(Domain>0 && Domain<4 && "Invalid execution domain"); | |
5209 uint16_t dom = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3; | |
5210 assert(dom && "Not an SSE instruction"); | |
5211 const uint16_t *table = lookup(MI->getOpcode(), dom); | |
5212 if (!table) { // try the other table | |
5213 assert((TM.getSubtarget<X86Subtarget>().hasAVX2() || Domain < 3) && | |
5214 "256-bit vector operations only available in AVX2"); | |
5215 table = lookupAVX2(MI->getOpcode(), dom); | |
5216 } | |
5217 assert(table && "Cannot change domain"); | |
5218 MI->setDesc(get(table[Domain-1])); | |
5219 } | |
5220 | |
5221 /// getNoopForMachoTarget - Return the noop instruction to use for a noop. | |
5222 void X86InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const { | |
5223 NopInst.setOpcode(X86::NOOP); | |
5224 } | |
5225 | |
5226 bool X86InstrInfo::isHighLatencyDef(int opc) const { | |
5227 switch (opc) { | |
5228 default: return false; | |
5229 case X86::DIVSDrm: | |
5230 case X86::DIVSDrm_Int: | |
5231 case X86::DIVSDrr: | |
5232 case X86::DIVSDrr_Int: | |
5233 case X86::DIVSSrm: | |
5234 case X86::DIVSSrm_Int: | |
5235 case X86::DIVSSrr: | |
5236 case X86::DIVSSrr_Int: | |
5237 case X86::SQRTPDm: | |
5238 case X86::SQRTPDr: | |
5239 case X86::SQRTPSm: | |
5240 case X86::SQRTPSr: | |
5241 case X86::SQRTSDm: | |
5242 case X86::SQRTSDm_Int: | |
5243 case X86::SQRTSDr: | |
5244 case X86::SQRTSDr_Int: | |
5245 case X86::SQRTSSm: | |
5246 case X86::SQRTSSm_Int: | |
5247 case X86::SQRTSSr: | |
5248 case X86::SQRTSSr_Int: | |
5249 // AVX instructions with high latency | |
5250 case X86::VDIVSDrm: | |
5251 case X86::VDIVSDrm_Int: | |
5252 case X86::VDIVSDrr: | |
5253 case X86::VDIVSDrr_Int: | |
5254 case X86::VDIVSSrm: | |
5255 case X86::VDIVSSrm_Int: | |
5256 case X86::VDIVSSrr: | |
5257 case X86::VDIVSSrr_Int: | |
5258 case X86::VSQRTPDm: | |
5259 case X86::VSQRTPDr: | |
5260 case X86::VSQRTPSm: | |
5261 case X86::VSQRTPSr: | |
5262 case X86::VSQRTSDm: | |
5263 case X86::VSQRTSDm_Int: | |
5264 case X86::VSQRTSDr: | |
5265 case X86::VSQRTSSm: | |
5266 case X86::VSQRTSSm_Int: | |
5267 case X86::VSQRTSSr: | |
5268 case X86::VSQRTPDZrm: | |
5269 case X86::VSQRTPDZrr: | |
5270 case X86::VSQRTPSZrm: | |
5271 case X86::VSQRTPSZrr: | |
5272 case X86::VSQRTSDZm: | |
5273 case X86::VSQRTSDZm_Int: | |
5274 case X86::VSQRTSDZr: | |
5275 case X86::VSQRTSSZm_Int: | |
5276 case X86::VSQRTSSZr: | |
5277 case X86::VSQRTSSZm: | |
5278 case X86::VDIVSDZrm: | |
5279 case X86::VDIVSDZrr: | |
5280 case X86::VDIVSSZrm: | |
5281 case X86::VDIVSSZrr: | |
5282 | |
5283 case X86::VGATHERQPSZrm: | |
5284 case X86::VGATHERQPDZrm: | |
5285 case X86::VGATHERDPDZrm: | |
5286 case X86::VGATHERDPSZrm: | |
5287 case X86::VPGATHERQDZrm: | |
5288 case X86::VPGATHERQQZrm: | |
5289 case X86::VPGATHERDDZrm: | |
5290 case X86::VPGATHERDQZrm: | |
5291 case X86::VSCATTERQPDZmr: | |
5292 case X86::VSCATTERQPSZmr: | |
5293 case X86::VSCATTERDPDZmr: | |
5294 case X86::VSCATTERDPSZmr: | |
5295 case X86::VPSCATTERQDZmr: | |
5296 case X86::VPSCATTERQQZmr: | |
5297 case X86::VPSCATTERDDZmr: | |
5298 case X86::VPSCATTERDQZmr: | |
5299 return true; | |
5300 } | |
5301 } | |
5302 | |
5303 bool X86InstrInfo:: | |
5304 hasHighOperandLatency(const InstrItineraryData *ItinData, | |
5305 const MachineRegisterInfo *MRI, | |
5306 const MachineInstr *DefMI, unsigned DefIdx, | |
5307 const MachineInstr *UseMI, unsigned UseIdx) const { | |
5308 return isHighLatencyDef(DefMI->getOpcode()); | |
5309 } | |
5310 | |
5311 namespace { | |
