comparison lib/Analysis/TargetTransformInfo.cpp @ 3:9ad51c7bc036

1st commit. remove git dir and add all files.
author Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp>
date Wed, 15 May 2013 06:43:32 +0900
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 3:9ad51c7bc036
1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #define DEBUG_TYPE "tti"
11 #include "llvm/Analysis/TargetTransformInfo.h"
12 #include "llvm/IR/DataLayout.h"
13 #include "llvm/IR/Operator.h"
14 #include "llvm/IR/Instruction.h"
15 #include "llvm/IR/IntrinsicInst.h"
16 #include "llvm/IR/Instructions.h"
17 #include "llvm/Support/CallSite.h"
18 #include "llvm/Support/ErrorHandling.h"
19
20 using namespace llvm;
21
22 // Setup the analysis group to manage the TargetTransformInfo passes.
23 INITIALIZE_ANALYSIS_GROUP(TargetTransformInfo, "Target Information", NoTTI)
24 char TargetTransformInfo::ID = 0;
25
26 TargetTransformInfo::~TargetTransformInfo() {
27 }
28
29 void TargetTransformInfo::pushTTIStack(Pass *P) {
30 TopTTI = this;
31 PrevTTI = &P->getAnalysis<TargetTransformInfo>();
32
33 // Walk up the chain and update the top TTI pointer.
34 for (TargetTransformInfo *PTTI = PrevTTI; PTTI; PTTI = PTTI->PrevTTI)
35 PTTI->TopTTI = this;
36 }
37
38 void TargetTransformInfo::popTTIStack() {
39 TopTTI = 0;
40
41 // Walk up the chain and update the top TTI pointer.
42 for (TargetTransformInfo *PTTI = PrevTTI; PTTI; PTTI = PTTI->PrevTTI)
43 PTTI->TopTTI = PrevTTI;
44
45 PrevTTI = 0;
46 }
47
48 void TargetTransformInfo::getAnalysisUsage(AnalysisUsage &AU) const {
49 AU.addRequired<TargetTransformInfo>();
50 }
51
52 unsigned TargetTransformInfo::getOperationCost(unsigned Opcode, Type *Ty,
53 Type *OpTy) const {
54 return PrevTTI->getOperationCost(Opcode, Ty, OpTy);
55 }
56
57 unsigned TargetTransformInfo::getGEPCost(
58 const Value *Ptr, ArrayRef<const Value *> Operands) const {
59 return PrevTTI->getGEPCost(Ptr, Operands);
60 }
61
62 unsigned TargetTransformInfo::getCallCost(FunctionType *FTy,
63 int NumArgs) const {
64 return PrevTTI->getCallCost(FTy, NumArgs);
65 }
66
67 unsigned TargetTransformInfo::getCallCost(const Function *F,
68 int NumArgs) const {
69 return PrevTTI->getCallCost(F, NumArgs);
70 }
71
72 unsigned TargetTransformInfo::getCallCost(
73 const Function *F, ArrayRef<const Value *> Arguments) const {
74 return PrevTTI->getCallCost(F, Arguments);
75 }
76
77 unsigned TargetTransformInfo::getIntrinsicCost(
78 Intrinsic::ID IID, Type *RetTy, ArrayRef<Type *> ParamTys) const {
79 return PrevTTI->getIntrinsicCost(IID, RetTy, ParamTys);
80 }
81
82 unsigned TargetTransformInfo::getIntrinsicCost(
83 Intrinsic::ID IID, Type *RetTy, ArrayRef<const Value *> Arguments) const {
84 return PrevTTI->getIntrinsicCost(IID, RetTy, Arguments);
85 }
86
87 unsigned TargetTransformInfo::getUserCost(const User *U) const {
88 return PrevTTI->getUserCost(U);
89 }
90
91 bool TargetTransformInfo::isLoweredToCall(const Function *F) const {
92 return PrevTTI->isLoweredToCall(F);
93 }
94
95 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const {
96 return PrevTTI->isLegalAddImmediate(Imm);
97 }
98
99 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const {
100 return PrevTTI->isLegalICmpImmediate(Imm);
101 }
102
103 bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
104 int64_t BaseOffset,
105 bool HasBaseReg,
106 int64_t Scale) const {
107 return PrevTTI->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
