Mercurial > hg > Members > tobaru > cbc > CbC_llvm
diff lib/Target/PowerPC/PPCMIPeephole.cpp @ 121:803732b1fca8
LLVM 5.0
author | kono |
---|---|
date | Fri, 27 Oct 2017 17:07:41 +0900 |
parents | 1172e4bd9c6f |
children |
line wrap: on
line diff
--- a/lib/Target/PowerPC/PPCMIPeephole.cpp Fri Nov 25 19:14:25 2016 +0900 +++ b/lib/Target/PowerPC/PPCMIPeephole.cpp Fri Oct 27 17:07:41 2017 +0900 @@ -19,19 +19,37 @@ // //===---------------------------------------------------------------------===// -#include "PPCInstrInfo.h" #include "PPC.h" #include "PPCInstrBuilder.h" +#include "PPCInstrInfo.h" #include "PPCTargetMachine.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Support/Debug.h" +#include "llvm/ADT/Statistic.h" +#include "MCTargetDesc/PPCPredicates.h" using namespace llvm; #define DEBUG_TYPE "ppc-mi-peepholes" +STATISTIC(NumEliminatedSExt, "Number of eliminated sign-extensions"); +STATISTIC(NumEliminatedZExt, "Number of eliminated zero-extensions"); +STATISTIC(NumOptADDLIs, "Number of optimized ADD instruction fed by LI"); + +static cl::opt<bool> + EnableSExtElimination("ppc-eliminate-signext", + cl::desc("enable elimination of sign-extensions"), + cl::init(false), cl::Hidden); + +static cl::opt<bool> + EnableZExtElimination("ppc-eliminate-zeroext", + cl::desc("enable elimination of zero-extensions"), + cl::init(false), cl::Hidden); + namespace llvm { void initializePPCMIPeepholePass(PassRegistry&); } @@ -50,17 +68,29 @@ } private: + MachineDominatorTree *MDT; + // Initialize class variables. void initialize(MachineFunction &MFParm); // Perform peepholes. bool simplifyCode(void); + // Perform peepholes. + bool eliminateRedundantCompare(void); + // Find the "true" register represented by SrcReg (following chains // of copies and subreg_to_reg operations). unsigned lookThruCopyLike(unsigned SrcReg); public: + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.addRequired<MachineDominatorTree>(); + AU.addPreserved<MachineDominatorTree>(); + MachineFunctionPass::getAnalysisUsage(AU); + } + // Main entry point for this pass. bool runOnMachineFunction(MachineFunction &MF) override { if (skipFunction(*MF.getFunction())) @@ -74,11 +104,78 @@ void PPCMIPeephole::initialize(MachineFunction &MFParm) { MF = &MFParm; MRI = &MF->getRegInfo(); + MDT = &getAnalysis<MachineDominatorTree>(); TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo(); DEBUG(dbgs() << "*** PowerPC MI peephole pass ***\n\n"); DEBUG(MF->dump()); } +static MachineInstr *getVRegDefOrNull(MachineOperand *Op, + MachineRegisterInfo *MRI) { + assert(Op && "Invalid Operand!"); + if (!Op->isReg()) + return nullptr; + + unsigned Reg = Op->getReg(); + if (!TargetRegisterInfo::isVirtualRegister(Reg)) + return nullptr; + + return MRI->getVRegDef(Reg); +} + +// This function returns number of known zero bits in output of MI +// starting from the most significant bit. +static unsigned +getKnownLeadingZeroCount(MachineInstr *MI, const PPCInstrInfo *TII) { + unsigned Opcode = MI->getOpcode(); + if (Opcode == PPC::RLDICL || Opcode == PPC::RLDICLo || + Opcode == PPC::RLDCL || Opcode == PPC::RLDCLo) + return