Mercurial > hg > Members > tobaru > cbc > CbC_llvm
diff lib/Target/X86/X86ScheduleBtVer2.td @ 83:60c9769439b8
LLVM 3.7
author | Tatsuki IHA <e125716@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 18 Feb 2015 14:55:36 +0900 |
parents | |
children | 803732b1fca8 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/lib/Target/X86/X86ScheduleBtVer2.td Wed Feb 18 14:55:36 2015 +0900 @@ -0,0 +1,341 @@ +//=- X86ScheduleBtVer2.td - X86 BtVer2 (Jaguar) Scheduling ---*- tablegen -*-=// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines the machine model for AMD btver2 (Jaguar) to support +// instruction scheduling and other instruction cost heuristics. Based off AMD Software +// Optimization Guide for AMD Family 16h Processors & Instruction Latency appendix. +// +//===----------------------------------------------------------------------===// + +def BtVer2Model : SchedMachineModel { + // All x86 instructions are modeled as a single micro-op, and btver2 can + // decode 2 instructions per cycle. + let IssueWidth = 2; + let MicroOpBufferSize = 64; // Retire Control Unit + let LoadLatency = 5; // FPU latency (worse case cf Integer 3 cycle latency) + let HighLatency = 25; + let MispredictPenalty = 14; // Minimum branch misdirection penalty + let PostRAScheduler = 1; + + // FIXME: SSE4/AVX is unimplemented. This flag is set to allow + // the scheduler to assign a default model to unrecognized opcodes. + let CompleteModel = 0; +} + +let SchedModel = BtVer2Model in { + +// Jaguar can issue up to 6 micro-ops in one cycle +def JALU0 : ProcResource<1>; // Integer Pipe0: integer ALU0 (also handle FP->INT jam) +def JALU1 : ProcResource<1>; // Integer Pipe1: integer ALU1/MUL/DIV +def JLAGU : ProcResource<1>; // Integer Pipe2: LAGU +def JSAGU : ProcResource<1>; // Integer Pipe3: SAGU (also handles 3-operand LEA) +def JFPU0 : ProcResource<1>; // Vector/FPU Pipe0: VALU0/VIMUL/FPA +def JFPU1 : ProcResource<1>; // Vector/FPU Pipe1: VALU1/STC/FPM + +// Any pipe - FIXME we need this until we can discriminate between int/fpu load/store/moves properly +def JAny : ProcResGroup<[JALU0, JALU1, JLAGU, JSAGU, JFPU0, JFPU1]>; + +// Integer Pipe Scheduler +def JALU01 : ProcResGroup<[JALU0, JALU1]> { + let BufferSize=20; +} + +// AGU Pipe Scheduler +def JLSAGU : ProcResGroup<[JLAGU, JSAGU]> { + let BufferSize=12; +} + +// Fpu Pipe Scheduler +def JFPU01 : ProcResGroup<[JFPU0, JFPU1]> { + let BufferSize=18; +} + +def JDiv : ProcResource<1>; // integer division +def JMul : ProcResource<1>; // integer multiplication +def JVALU0 : ProcResource<1>; // vector integer +def JVALU1 : ProcResource<1>; // vector integer +def JVIMUL : ProcResource<1>; // vector integer multiplication +def JSTC : ProcResource<1>; // vector store/convert +def JFPM : ProcResource<1>; // FP multiplication +def JFPA : ProcResource<1>; // FP addition + +// Integer loads are 3 cycles, so ReadAfterLd registers needn't be available until 3 +// cycles after the memory operand. +def : ReadAdvance<ReadAfterLd, 3>; + +// Many SchedWrites are defined in pairs with and without a folded load. +// Instructions with folded loads are usually micro-fused, so they only appear +// as two micro-ops when dispatched by the schedulers. +// This multiclass defines the resource usage for variants with and without +// folded loads. +multiclass JWriteResIntPair<X86FoldableSchedWrite SchedRW, + ProcResourceKind ExePort, + int Lat> { + // Register variant is using a single cycle on ExePort. + def : WriteRes<SchedRW, [ExePort]> { let Latency = Lat; } + + // Memory variant also uses a cycle on JLAGU and adds 3 cycles to the + // latency. + def : WriteRes<SchedRW.Folded, [JLAGU, ExePort]> { + let Latency = !add(Lat, 3); + } +} + +multiclass JWriteResFpuPair<X86FoldableSchedWrite SchedRW, + ProcResourceKind ExePort, + int Lat> { + // Register variant is using a single cycle on ExePort. + def : WriteRes<SchedRW, [ExePort]> { let Latency = Lat; } + + // Memory variant also uses a cycle on JLAGU and adds 5 cycles to the + // latency. + def : WriteRes<SchedRW.Folded, [JLAGU, ExePort]> { + let Latency = !add(Lat, 5); + } +} + +// A folded store needs a cycle on the SAGU for the store data. +def : WriteRes<WriteRMW, [JSAGU]>; + +//////////////////////////////////////////////////////////////////////////////// +// Arithmetic. +//////////////////////////////////////////////////////////////////////////////// + +defm : JWriteResIntPair<WriteALU, JALU01, 1>; +defm : JWriteResIntPair<WriteIMul, JALU1, 3>; + +def : WriteRes<WriteIMulH, [JALU1]> { + let Latency = 6; + let ResourceCycles = [4]; +} + +// FIXME 8/16 bit divisions +def : WriteRes<WriteIDiv, [JALU1, JDiv]> { + let Latency = 25; + let ResourceCycles = [1, 25]; +} +def : WriteRes<WriteIDivLd, [JALU1, JLAGU, JDiv]> { + let Latency = 41; + let ResourceCycles = [1, 1, 25]; +} + +// This is for simple LEAs with one or two input operands. +// FIXME: SAGU 3-operand LEA +def : WriteRes<WriteLEA, [JALU01]>; + +//////////////////////////////////////////////////////////////////////////////// +// Integer shifts and rotates. +//////////////////////////////////////////////////////////////////////////////// + +defm : JWriteResIntPair<WriteShift, JALU01, 1>; + +//////////////////////////////////////////////////////////////////////////////// +// Loads, stores, and moves, not folded with other operations. +// FIXME: Split x86 and SSE load/store/moves +//////////////////////////////////////////////////////////////////////////////// + +def : WriteRes<WriteLoad, [JLAGU]> { let Latency = 5; } +def : WriteRes<WriteStore, [JSAGU]>; +def : WriteRes<WriteMove, [JAny]>; + +//////////////////////////////////////////////////////////////////////////////// +// Idioms that clear a register, like xorps %xmm0, %xmm0. +// These can often bypass execution ports completely. +//////////////////////////////////////////////////////////////////////////////// + +def : WriteRes<WriteZero, []>; + +//////////////////////////////////////////////////////////////////////////////// +// Branches don't produce values, so they have no latency, but they still +// consume resources. Indirect branches can fold loads. +//////////////////////////////////////////////////////////////////////////////// + +defm : JWriteResIntPair<WriteJump, JALU01, 1>; + +//////////////////////////////////////////////////////////////////////////////// +// Floating point. This covers both scalar and vector operations. +// FIXME: should we bother splitting JFPU pipe + unit stages for fast instructions? +// FIXME: Double precision latencies +// FIXME: SS vs PS latencies +// FIXME: ymm latencies +//////////////////////////////////////////////////////////////////////////////// + +defm : JWriteResFpuPair<WriteFAdd, JFPU0, 3>; +defm : JWriteResFpuPair<WriteFMul, JFPU1, 2>; +defm : JWriteResFpuPair<WriteFRcp, JFPU1, 2>; +defm : JWriteResFpuPair<WriteFRsqrt, JFPU1, 2>; +defm : JWriteResFpuPair<WriteFShuffle, JFPU01, 1>; +defm : JWriteResFpuPair<WriteFBlend, JFPU01, 1>; +defm : JWriteResFpuPair<WriteFShuffle256, JFPU01, 1>; + +def : WriteRes<WriteFSqrt, [JFPU1, JLAGU, JFPM]> { + let Latency = 21; + let ResourceCycles = [1, 1, 21]; +} +def : WriteRes<WriteFSqrtLd, [JFPU1, JLAGU, JFPM]> { + let Latency = 26; + let ResourceCycles = [1, 1, 21]; +} + +def : WriteRes<WriteFDiv, [JFPU1, JLAGU, JFPM]> { + let Latency = 19; + let ResourceCycles = [1, 1, 19]; +} +def : WriteRes<WriteFDivLd, [JFPU1, JLAGU, JFPM]> { + let Latency = 24; + let ResourceCycles = [1, 1, 19]; +} + +// FIXME: integer pipes +defm : JWriteResFpuPair<WriteCvtF2I, JFPU1, 3>; // Float -> Integer. +defm : JWriteResFpuPair<WriteCvtI2F, JFPU1, 3>; // Integer -> Float. +defm : JWriteResFpuPair<WriteCvtF2F, JFPU1, 3>; // Float -> Float size conversion. + +def : WriteRes<WriteFVarBlend, [JFPU01]> { + let Latency = 2; + let ResourceCycles = [2]; +} +def : WriteRes<WriteFVarBlendLd, [JLAGU, JFPU01]> { + let Latency = 7; + let ResourceCycles = [1, 2]; +} + +// Vector integer operations. +defm : JWriteResFpuPair<WriteVecALU, JFPU01, 1>; +defm : JWriteResFpuPair<WriteVecShift, JFPU01, 1>; +defm : JWriteResFpuPair<WriteVecIMul, JFPU0, 2>; +defm : JWriteResFpuPair<WriteShuffle, JFPU01, 1>; +defm : JWriteResFpuPair<WriteBlend, JFPU01, 1>; +defm : JWriteResFpuPair<WriteVecLogic, JFPU01, 1>; +defm : JWriteResFpuPair<WriteShuffle256, JFPU01, 1>; + +def : WriteRes<WriteVarBlend, [JFPU01]> { + let Latency = 2; + let ResourceCycles = [2]; +} +def : WriteRes<WriteVarBlendLd, [JLAGU, JFPU01]> { + let Latency = 7; + let ResourceCycles = [1, 2]; +} + +// FIXME: why do we need to define AVX2 resource on CPU that doesn't have AVX2? +def : WriteRes<WriteVarVecShift, [JFPU01]> { + let Latency = 1; + let ResourceCycles = [1]; +} +def : WriteRes<WriteVarVecShiftLd, [JLAGU, JFPU01]> { + let Latency = 6; + let ResourceCycles = [1, 1]; +} + +def : WriteRes<WriteMPSAD, [JFPU0]> { + let Latency = 3; + let ResourceCycles = [2]; +} +def : WriteRes<WriteMPSADLd, [JLAGU, JFPU0]> { + let Latency = 8; + let ResourceCycles = [1, 2]; +} + +//////////////////////////////////////////////////////////////////////////////// +// String instructions. +// Packed Compare Implicit Length Strings, Return Mask +// FIXME: approximate latencies + pipe dependencies +//////////////////////////////////////////////////////////////////////////////// + +def : WriteRes<WritePCmpIStrM, [JFPU01]> { + let Latency = 7; + let ResourceCycles = [2]; +} +def : WriteRes<WritePCmpIStrMLd, [JLAGU, JFPU01]> { + let Latency = 12; + let ResourceCycles = [1, 2]; +} + +// Packed Compare Explicit Length Strings, Return Mask +def : WriteRes<WritePCmpEStrM, [JFPU01]> { + let Latency = 13; + let ResourceCycles = [5]; +} +def : WriteRes<WritePCmpEStrMLd, [JLAGU, JFPU01]> { + let Latency = 18; + let ResourceCycles = [1, 5]; +} + +// Packed Compare Implicit Length Strings, Return Index +def : WriteRes<WritePCmpIStrI, [JFPU01]> { + let Latency = 6; + let ResourceCycles = [2]; +} +def : WriteRes<WritePCmpIStrILd, [JLAGU, JFPU01]> { + let Latency = 11; + let ResourceCycles = [1, 2]; +} + +// Packed Compare Explicit Length Strings, Return Index +def : WriteRes<WritePCmpEStrI, [JFPU01]> { + let Latency = 13; + let ResourceCycles = [5]; +} +def : WriteRes<WritePCmpEStrILd, [JLAGU, JFPU01]> { + let Latency = 18; + let ResourceCycles = [1, 5]; +} + +//////////////////////////////////////////////////////////////////////////////// +// AES Instructions. +//////////////////////////////////////////////////////////////////////////////// + +def : WriteRes<WriteAESDecEnc, [JFPU01, JVIMUL]> { + let Latency = 3; + let ResourceCycles = [1, 1]; +} +def : WriteRes<WriteAESDecEncLd, [JFPU01, JLAGU, JVIMUL]> { + let Latency = 8; + let ResourceCycles = [1, 1, 1]; +} + +def : WriteRes<WriteAESIMC, [JVIMUL]> { + let Latency = 2; + let ResourceCycles = [1]; +} +def : WriteRes<WriteAESIMCLd, [JLAGU, JVIMUL]> { + let Latency = 7; + let ResourceCycles = [1, 1]; +} + +def : WriteRes<WriteAESKeyGen, [JVIMUL]> { + let Latency = 2; + let ResourceCycles = [1]; +} +def : WriteRes<WriteAESKeyGenLd, [JLAGU, JVIMUL]> { + let Latency = 7; + let ResourceCycles = [1, 1]; +} + +//////////////////////////////////////////////////////////////////////////////// +// Carry-less multiplication instructions. +//////////////////////////////////////////////////////////////////////////////// + +def : WriteRes<WriteCLMul, [JVIMUL]> { + let Latency = 2; + let ResourceCycles = [1]; +} +def : WriteRes<WriteCLMulLd, [JLAGU, JVIMUL]> { + let Latency = 7; + let ResourceCycles = [1, 1]; +} + +// FIXME: pipe for system/microcode? +def : WriteRes<WriteSystem, [JAny]> { let Latency = 100; } +def : WriteRes<WriteMicrocoded, [JAny]> { let Latency = 100; } +def : WriteRes<WriteFence, [JSAGU]>; +def : WriteRes<WriteNop, []>; +} // SchedModel +