108 Scale);
109 }
110
111 bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const {
112 return PrevTTI->isTruncateFree(Ty1, Ty2);
113 }
114
115 bool TargetTransformInfo::isTypeLegal(Type *Ty) const {
116 return PrevTTI->isTypeLegal(Ty);
117 }
118
119 unsigned TargetTransformInfo::getJumpBufAlignment() const {
120 return PrevTTI->getJumpBufAlignment();
121 }
122
123 unsigned TargetTransformInfo::getJumpBufSize() const {
124 return PrevTTI->getJumpBufSize();
125 }
126
127 bool TargetTransformInfo::shouldBuildLookupTables() const {
128 return PrevTTI->shouldBuildLookupTables();
129 }
130
131 TargetTransformInfo::PopcntSupportKind
132 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const {
133 return PrevTTI->getPopcntSupport(IntTyWidthInBit);
134 }
135
136 unsigned TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty) const {
137 return PrevTTI->getIntImmCost(Imm, Ty);
138 }
139
140 unsigned TargetTransformInfo::getNumberOfRegisters(bool Vector) const {
141 return PrevTTI->getNumberOfRegisters(Vector);
142 }
143
144 unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const {
145 return PrevTTI->getRegisterBitWidth(Vector);
146 }
147
148 unsigned TargetTransformInfo::getMaximumUnrollFactor() const {
149 return PrevTTI->getMaximumUnrollFactor();
150 }
151
152 unsigned TargetTransformInfo::getArithmeticInstrCost(unsigned Opcode,
153 Type *Ty,
154 OperandValueKind Op1Info,
155 OperandValueKind Op2Info) const {
156 return PrevTTI->getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info);
157 }
158
159 unsigned TargetTransformInfo::getShuffleCost(ShuffleKind Kind, Type *Tp,
160 int Index, Type *SubTp) const {
161 return PrevTTI->getShuffleCost(Kind, Tp, Index, SubTp);
162 }
163
164 unsigned TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst,
165 Type *Src) const {
166 return PrevTTI->getCastInstrCost(Opcode, Dst, Src);
167 }
168
169 unsigned TargetTransformInfo::getCFInstrCost(unsigned Opcode) const {
170 return PrevTTI->getCFInstrCost(Opcode);
171 }
172
173 unsigned TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
174 Type *CondTy) const {
175 return PrevTTI->getCmpSelInstrCost(Opcode, ValTy, CondTy);
176 }
177
178 unsigned TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val,
179 unsigned Index) const {
180 return PrevTTI->getVectorInstrCost(Opcode, Val, Index);
181 }
182
183 unsigned TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src,
184 unsigned Alignment,
185 unsigned AddressSpace) const {
186 return PrevTTI->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
187 ;
188 }
189
190 unsigned
191 TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID,
192 Type *RetTy,
193 ArrayRef<Type *> Tys) const {
194 return PrevTTI->getIntrinsicInstrCost(ID, RetTy, Tys);
195 }
196
197 unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const {
198 return PrevTTI->getNumberOfParts(Tp);
199 }
200
201 unsigned TargetTransformInfo::getAddressComputationCost(Type *Tp) const {
202 return PrevTTI->getAddressComputationCost(Tp);
203 }
204
205 namespace {
206
207 struct NoTTI : ImmutablePass, TargetTransformInfo {
208 const DataLayout *DL;
209
210 NoTTI() : ImmutablePass(ID), DL(0) {
211 initializeNoTTIPass(*PassRegistry::getPassRegistry());
212 }
213
214 virtual void initializePass() {
215 // Note that this subclass is special, and must *not* call initializeTTI as
216 // it does not chain.