MI->getOperand(3).getImm(); + + if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDICo) && + MI->getOperand(3).getImm() <= 63 - MI->getOperand(2).getImm()) + return MI->getOperand(3).getImm(); + + if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINMo || + Opcode == PPC::RLWNM || Opcode == PPC::RLWNMo || + Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) && + MI->getOperand(3).getImm() <= MI->getOperand(4).getImm()) + return 32 + MI->getOperand(3).getImm(); + + if (Opcode == PPC::ANDIo) { + uint16_t Imm = MI->getOperand(2).getImm(); + return 48 + countLeadingZeros(Imm); + } + + if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZWo || + Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZWo || + Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8) + // The result ranges from 0 to 32. + return 58; + + if (Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZDo || + Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZDo) + // The result ranges from 0 to 64. + return 57; + + if (Opcode == PPC::LHZ || Opcode == PPC::LHZX || + Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 || + Opcode == PPC::LHZU || Opcode == PPC::LHZUX || + Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8) + return 48; + + if (Opcode == PPC::LBZ || Opcode == PPC::LBZX || + Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || + Opcode == PPC::LBZU || Opcode == PPC::LBZUX || + Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8) + return 56; + + if (TII->isZeroExtended(*MI)) + return 32; + + return 0; +} + // Perform peephole optimizations. bool PPCMIPeephole::simplifyCode(void) { bool Simplified = false; @@ -124,10 +221,40 @@ if (TrueReg1 == TrueReg2 && TargetRegisterInfo::isVirtualRegister(TrueReg1)) { MachineInstr *DefMI = MRI->getVRegDef(TrueReg1); + unsigned DefOpc = DefMI ? DefMI->getOpcode() : 0; + + // If this is a splat fed by a splatting load, the splat is + // redundant. Replace with a copy. This doesn't happen directly due + // to code in PPCDAGToDAGISel.cpp, but it can happen when converting + // a load of a double to a vector of 64-bit integers. + auto isConversionOfLoadAndSplat = [=]() -> bool { + if (DefOpc != PPC::XVCVDPSXDS && DefOpc != PPC::XVCVDPUXDS) + return false; + unsigned DefReg = lookThruCopyLike(DefMI->getOperand(1).getReg()); + if (TargetRegisterInfo::isVirtualRegister(DefReg)) { + MachineInstr *LoadMI = MRI->getVRegDef(DefReg); + if (LoadMI && LoadMI->getOpcode() == PPC::LXVDSX) + return true; + } + return false; + }; + if (DefMI && (Immed == 0 || Immed == 3)) { + if (DefOpc == PPC::LXVDSX || isConversionOfLoadAndSplat()) { + DEBUG(dbgs() + << "Optimizing load-and-splat/splat " + "to load-and-splat/copy: "); + DEBUG(MI.dump()); + BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY), + MI.getOperand(0).getReg()) + .add(MI.getOperand(1)); + ToErase = &MI; + Simplified = true; + } + } // If this is a splat or a swap fed by another splat, we // can replace it with a copy. - if (DefMI && DefMI->getOpcode() == PPC::XXPERMDI) { + if (DefOpc == PPC::XXPERMDI) { unsigned FeedImmed = DefMI->getOperand(3).getImm(); unsigned FeedReg1 = lookThruCopyLike(DefMI->getOperand(1).getReg()); @@ -139,9 +266,9 @@ << "Optimizing splat/swap or splat/splat " "to splat/copy: "); DEBUG(MI.dump()); - BuildMI(MBB, &MI, MI.getDebugLoc(), - TII->get(PPC::COPY), MI.getOperand(0).getReg()) - .addOperand(MI.getOperand(1)); + BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY), + MI.getOperand(0).getReg()) + .add(MI.getOperand(1)); ToErase = &MI; Simplified = true; } @@ -164,14 +291,15 @@ else if (Immed == 2 && FeedImmed == 2 && FeedReg1 == FeedReg2) { DEBUG(dbgs() << "Optimizing swap/swap => copy: "); DEBUG(MI.dump()); - BuildMI(MBB, &MI, MI.getDebugLoc(), - TII->get(PPC::COPY), MI.getOperand(0).getReg()) - .addOperand(DefMI->getOperand(1)); + BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY), + MI.getOperand(0).getReg()) + .add(DefMI->getOperand(1)); ToErase = &MI; Simplified = true; } - } else if ((Immed == 0 || Immed == 3) && - DefMI && DefMI->getOpcode() == PPC::XXPERMDIs) { + } else if ((Immed == 0 || Immed == 3) && DefOpc == PPC::XXPERMDIs && + (DefMI->getOperand(2).getImm() == 0 || + DefMI->getOperand(2).getImm() == 3)) { // Splat fed by another splat - switch the output of the first // and remove the second. DefMI->getOperand(0).setReg(MI.getOperand(0).getReg()); @@ -190,22 +318,37 @@ unsigned MyOpcode = MI.getOpcode(); unsigned OpNo = MyOpcode == PPC::XXSPLTW ? 1 : 2; unsigned TrueReg = lookThruCopyLike(MI.getOperand(OpNo).getReg()); + if (!TargetRegisterInfo::isVirtualRegister(TrueReg)) + break; MachineInstr *DefMI = MRI->getVRegDef(TrueReg); if (!DefMI) break; unsigned DefOpcode = DefMI->getOpcode(); - bool SameOpcode = (MyOpcode == DefOpcode) || + auto isConvertOfSplat = [=]() -> bool { + if (DefOpcode != PPC::XVCVSPSXWS && DefOpcode != PPC::XVCVSPUXWS) + return false; + unsigned ConvReg = DefMI->getOperand(1).getReg(); + if (!TargetRegisterInfo::isVirtualRegister(ConvReg)) + return false; + MachineInstr *Splt = MRI->getVRegDef(ConvReg); + return Splt && (Splt->getOpcode() == PPC::LXVWSX || + Splt->getOpcode() == PPC::XXSPLTW); + }; + bool AlreadySplat = (MyOpcode == DefOpcode) || (MyOpcode == PPC::VSPLTB && DefOpcode == PPC::VSPLTBs) || (MyOpcode == PPC::VSPLTH && DefOpcode == PPC::VSPLTHs) || - (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::XXSPLTWs); - // Splat fed by another splat - switch the output of the first - // and remove the second. - if (SameOpcode) { + (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::XXSPLTWs) || + (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::LXVWSX) || + (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::MTVSRWS)|| + (MyOpcode == PPC::XXSPLTW && isConvertOfSplat()); + // If the instruction[s] that feed this splat have already splat + // the value, this splat is redundant. + if (AlreadySplat) { DEBUG(dbgs() << "Changing redundant splat to a copy: "); DEBUG(MI.dump()); BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY), MI.getOperand(0).getReg()) - .addOperand(MI.getOperand(OpNo)); + .add(MI.getOperand(OpNo)); ToErase = &MI; Simplified = true; } @@ -232,6 +375,348 @@ MI.getOperand(2).setImm(NewElem); } } + + // Splat is fed by a SWAP which is a permute of this form + // XXPERMDI %VA, %VA, 2 + // Since the splat instruction can use