diff lib/Target/X86/X86ScheduleBtVer2.td @ 83:60c9769439b8

LLVM 3.7
author Tatsuki IHA <e125716@ie.u-ryukyu.ac.jp>
date Wed, 18 Feb 2015 14:55:36 +0900
parents
children 803732b1fca8
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/lib/Target/X86/X86ScheduleBtVer2.td	Wed Feb 18 14:55:36 2015 +0900
@@ -0,0 +1,341 @@
+//=- X86ScheduleBtVer2.td - X86 BtVer2 (Jaguar) Scheduling ---*- tablegen -*-=//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the machine model for AMD btver2 (Jaguar) to support
+// instruction scheduling and other instruction cost heuristics. Based off AMD Software
+// Optimization Guide for AMD Family 16h Processors & Instruction Latency appendix.
+//
+//===----------------------------------------------------------------------===//
+
+def BtVer2Model : SchedMachineModel {
+  // All x86 instructions are modeled as a single micro-op, and btver2 can
+  // decode 2 instructions per cycle.
+  let IssueWidth = 2;
+  let MicroOpBufferSize = 64; // Retire Control Unit
+  let LoadLatency = 5; // FPU latency (worse case cf Integer 3 cycle latency)
+  let HighLatency = 25;
+  let MispredictPenalty = 14; // Minimum branch misdirection penalty
+  let PostRAScheduler = 1;
+
+  // FIXME: SSE4/AVX is unimplemented. This flag is set to allow
+  // the scheduler to assign a default model to unrecognized opcodes.
+  let CompleteModel = 0;
+}
+
+let SchedModel = BtVer2Model in {
+
+// Jaguar can issue up to 6 micro-ops in one cycle
+def JALU0 : ProcResource<1>; // Integer Pipe0: integer ALU0 (also handle FP->INT jam)
+def JALU1 : ProcResource<1>; // Integer Pipe1: integer ALU1/MUL/DIV
+def JLAGU : ProcResource<1>; // Integer Pipe2: LAGU
+def JSAGU : ProcResource<1>; // Integer Pipe3: SAGU (also handles 3-operand LEA)
+def JFPU0 : ProcResource<1>; // Vector/FPU Pipe0: VALU0/VIMUL/FPA
+def JFPU1 : ProcResource<1>; // Vector/FPU Pipe1: VALU1/STC/FPM
+
+// Any pipe - FIXME we need this until we can discriminate between int/fpu load/store/moves properly
+def JAny : ProcResGroup<[JALU0, JALU1, JLAGU, JSAGU, JFPU0, JFPU1]>;
+
+// Integer Pipe Scheduler
+def JALU01 : ProcResGroup<[JALU0, JALU1]> {
+  let BufferSize=20;
+}
+
+// AGU Pipe Scheduler
+def JLSAGU : ProcResGroup<[JLAGU, JSAGU]> {
+  let BufferSize=12;
+}
+
+// Fpu Pipe Scheduler
+def JFPU01 : ProcResGroup<[JFPU0, JFPU1]> {
+  let BufferSize=18;
+}
+
+def JDiv    : ProcResource<1>; // integer division
+def JMul    : ProcResource<1>; // integer multiplication
+def JVALU0  : ProcResource<1>; // vector integer
+def JVALU1  : ProcResource<1>; // vector integer
+def JVIMUL  : ProcResource<1>; // vector integer multiplication
+def JSTC    : ProcResource<1>; // vector store/convert
+def JFPM    : ProcResource<1>; // FP multiplication
+def JFPA    : ProcResource<1>; // FP addition
+
+// Integer loads are 3 cycles, so ReadAfterLd registers needn't be available until 3
+// cycles after the memory operand.
+def : ReadAdvance<ReadAfterLd, 3>;
+
+// Many SchedWrites are defined in pairs with and without a folded load.
+// Instructions with folded loads are usually micro-fused, so they only appear
+// as two micro-ops when dispatched by the schedulers.
+// This multiclass defines the resource usage for variants with and without
+// folded loads.
+multiclass JWriteResIntPair<X86FoldableSchedWrite SchedRW,
+                          ProcResourceKind ExePort,
+                          int Lat> {
+  // Register variant is using a single cycle on ExePort.
+  def : WriteRes<SchedRW, [ExePort]> { let Latency = Lat; }
+
+  // Memory variant also uses a cycle on JLAGU and adds 3 cycles to the
+  // latency.
+  def : WriteRes<SchedRW.Folded, [JLAGU, ExePort]> {
+     let Latency = !add(Lat, 3);
+  }
+}
+
+multiclass JWriteResFpuPair<X86FoldableSchedWrite SchedRW,
+                          ProcResourceKind ExePort,
+                          int Lat> {
+  // Register variant is using a single cycle on ExePort.
+  def : WriteRes<SchedRW, [ExePort]> { let Latency = Lat; }
+
+  // Memory variant also uses a cycle on JLAGU and adds 5 cycles to the
+  // latency.
+  def : WriteRes<SchedRW.Folded, [JLAGU, ExePort]> {
+     let Latency = !add(Lat, 5);
+  }
+}
+
+// A folded store needs a cycle on the SAGU for the store data.