217 TopTTI = this;
218 PrevTTI = 0;
219 DL = getAnalysisIfAvailable<DataLayout>();
220 }
221
222 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
223 // Note that this subclass is special, and must *not* call
224 // TTI::getAnalysisUsage as it breaks the recursion.
225 }
226
227 /// Pass identification.
228 static char ID;
229
230 /// Provide necessary pointer adjustments for the two base classes.
231 virtual void *getAdjustedAnalysisPointer(const void *ID) {
232 if (ID == &TargetTransformInfo::ID)
233 return (TargetTransformInfo*)this;
234 return this;
235 }
236
237 unsigned getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) const {
238 switch (Opcode) {
239 default:
240 // By default, just classify everything as 'basic'.
241 return TCC_Basic;
242
243 case Instruction::GetElementPtr:
244 llvm_unreachable("Use getGEPCost for GEP operations!");
245
246 case Instruction::BitCast:
247 assert(OpTy && "Cast instructions must provide the operand type");
248 if (Ty == OpTy || (Ty->isPointerTy() && OpTy->isPointerTy()))
249 // Identity and pointer-to-pointer casts are free.
250 return TCC_Free;
251
252 // Otherwise, the default basic cost is used.
253 return TCC_Basic;
254
255 case Instruction::IntToPtr:
256 // An inttoptr cast is free so long as the input is a legal integer type
257 // which doesn't contain values outside the range of a pointer.
258 if (DL && DL->isLegalInteger(OpTy->getScalarSizeInBits()) &&
259 OpTy->getScalarSizeInBits() <= DL->getPointerSizeInBits())
260 return TCC_Free;
261
262 // Otherwise it's not a no-op.
263 return TCC_Basic;
264
265 case Instruction::PtrToInt:
266 // A ptrtoint cast is free so long as the result is large enough to store
267 // the pointer, and a legal integer type.
268 if (DL && DL->isLegalInteger(Ty->getScalarSizeInBits()) &&
269 Ty->getScalarSizeInBits() >= DL->getPointerSizeInBits())
270 return TCC_Free;
271
272 // Otherwise it's not a no-op.
273 return TCC_Basic;
274
275 case Instruction::Trunc:
276 // trunc to a native type is free (assuming the target has compare and
277 // shift-right of the same width).
278 if (DL && DL->isLegalInteger(DL->getTypeSizeInBits(Ty)))
279 return TCC_Free;
280
281 return TCC_Basic;
282 }
283 }
284
285 unsigned getGEPCost(const Value *Ptr,
286 ArrayRef<const Value *> Operands) const {
287 // In the basic model, we just assume that all-constant GEPs will be folded
288 // into their uses via addressing modes.
289 for (unsigned Idx = 0, Size = Operands.size(); Idx != Size; ++Idx)
290 if (!isa<Constant>(Operands[Idx]))
291 return TCC_Basic;
292
293 return TCC_Free;
294 }
295
296 unsigned getCallCost(FunctionType *FTy, int NumArgs = -1) const {
297 assert(FTy && "FunctionType must be provided to this routine.");
298
299 // The target-independent implementation just measures the size of the
300 // function by approximating that each argument will take on average one
301 // instruction to prepare.
302
303 if (NumArgs < 0)
304 // Set the argument number to the number of explicit arguments in the
305 // function.
306 NumArgs = FTy->getNumParams();
307
308 return TCC_Basic * (NumArgs + 1);
309 }
310
311 unsigned getCallCost(const Function *F, int NumArgs = -1) const {
312 assert(F && "A concrete function must be provided to this routine.");
313
314 if (NumArgs < 0)
315 // Set the argument number to the number of explicit arguments in the
316 // function.
317 NumArgs = F->arg_size();
318
319 if (Intrinsic::ID IID = (Intrinsic::ID)F->getIntrinsicID()) {
320 FunctionType *FTy = F->getFunctionType();
321 SmallVector<Type *, 8> ParamTys(FTy->param_begin(), FTy->param_end());
322 return TopTTI->getIntrinsicCost(IID, FTy->getReturnType(), ParamTys);
323 }
324
325 if (!TopTTI->isLoweredToCall(F))
326 return TCC_Basic; // Give a basic cost if it will be lowered directly.