any of the vector elements to do + // the splat we do not have to rearrange the elements in the vector + // with a swap before we do the splat. We can simply do the splat from + // a different index. + // If the swap has only one use (the splat) then we can completely + // remove the swap too. + if (DefOpcode == PPC::XXPERMDI && MI.getOperand(1).isImm()) { + unsigned SwapRes = DefMI->getOperand(0).getReg(); + unsigned SwapOp1 = DefMI->getOperand(1).getReg(); + unsigned SwapOp2 = DefMI->getOperand(2).getReg(); + unsigned SwapImm = DefMI->getOperand(3).getImm(); + unsigned SplatImm = MI.getOperand(1).getImm(); + + // Break if this permute is not a swap. + if (SwapOp1 != SwapOp2 || SwapImm != 2) + break; + + unsigned NewElem = 0; + // Compute the new index to use for the splat. + if (MI.getOpcode() == PPC::VSPLTB) + NewElem = (SplatImm + 8) & 0xF; + else if (MI.getOpcode() == PPC::VSPLTH) + NewElem = (SplatImm + 4) & 0x7; + else if (MI.getOpcode() == PPC::XXSPLTW) + NewElem = (SplatImm + 2) & 0x3; + else { + DEBUG(dbgs() << "Unknown splat opcode."); + DEBUG(MI.dump()); + break; + } + + if (MRI->hasOneNonDBGUse(SwapRes)) { + DEBUG(dbgs() << "Removing redundant swap: "); + DEBUG(DefMI->dump()); + ToErase = DefMI; + } + Simplified = true; + DEBUG(dbgs() << "Changing splat immediate from " << SplatImm << + " to " << NewElem << " in instruction: "); + DEBUG(MI.dump()); + MI.getOperand(1).setImm(NewElem); + MI.getOperand(2).setReg(SwapOp1); + } + + break; + } + case PPC::XVCVDPSP: { + // If this is a DP->SP conversion fed by an FRSP, the FRSP is redundant. + unsigned TrueReg = lookThruCopyLike(MI.getOperand(1).getReg()); + if (!TargetRegisterInfo::isVirtualRegister(TrueReg)) + break; + MachineInstr *DefMI = MRI->getVRegDef(TrueReg); + + // This can occur when building a vector of single precision or integer + // values. + if (DefMI && DefMI->getOpcode() == PPC::XXPERMDI) { + unsigned DefsReg1 = lookThruCopyLike(DefMI->getOperand(1).getReg()); + unsigned DefsReg2 = lookThruCopyLike(DefMI->getOperand(2).getReg()); + if (!TargetRegisterInfo::isVirtualRegister(DefsReg1) || + !TargetRegisterInfo::isVirtualRegister(DefsReg2)) + break; + MachineInstr *P1 = MRI->getVRegDef(DefsReg1); + MachineInstr *P2 = MRI->getVRegDef(DefsReg2); + + if (!P1 || !P2) + break; + + // Remove the passed FRSP instruction if it only feeds this MI and + // set any uses of that FRSP (in this MI) to the source of the FRSP. + auto removeFRSPIfPossible = [&](MachineInstr *RoundInstr) { + if (RoundInstr->getOpcode() == PPC::FRSP && + MRI->hasOneNonDBGUse(RoundInstr->getOperand(0).getReg())) { + Simplified = true; + unsigned ConvReg1 = RoundInstr->getOperand(1).getReg(); + unsigned FRSPDefines = RoundInstr->getOperand(0).getReg(); + MachineInstr &Use = *(MRI->use_instr_begin(FRSPDefines)); + for (int i = 0, e = Use.getNumOperands(); i < e; ++i) + if (Use.getOperand(i).isReg() && + Use.getOperand(i).getReg() == FRSPDefines) + Use.getOperand(i).setReg(ConvReg1); + DEBUG(dbgs() << "Removing redundant FRSP:\n"); + DEBUG(RoundInstr->dump()); + DEBUG(dbgs() << "As it feeds instruction:\n"); + DEBUG(MI.dump()); + DEBUG(dbgs() << "Through