+def : WriteRes<WriteRMW, [JSAGU]>;
+
+////////////////////////////////////////////////////////////////////////////////
+// Arithmetic.
+////////////////////////////////////////////////////////////////////////////////
+
+defm : JWriteResIntPair<WriteALU,   JALU01, 1>;
+defm : JWriteResIntPair<WriteIMul,  JALU1,  3>;
+
+def  : WriteRes<WriteIMulH, [JALU1]> {
+  let Latency = 6;
+  let ResourceCycles = [4];
+}
+
+// FIXME 8/16 bit divisions
+def : WriteRes<WriteIDiv, [JALU1, JDiv]> {
+  let Latency = 25;
+  let ResourceCycles = [1, 25];
+}
+def : WriteRes<WriteIDivLd, [JALU1, JLAGU, JDiv]> {
+  let Latency = 41;
+  let ResourceCycles = [1, 1, 25];
+}
+
+// This is for simple LEAs with one or two input operands.
+// FIXME: SAGU 3-operand LEA
+def : WriteRes<WriteLEA, [JALU01]>;
+
+////////////////////////////////////////////////////////////////////////////////
+// Integer shifts and rotates.
+////////////////////////////////////////////////////////////////////////////////
+
+defm : JWriteResIntPair<WriteShift, JALU01, 1>;
+
+////////////////////////////////////////////////////////////////////////////////
+// Loads, stores, and moves, not folded with other operations.
+// FIXME: Split x86 and SSE load/store/moves
+////////////////////////////////////////////////////////////////////////////////
+
+def : WriteRes<WriteLoad,  [JLAGU]> { let Latency = 5; }
+def : WriteRes<WriteStore, [JSAGU]>;
+def : WriteRes<WriteMove,  [JAny]>;
+
+////////////////////////////////////////////////////////////////////////////////
+// Idioms that clear a register, like xorps %xmm0, %xmm0.
+// These can often bypass execution ports completely.
+////////////////////////////////////////////////////////////////////////////////
+
+def : WriteRes<WriteZero,  []>;
+
+////////////////////////////////////////////////////////////////////////////////
+// Branches don't produce values, so they have no latency, but they still
+// consume resources. Indirect branches can fold loads.
+////////////////////////////////////////////////////////////////////////////////
+
+defm : JWriteResIntPair<WriteJump,  JALU01, 1>;
+
+////////////////////////////////////////////////////////////////////////////////
+// Floating point. This covers both scalar and vector operations.
+// FIXME: should we bother splitting JFPU pipe + unit stages for fast instructions?
+// FIXME: Double precision latencies
+// FIXME: SS vs PS latencies
+// FIXME: ymm latencies
+////////////////////////////////////////////////////////////////////////////////
+
+defm : JWriteResFpuPair<WriteFAdd,        JFPU0,  3>;
+defm : JWriteResFpuPair<WriteFMul,        JFPU1,  2>;
+defm : JWriteResFpuPair<WriteFRcp,        JFPU1,  2>;
+defm : JWriteResFpuPair<WriteFRsqrt,      JFPU1,  2>;
+defm : JWriteResFpuPair<WriteFShuffle,   JFPU01,  1>;
+defm : JWriteResFpuPair<WriteFBlend,     JFPU01,  1>;
+defm : JWriteResFpuPair<WriteFShuffle256, JFPU01, 1>;
+
+def : WriteRes<WriteFSqrt, [JFPU1, JLAGU, JFPM]> {
+  let Latency = 21;
+  let ResourceCycles = [1, 1, 21];
+}
+def : WriteRes<WriteFSqrtLd, [JFPU1, JLAGU, JFPM]> {
+  let Latency = 26;
+  let ResourceCycles = [1, 1, 21];
+}
+
+def : WriteRes<WriteFDiv, [JFPU1, JLAGU, JFPM]> {
+  let Latency = 19;
+  let ResourceCycles = [1, 1, 19];
+}
+def : WriteRes<WriteFDivLd, [JFPU1, JLAGU, JFPM]> {
+  let Latency = 24;
+  let ResourceCycles = [1, 1, 19];
+}
+
+// FIXME: integer pipes
+defm : JWriteResFpuPair<WriteCvtF2I,    JFPU1,  3>; // Float -> Integer.
+defm : JWriteResFpuPair<WriteCvtI2F,    JFPU1,  3>; // Integer -> Float.
+defm : JWriteResFpuPair<WriteCvtF2F,    JFPU1,  3>; // Float -> Float size conversion.
+
+def : WriteRes<WriteFVarBlend, [JFPU01]> {
+  let Latency = 2;
+  let ResourceCycles = [2];
+}
+def : WriteRes<WriteFVarBlendLd, [JLAGU, JFPU01]> {
+  let Latency = 7;
+  let ResourceCycles = [1, 2];
+}
+
+// Vector integer operations.