5312 /// CGBR - Create Global Base Reg pass. This initializes the PIC | |
5313 /// global base register for x86-32. | |
5314 struct CGBR : public MachineFunctionPass { | |
5315 static char ID; | |
5316 CGBR() : MachineFunctionPass(ID) {} | |
5317 | |
5318 virtual bool runOnMachineFunction(MachineFunction &MF) { | |
5319 const X86TargetMachine *TM = | |
5320 static_cast<const X86TargetMachine *>(&MF.getTarget()); | |
5321 | |
5322 assert(!TM->getSubtarget<X86Subtarget>().is64Bit() && | |
5323 "X86-64 PIC uses RIP relative addressing"); | |
5324 | |
5325 // Only emit a global base reg in PIC mode. | |
5326 if (TM->getRelocationModel() != Reloc::PIC_) | |
5327 return false; | |
5328 | |
5329 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); | |
5330 unsigned GlobalBaseReg = X86FI->getGlobalBaseReg(); | |
5331 | |
5332 // If we didn't need a GlobalBaseReg, don't insert code. | |
5333 if (GlobalBaseReg == 0) | |
5334 return false; | |
5335 | |
5336 // Insert the set of GlobalBaseReg into the first MBB of the function | |
5337 MachineBasicBlock &FirstMBB = MF.front(); | |
5338 MachineBasicBlock::iterator MBBI = FirstMBB.begin(); | |
5339 DebugLoc DL = FirstMBB.findDebugLoc(MBBI); | |
5340 MachineRegisterInfo &RegInfo = MF.getRegInfo(); | |
5341 const X86InstrInfo *TII = TM->getInstrInfo(); | |
5342 | |
5343 unsigned PC; | |
5344 if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT()) | |
5345 PC = RegInfo.createVirtualRegister(&X86::GR32RegClass); | |
5346 else | |
5347 PC = GlobalBaseReg; | |
5348 | |
5349 // Operand of MovePCtoStack is completely ignored by asm printer. It's | |
5350 // only used in JIT code emission as displacement to pc. | |
5351 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0); | |
5352 | |
5353 // If we're using vanilla 'GOT' PIC style, we should use relative addressing | |
5354 // not to pc, but to _GLOBAL_OFFSET_TABLE_ external. | |
5355 if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT()) { | |
5356 // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register | |
5357 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg) | |
5358 .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_", | |
5359 X86II::MO_GOT_ABSOLUTE_ADDRESS); | |
5360 } | |
5361 | |
5362 return true; | |
5363 } | |
5364 | |
5365 virtual const char *getPassName() const { | |
5366 return "X86 PIC Global Base Reg Initialization"; | |
5367 } | |
5368 | |
5369 virtual void getAnalysisUsage(AnalysisUsage &AU) const { | |
5370 AU.setPreservesCFG(); | |
5371 MachineFunctionPass::getAnalysisUsage(AU); | |
5372 } | |
5373 }; | |
5374 } | |
5375 | |
5376 char CGBR::ID = 0; | |
5377 FunctionPass* | |
5378 llvm::createGlobalBaseRegPass() { return new CGBR(); } | |
5379 | |
5380 namespace { | |
5381 struct LDTLSCleanup : public MachineFunctionPass { | |
5382 static char ID; | |
5383 LDTLSCleanup() : MachineFunctionPass(ID) {} | |
5384 | |
5385 virtual bool runOnMachineFunction(MachineFunction &MF) { | |
5386 X86MachineFunctionInfo* MFI = MF.getInfo<X86MachineFunctionInfo>(); | |
5387 if (MFI->getNumLocalDynamicTLSAccesses() < 2) { | |
5388 // No point folding accesses if there isn't at least two. | |
5389 return false; | |
5390 } | |
5391 | |
5392 MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>(); | |
5393 return VisitNode(DT->getRootNode(), 0); | |
5394 } | |
5395 | |
5396 // Visit the dominator subtree rooted at Node in pre-order. | |
5397 // If TLSBaseAddrReg is non-null, then use that to replace any | |
5398 // TLS_base_addr instructions. Otherwise, create the register | |
5399 // when the first such instruction is seen, and then use it | |