327
328 return TopTTI->getCallCost(F->getFunctionType(), NumArgs);
329 }
330
331 unsigned getCallCost(const Function *F,
332 ArrayRef<const Value *> Arguments) const {
333 // Simply delegate to generic handling of the call.
334 // FIXME: We should use instsimplify or something else to catch calls which
335 // will constant fold with these arguments.
336 return TopTTI->getCallCost(F, Arguments.size());
337 }
338
339 unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
340 ArrayRef<Type *> ParamTys) const {
341 switch (IID) {
342 default:
343 // Intrinsics rarely (if ever) have normal argument setup constraints.
344 // Model them as having a basic instruction cost.
345 // FIXME: This is wrong for libc intrinsics.
346 return TCC_Basic;
347
348 case Intrinsic::dbg_declare:
349 case Intrinsic::dbg_value:
350 case Intrinsic::invariant_start:
351 case Intrinsic::invariant_end:
352 case Intrinsic::lifetime_start:
353 case Intrinsic::lifetime_end:
354 case Intrinsic::objectsize:
355 case Intrinsic::ptr_annotation:
356 case Intrinsic::var_annotation:
357 // These intrinsics don't actually represent code after lowering.
358 return TCC_Free;
359 }
360 }
361
362 unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
363 ArrayRef<const Value *> Arguments) const {
364 // Delegate to the generic intrinsic handling code. This mostly provides an
365 // opportunity for targets to (for example) special case the cost of
366 // certain intrinsics based on constants used as arguments.
367 SmallVector<Type *, 8> ParamTys;
368 ParamTys.reserve(Arguments.size());
369 for (unsigned Idx = 0, Size = Arguments.size(); Idx != Size; ++Idx)
370 ParamTys.push_back(Arguments[Idx]->getType());
371 return TopTTI->getIntrinsicCost(IID, RetTy, ParamTys);
372 }
373
374 unsigned getUserCost(const User *U) const {
375 if (isa<PHINode>(U))
376 return TCC_Free; // Model all PHI nodes as free.
377
378 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U))
379 // In the basic model we just assume that all-constant GEPs will be
380 // folded into their uses via addressing modes.
381 return GEP->hasAllConstantIndices() ? TCC_Free : TCC_Basic;
382
383 if (ImmutableCallSite CS = U) {
384 const Function *F = CS.getCalledFunction();
385 if (!F) {
386 // Just use the called value type.
387 Type *FTy = CS.getCalledValue()->getType()->getPointerElementType();
388 return TopTTI->getCallCost(cast<FunctionType>(FTy), CS.arg_size());
389 }
390
391 SmallVector<const Value *, 8> Arguments;
392 for (ImmutableCallSite::arg_iterator AI = CS.arg_begin(),
393 AE = CS.arg_end();
394 AI != AE; ++AI)
395 Arguments.push_back(*AI);
396
397 return TopTTI->getCallCost(F, Arguments);
398 }
399
400 if (const CastInst *CI = dyn_cast<CastInst>(U)) {
401 // Result of a cmp instruction is often extended (to be used by other
402 // cmp instructions, logical or return instructions). These are usually
403 // nop on most sane targets.
404 if (isa<CmpInst>(CI->getOperand(0)))
405 return TCC_Free;
406 }
407
408 // Otherwise delegate to the fully generic implementations.
409 return getOperationCost(Operator::getOpcode(U), U->getType(),
410 U->getNumOperands() == 1 ?
411 U->getOperand(0)->getType() : 0);
412 }
413
414 bool isLoweredToCall(const Function *F) const {
415 // FIXME: These should almost certainly not be handled here, and instead
416 // handled with the help of TLI or the target itself. This was largely
417 // ported from existing analysis heuristics here so that such refactorings
418 // can take place in the future.