+defm : JWriteResFpuPair<WriteVecALU,   JFPU01,  1>;
+defm : JWriteResFpuPair<WriteVecShift, JFPU01,  1>;
+defm : JWriteResFpuPair<WriteVecIMul,  JFPU0,   2>;
+defm : JWriteResFpuPair<WriteShuffle,  JFPU01,  1>;
+defm : JWriteResFpuPair<WriteBlend,    JFPU01,  1>;
+defm : JWriteResFpuPair<WriteVecLogic, JFPU01,  1>;
+defm : JWriteResFpuPair<WriteShuffle256, JFPU01, 1>;
+
+def : WriteRes<WriteVarBlend, [JFPU01]> {
+  let Latency = 2;
+  let ResourceCycles = [2];
+}
+def : WriteRes<WriteVarBlendLd, [JLAGU, JFPU01]> {
+  let Latency = 7;
+  let ResourceCycles = [1, 2];
+}
+
+// FIXME: why do we need to define AVX2 resource on CPU that doesn't have AVX2?
+def : WriteRes<WriteVarVecShift, [JFPU01]> {
+  let Latency = 1;
+  let ResourceCycles = [1];
+}
+def : WriteRes<WriteVarVecShiftLd, [JLAGU, JFPU01]> {
+  let Latency = 6;
+  let ResourceCycles = [1, 1];
+}
+
+def : WriteRes<WriteMPSAD, [JFPU0]> {
+  let Latency = 3;
+  let ResourceCycles = [2];
+}
+def : WriteRes<WriteMPSADLd, [JLAGU, JFPU0]> {
+  let Latency = 8;
+  let ResourceCycles = [1, 2];
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// String instructions.
+// Packed Compare Implicit Length Strings, Return Mask
+// FIXME: approximate latencies + pipe dependencies
+////////////////////////////////////////////////////////////////////////////////
+
+def : WriteRes<WritePCmpIStrM, [JFPU01]> {
+  let Latency = 7;
+  let ResourceCycles = [2];
+}
+def : WriteRes<WritePCmpIStrMLd, [JLAGU, JFPU01]> {
+  let Latency = 12;
+  let ResourceCycles = [1, 2];
+}
+
+// Packed Compare Explicit Length Strings, Return Mask
+def : WriteRes<WritePCmpEStrM, [JFPU01]> {
+  let Latency = 13;
+  let ResourceCycles = [5];
+}
+def : WriteRes<WritePCmpEStrMLd, [JLAGU, JFPU01]> {
+  let Latency = 18;
+  let ResourceCycles = [1, 5];
+}
+
+// Packed Compare Implicit Length Strings, Return Index
+def : WriteRes<WritePCmpIStrI, [JFPU01]> {
+  let Latency = 6;
+  let ResourceCycles = [2];
+}
+def : WriteRes<WritePCmpIStrILd, [JLAGU, JFPU01]> {
+  let Latency = 11;
+  let ResourceCycles = [1, 2];
+}
+
+// Packed Compare Explicit Length Strings, Return Index
+def : WriteRes<WritePCmpEStrI, [JFPU01]> {
+  let Latency = 13;
+  let ResourceCycles = [5];
+}
+def : WriteRes<WritePCmpEStrILd, [JLAGU, JFPU01]> {
+  let Latency = 18;
+  let ResourceCycles = [1, 5];
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// AES Instructions.
+////////////////////////////////////////////////////////////////////////////////
+
+def : WriteRes<WriteAESDecEnc, [JFPU01, JVIMUL]> {
+  let Latency = 3;
+  let ResourceCycles = [1, 1];
+}
+def : WriteRes<WriteAESDecEncLd, [JFPU01, JLAGU, JVIMUL]> {
+  let Latency = 8;
+  let ResourceCycles = [1, 1, 1];
+}
+
+def : WriteRes<WriteAESIMC, [JVIMUL]> {
+  let Latency = 2;
+  let ResourceCycles = [1];
+}
+def : WriteRes<WriteAESIMCLd, [JLAGU, JVIMUL]> {
+  let Latency = 7;
+  let ResourceCycles = [1, 1];
+}
+
+def : WriteRes<WriteAESKeyGen, [JVIMUL]> {
+  let Latency = 2;
+  let ResourceCycles = [1];
+}
+def : WriteRes<WriteAESKeyGenLd, [JLAGU, JVIMUL]> {
+  let Latency = 7;
+  let ResourceCycles = [1, 1];
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// Carry-less multiplication instructions.
+////////////////////////////////////////////////////////////////////////////////
+
+def : WriteRes<WriteCLMul, [JVIMUL]> {
+  let Latency = 2;
+  let ResourceCycles = [1];
+}
+def : WriteRes<WriteCLMulLd, [JLAGU, JVIMUL]> {
+  let Latency = 7;
+  let ResourceCycles = [1, 1];
+}
+
+// FIXME: pipe for system/microcode?
+def : WriteRes<WriteSystem,     [JAny]> { let Latency = 100; }
+def : WriteRes<WriteMicrocoded, [JAny]> { let Latency = 100; }
+def : WriteRes<WriteFence,  [JSAGU]>;
+def : WriteRes<WriteNop, []>;
+} // SchedModel
+