instruction:\n"); + DEBUG(DefMI->dump()); + RoundInstr->eraseFromParent(); + } + }; + + // If the input to XVCVDPSP is a vector that was built (even + // partially) out of FRSP's, the FRSP(s) can safely be removed + // since this instruction performs the same operation. + if (P1 != P2) { + removeFRSPIfPossible(P1); + removeFRSPIfPossible(P2); + break; + } + removeFRSPIfPossible(P1); + } + break; + } + case PPC::EXTSH: + case PPC::EXTSH8: + case PPC::EXTSH8_32_64: { + if (!EnableSExtElimination) break; + unsigned NarrowReg = MI.getOperand(1).getReg(); + if (!TargetRegisterInfo::isVirtualRegister(NarrowReg)) + break; + + MachineInstr *SrcMI = MRI->getVRegDef(NarrowReg); + // If we've used a zero-extending load that we will sign-extend, + // just do a sign-extending load. + if (SrcMI->getOpcode() == PPC::LHZ || + SrcMI->getOpcode() == PPC::LHZX) { + if (!MRI->hasOneNonDBGUse(SrcMI->getOperand(0).getReg())) + break; + auto is64Bit = [] (unsigned Opcode) { + return Opcode == PPC::EXTSH8; + }; + auto isXForm = [] (unsigned Opcode) { + return Opcode == PPC::LHZX; + }; + auto getSextLoadOp = [] (bool is64Bit, bool isXForm) { + if (is64Bit) + if (isXForm) return PPC::LHAX8; + else return PPC::LHA8; + else + if (isXForm) return PPC::LHAX; + else return PPC::LHA; + }; + unsigned Opc = getSextLoadOp(is64Bit(MI.getOpcode()), + isXForm(SrcMI->getOpcode())); + DEBUG(dbgs() << "Zero-extending load\n"); + DEBUG(SrcMI->dump()); + DEBUG(dbgs() << "and sign-extension\n"); + DEBUG(MI.dump()); + DEBUG(dbgs() << "are merged into sign-extending load\n"); + SrcMI->setDesc(TII->get(Opc)); + SrcMI->getOperand(0).setReg(MI.getOperand(0).getReg()); + ToErase = &MI; + Simplified = true; + NumEliminatedSExt++; + } + break; + } + case PPC::EXTSW: + case PPC::EXTSW_32: + case PPC::EXTSW_32_64: { + if (!EnableSExtElimination) break; + unsigned NarrowReg = MI.getOperand(1).getReg(); + if (!TargetRegisterInfo::isVirtualRegister(NarrowReg)) + break; + + MachineInstr *SrcMI = MRI->getVRegDef(NarrowReg); + // If we've used a zero-extending load that we will sign-extend, + // just do a sign-extending load. + if (SrcMI->getOpcode() == PPC::LWZ || + SrcMI->getOpcode() == PPC::LWZX) { + if (!MRI->hasOneNonDBGUse(SrcMI->getOperand(0).getReg())) + break; + auto is64Bit = [] (unsigned Opcode) { + return Opcode == PPC::EXTSW || Opcode == PPC::EXTSW_32_64; + }; + auto isXForm = [] (unsigned Opcode) { + return Opcode == PPC::LWZX; + }; + auto getSextLoadOp = [] (bool is64Bit, bool isXForm) { + if (is64Bit) + if (isXForm) return PPC::LWAX; + else return PPC::LWA; + else + if (isXForm) return PPC::LWAX_32; + else return PPC::LWA_32; + }; + unsigned Opc = getSextLoadOp(is64Bit(MI.getOpcode()), + isXForm(SrcMI->getOpcode())); + DEBUG(dbgs() << "Zero-extending load\n"); + DEBUG(SrcMI->dump()); + DEBUG(dbgs() << "and sign-extension\n"); + DEBUG(MI.dump()); + DEBUG(dbgs() << "are merged into sign-extending load\n"); + SrcMI->setDesc(TII->get(Opc)); + SrcMI->getOperand(0).setReg(MI.getOperand(0).getReg()); + ToErase = &MI; + Simplified = true; + NumEliminatedSExt++; + } else if (MI.getOpcode() == PPC::EXTSW_32_64 && + TII->isSignExtended(*SrcMI)) { + // We