419
420 if (F->isIntrinsic())
421 return false;
422
423 if (F->hasLocalLinkage() || !F->hasName())
424 return true;
425
426 StringRef Name = F->getName();
427
428 // These will all likely lower to a single selection DAG node.
429 if (Name == "copysign" || Name == "copysignf" || Name == "copysignl" ||
430 Name == "fabs" || Name == "fabsf" || Name == "fabsl" || Name == "sin" ||
431 Name == "sinf" || Name == "sinl" || Name == "cos" || Name == "cosf" ||
432 Name == "cosl" || Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl")
433 return false;
434
435 // These are all likely to be optimized into something smaller.
436 if (Name == "pow" || Name == "powf" || Name == "powl" || Name == "exp2" ||
437 Name == "exp2l" || Name == "exp2f" || Name == "floor" || Name ==
438 "floorf" || Name == "ceil" || Name == "round" || Name == "ffs" ||
439 Name == "ffsl" || Name == "abs" || Name == "labs" || Name == "llabs")
440 return false;
441
442 return true;
443 }
444
445 bool isLegalAddImmediate(int64_t Imm) const {
446 return false;
447 }
448
449 bool isLegalICmpImmediate(int64_t Imm) const {
450 return false;
451 }
452
453 bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
454 bool HasBaseReg, int64_t Scale) const {
455 // Guess that reg+reg addressing is allowed. This heuristic is taken from
456 // the implementation of LSR.
457 return !BaseGV && BaseOffset == 0 && Scale <= 1;
458 }
459
460 bool isTruncateFree(Type *Ty1, Type *Ty2) const {
461 return false;
462 }
463
464 bool isTypeLegal(Type *Ty) const {
465 return false;
466 }
467
468 unsigned getJumpBufAlignment() const {
469 return 0;
470 }
471
472 unsigned getJumpBufSize() const {
473 return 0;
474 }
475
476 bool shouldBuildLookupTables() const {
477 return true;
478 }
479
480 PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const {
481 return PSK_Software;
482 }
483
484 unsigned getIntImmCost(const APInt &Imm, Type *Ty) const {
485 return 1;
486 }
487
488 unsigned getNumberOfRegisters(bool Vector) const {
489 return 8;
490 }
491
492 unsigned getRegisterBitWidth(bool Vector) const {
493 return 32;
494 }
495
496 unsigned getMaximumUnrollFactor() const {
497 return 1;
498 }
499
500 unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind,
501 OperandValueKind) const {
502 return 1;
503 }
504
505 unsigned getShuffleCost(ShuffleKind Kind, Type *Tp,
506 int Index = 0, Type *SubTp = 0) const {
507 return 1;
508 }
509
510 unsigned getCastInstrCost(unsigned Opcode, Type *Dst,
511 Type *Src) const {
512 return 1;
513 }
514
515 unsigned getCFInstrCost(unsigned Opcode) const {
516 return 1;
517 }
518
519 unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
520 Type *CondTy = 0) const {
521 return 1;
522 }
523
524 unsigned getVectorInstrCost(unsigned Opcode, Type *Val,
525 unsigned Index = -1) const {
526 return 1;
527 }
528
529 unsigned getMemoryOpCost(unsigned Opcode, Type *Src,
530 unsigned Alignment,
531 unsigned AddressSpace) const {
532 return 1;
533 }
534
535 unsigned getIntrinsicInstrCost(Intrinsic::ID ID,
536 Type *RetTy,
537 ArrayRef<Type*> Tys) const {
538 return 1;
539 }
540
541 unsigned getNumberOfParts(Type *Tp) const {
542 return 0;
543 }
544
545 unsigned getAddressComputationCost(Type *Tp) const {
546 return 0;
547 }
548 };
549
550 } // end anonymous namespace
551
552 INITIALIZE_AG_PASS(NoTTI, TargetTransformInfo, "notti",
553 "No target information", true, true, true)
554 char NoTTI::ID = 0;
555
556 ImmutablePass *llvm::createNoTargetTransformInfoPass() {
557 return new NoTTI();
558 }