5400 // as we encounter more instructions. | |
5401 bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) { | |
5402 MachineBasicBlock *BB = Node->getBlock(); | |
5403 bool Changed = false; | |
5404 | |
5405 // Traverse the current block. | |
5406 for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; | |
5407 ++I) { | |
5408 switch (I->getOpcode()) { | |
5409 case X86::TLS_base_addr32: | |
5410 case X86::TLS_base_addr64: | |
5411 if (TLSBaseAddrReg) | |
5412 I = ReplaceTLSBaseAddrCall(I, TLSBaseAddrReg); | |
5413 else | |
5414 I = SetRegister(I, &TLSBaseAddrReg); | |
5415 Changed = true; | |
5416 break; | |
5417 default: | |
5418 break; | |
5419 } | |
5420 } | |
5421 | |
5422 // Visit the children of this block in the dominator tree. | |
5423 for (MachineDomTreeNode::iterator I = Node->begin(), E = Node->end(); | |
5424 I != E; ++I) { | |
5425 Changed |= VisitNode(*I, TLSBaseAddrReg); | |
5426 } | |
5427 | |
5428 return Changed; | |
5429 } | |
5430 | |
5431 // Replace the TLS_base_addr instruction I with a copy from | |
5432 // TLSBaseAddrReg, returning the new instruction. | |
5433 MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr *I, | |
5434 unsigned TLSBaseAddrReg) { | |
5435 MachineFunction *MF = I->getParent()->getParent(); | |
5436 const X86TargetMachine *TM = | |
5437 static_cast<const X86TargetMachine *>(&MF->getTarget()); | |
5438 const bool is64Bit = TM->getSubtarget<X86Subtarget>().is64Bit(); | |
5439 const X86InstrInfo *TII = TM->getInstrInfo(); | |
5440 | |
5441 // Insert a Copy from TLSBaseAddrReg to RAX/EAX. | |
5442 MachineInstr *Copy = BuildMI(*I->getParent(), I, I->getDebugLoc(), | |
5443 TII->get(TargetOpcode::COPY), | |
5444 is64Bit ? X86::RAX : X86::EAX) | |
5445 .addReg(TLSBaseAddrReg); | |
5446 | |
5447 // Erase the TLS_base_addr instruction. | |
5448 I->eraseFromParent(); | |
5449 | |
5450 return Copy; | |
5451 } | |
5452 | |
5453 // Create a virtal register in *TLSBaseAddrReg, and populate it by | |
5454 // inserting a copy instruction after I. Returns the new instruction. | |
5455 MachineInstr *SetRegister(MachineInstr *I, unsigned *TLSBaseAddrReg) { | |
5456 MachineFunction *MF = I->getParent()->getParent(); | |
5457 const X86TargetMachine *TM = | |
5458 static_cast<const X86TargetMachine *>(&MF->getTarget()); | |
5459 const bool is64Bit = TM->getSubtarget<X86Subtarget>().is64Bit(); | |
5460 const X86InstrInfo *TII = TM->getInstrInfo(); | |
5461 | |
5462 // Create a virtual register for the TLS base address. | |
5463 MachineRegisterInfo &RegInfo = MF->getRegInfo(); | |
5464 *TLSBaseAddrReg = RegInfo.createVirtualRegister(is64Bit | |
5465 ? &X86::GR64RegClass | |
5466 : &X86::GR32RegClass); | |
5467 | |
5468 // Insert a copy from RAX/EAX to TLSBaseAddrReg. | |
5469 MachineInstr *Next = I->getNextNode(); | |
5470 MachineInstr *Copy = BuildMI(*I->getParent(), Next, I->getDebugLoc(), | |
5471 TII->get(TargetOpcode::COPY), | |
5472 *TLSBaseAddrReg) | |
5473 .addReg(is64Bit ? X86::RAX : X86::EAX); | |
5474 | |
5475 return Copy; | |
5476 } | |
5477 | |
5478 virtual const char *getPassName() const { | |
5479 return "Local Dynamic TLS Access Clean-up"; | |
5480 } | |
5481 | |
5482 virtual void getAnalysisUsage(AnalysisUsage &AU) const { | |
5483 AU.setPreservesCFG(); | |
5484 AU.addRequired<MachineDominatorTree>(); | |
5485 MachineFunctionPass::getAnalysisUsage(AU); | |
5486 } | |
5487 }; | |
5488 } | |
5489 | |
5490 char LDTLSCleanup::ID = 0; | |
5491 FunctionPass* | |
5492 llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); } |