can eliminate EXTSW if the input is known to be already + // sign-extended. + DEBUG(dbgs() << "Removing redundant sign-extension\n"); + unsigned TmpReg = + MF->getRegInfo().createVirtualRegister(&PPC::G8RCRegClass); + BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::IMPLICIT_DEF), + TmpReg); + BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::INSERT_SUBREG), + MI.getOperand(0).getReg()) + .addReg(TmpReg) + .addReg(NarrowReg) + .addImm(PPC::sub_32); + ToErase = &MI; + Simplified = true; + NumEliminatedSExt++; + } + break; + } + case PPC::RLDICL: { + // We can eliminate RLDICL (e.g. for zero-extension) + // if all bits to clear are already zero in the input. + // This code assume following code sequence for zero-extension. + // %vreg6<def> = COPY %vreg5:sub_32; (optional) + // %vreg8<def> = IMPLICIT_DEF; + // %vreg7<def,tied1> = INSERT_SUBREG %vreg8<tied0>, %vreg6, sub_32; + if (!EnableZExtElimination) break; + + if (MI.getOperand(2).getImm() != 0) + break; + + unsigned SrcReg = MI.getOperand(1).getReg(); + if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) + break; + + MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); + if (!(SrcMI && SrcMI->getOpcode() == PPC::INSERT_SUBREG && + SrcMI->getOperand(0).isReg() && SrcMI->getOperand(1).isReg())) + break; + + MachineInstr *ImpDefMI, *SubRegMI; + ImpDefMI = MRI->getVRegDef(SrcMI->getOperand(1).getReg()); + SubRegMI = MRI->getVRegDef(SrcMI->getOperand(2).getReg()); + if (ImpDefMI->getOpcode() != PPC::IMPLICIT_DEF) break; + + SrcMI = SubRegMI; + if (SubRegMI->getOpcode() == PPC::COPY) { + unsigned CopyReg = SubRegMI->getOperand(1).getReg(); + if (TargetRegisterInfo::isVirtualRegister(CopyReg)) + SrcMI = MRI->getVRegDef(CopyReg); + } + + unsigned KnownZeroCount = getKnownLeadingZeroCount(SrcMI, TII); + if (MI.getOperand(3).getImm() <= KnownZeroCount) { + DEBUG(dbgs() << "Removing redundant zero-extension\n"); + BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY), + MI.getOperand(0).getReg()) + .addReg(SrcReg); + ToErase = &MI; + Simplified = true; + NumEliminatedZExt++; + } + break; + } + + // TODO: Any instruction that has an immediate form fed only by a PHI + // whose operands are all load immediate can be folded away. We currently + // do this for ADD instructions, but should expand it to arithmetic and + // binary instructions with immediate forms in the future. + case PPC::ADD4: + case PPC::ADD8: { + auto isSingleUsePHI = [&](MachineOperand *PhiOp) { + assert(PhiOp && "Invalid Operand!"); + MachineInstr *DefPhiMI = getVRegDefOrNull(PhiOp, MRI); + + return DefPhiMI && (DefPhiMI->getOpcode() == PPC::PHI) && + MRI->hasOneNonDBGUse(DefPhiMI->getOperand(0).getReg()); + }; + + auto dominatesAllSingleUseLIs = [&](MachineOperand *DominatorOp, + MachineOperand *PhiOp) { + assert(PhiOp && "Invalid Operand!"); + assert(DominatorOp && "Invalid Operand!"); + MachineInstr *DefPhiMI = getVRegDefOrNull(PhiOp, MRI); + MachineInstr *DefDomMI = getVRegDefOrNull(DominatorOp, MRI); + + // Note: the vregs only show up at odd indices position of PHI Node, + // the even indices position save the BB info. + for (unsigned i = 1; i < DefPhiMI->getNumOperands(); i += 2) { + MachineInstr *LiMI = + getVRegDefOrNull(&DefPhiMI->getOperand(i), MRI); + if (!LiMI || + (LiMI->getOpcode() != PPC::LI && LiMI->getOpcode() != PPC::LI8) + || !MRI->hasOneNonDBGUse(LiMI->getOperand(0).getReg()) || + !MDT->dominates(DefDomMI, LiMI)) + return false; + } + + return true; + }; + + MachineOperand Op1 = MI.getOperand(1); + MachineOperand Op2 = MI.getOperand(2); + if (isSingleUsePHI(&Op2) && dominatesAllSingleUseLIs(&Op1, &Op2)) + std::swap(Op1, Op2); + else if (!isSingleUsePHI(&Op1) || !dominatesAllSingleUseLIs(&Op2, &Op1)) + break; // We don't have an ADD fed by LI's that can be transformed + + // Now we know that Op1 is the PHI node and Op2 is the dominator + unsigned DominatorReg = Op2.getReg(); + + const TargetRegisterClass *TRC = MI.getOpcode() == PPC::ADD8 + ? &PPC::G8RC_and_G8RC_NOX0RegClass + : &PPC::GPRC_and_GPRC_NOR0RegClass; + MRI->setRegClass(DominatorReg, TRC); + + // replace LIs with ADDIs + MachineInstr *DefPhiMI = getVRegDefOrNull(&Op1, MRI); + for (unsigned i = 1; i < DefPhiMI->getNumOperands(); i += 2) { + MachineInstr *LiMI = getVRegDefOrNull(&DefPhiMI->getOperand(i), MRI); + DEBUG(dbgs() << "Optimizing LI to ADDI: "); + DEBUG(LiMI->dump()); + + // There could be repeated registers in the PHI, e.g: %vreg1<def> = + // PHI %vreg6, <BB#2>, %vreg8, <BB#3>, %vreg8, <BB#6>; So if we've + // already replaced the def instruction, skip. + if (LiMI->getOpcode() == PPC::ADDI || LiMI->getOpcode() == PPC::ADDI8) + continue; + + assert((LiMI->getOpcode() == PPC::LI || + LiMI->getOpcode() == PPC::LI8) && + "Invalid Opcode!"); + auto LiImm = LiMI->getOperand(1).getImm(); // save the imm of LI + LiMI->RemoveOperand(1); // remove the imm of LI + LiMI->setDesc(TII->get(LiMI->getOpcode() == PPC::LI ? PPC::ADDI + : PPC::ADDI8)); + MachineInstrBuilder(*LiMI->getParent()->getParent(), *LiMI) + .addReg(DominatorReg) + .addImm(LiImm); // restore the imm of LI + DEBUG(LiMI->dump()); + } + + // Replace ADD with COPY + DEBUG(dbgs() << "Optimizing ADD to COPY: "); + DEBUG(MI.dump()); + BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY), + MI.getOperand(0).getReg()) + .add(Op1); + ToErase = &MI; + Simplified = true; + NumOptADDLIs++; break; } } @@ -245,6 +730,467 @@ } } + // We try to eliminate redundant compare instruction. + Simplified |= eliminateRedundantCompare(); + + return Simplified; +} + +// helper functions for eliminateRedundantCompare +static bool isEqOrNe(MachineInstr *BI) { + PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm(); + unsigned PredCond = PPC::getPredicateCondition(Pred); + return (PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE); +} + +static bool isSupportedCmpOp(unsigned opCode) { + return (opCode == PPC::CMPLD || opCode == PPC::CMPD || + opCode == PPC::CMPLW || opCode == PPC::CMPW || + opCode == PPC::CMPLDI || opCode == PPC::CMPDI || + opCode == PPC::CMPLWI || opCode == PPC::CMPWI); +} + +static bool is64bitCmpOp(unsigned opCode) { + return (opCode == PPC::CMPLD || opCode == PPC::CMPD || + opCode == PPC::CMPLDI || opCode == PPC::CMPDI); +} + +static bool isSignedCmpOp(unsigned opCode) { + return (opCode == PPC::CMPD || opCode == PPC::CMPW || + opCode == PPC::CMPDI || opCode == PPC::CMPWI); +} + +static unsigned getSignedCmpOpCode(unsigned opCode) { + if (opCode == PPC::CMPLD) return PPC::CMPD; + if (opCode == PPC::CMPLW) return PPC::CMPW; + if (opCode == PPC::CMPLDI) return PPC::CMPDI; + if (opCode == PPC::CMPLWI) return PPC::CMPWI; + return opCode; +} + +// We can decrement immediate x in (GE x) by changing it to (GT x-1) or +// (LT x) to (LE x-1) +static unsigned getPredicateToDecImm(MachineInstr *BI, MachineInstr *CMPI) { + uint64_t Imm = CMPI->getOperand(2).getImm(); + bool SignedCmp = isSignedCmpOp(CMPI->getOpcode()); + if ((!SignedCmp && Imm == 0) || (SignedCmp && Imm == 0x8000)) + return 0; + + PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm(); + unsigned PredCond = PPC::getPredicateCondition(Pred); + unsigned PredHint = PPC::getPredicateHint(Pred); + if (PredCond == PPC::PRED_GE) + return PPC::getPredicate(PPC::PRED_GT, PredHint); + if (PredCond == PPC::PRED_LT) + return PPC::getPredicate(PPC::PRED_LE, PredHint); + + return 0; +} + +// We can increment immediate x in (GT x) by changing it to (GE x+1) or +// (LE x) to (LT x+1) +static unsigned getPredicateToIncImm(MachineInstr *BI, MachineInstr *CMPI) { + uint64_t Imm = CMPI->getOperand(2).getImm(); + bool SignedCmp = isSignedCmpOp(CMPI->getOpcode()); + if ((!SignedCmp && Imm == 0xFFFF) || (SignedCmp && Imm == 0x7FFF)) + return 0; + + PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm(); + unsigned PredCond = PPC::getPredicateCondition(Pred); + unsigned PredHint = PPC::getPredicateHint(Pred); + if (PredCond == PPC::PRED_GT) + return PPC::getPredicate(PPC::PRED_GE, PredHint); + if (PredCond == PPC::PRED_LE) + return PPC::getPredicate(PPC::PRED_LT, PredHint); + + return 0; +} + +// This takes a Phi node and returns a register value for the spefied BB. +static unsigned getIncomingRegForBlock(MachineInstr *Phi, + MachineBasicBlock *MBB) { + for (unsigned I = 2, E = Phi->getNumOperands() + 1; I != E; I += 2) { + MachineOperand &MO = Phi->getOperand(I); + if (MO.getMBB() == MBB) + return Phi->getOperand(I-1).getReg(); + } + llvm_unreachable("invalid src basic block for this Phi node\n"); + return 0; +} + +// This function tracks the source of the register through register copy. +// If BB1 and BB2 are non-NULL, we also track PHI instruction in BB2 +// assuming that the control comes from BB1 into BB2. +static unsigned getSrcVReg(unsigned Reg, MachineBasicBlock *BB1, + MachineBasicBlock *BB2, MachineRegisterInfo *MRI) { + unsigned SrcReg = Reg; + while (1) { + unsigned NextReg = SrcReg; + MachineInstr *Inst = MRI->getVRegDef(SrcReg); + if (BB1 && Inst->getOpcode() == PPC::PHI && Inst->getParent() == BB2) { + NextReg = getIncomingRegForBlock(Inst, BB1); + // We track through PHI only once to avoid infinite loop. + BB1 = nullptr; + } + else if (Inst->isFullCopy()) + NextReg = Inst->getOperand(1).getReg(); + if (NextReg == SrcReg || !TargetRegisterInfo::isVirtualRegister(NextReg)) + break; + SrcReg = NextReg; + } + return SrcReg; +} + +static bool eligibleForCompareElimination(MachineBasicBlock &MBB, + MachineBasicBlock *&PredMBB, + MachineBasicBlock *&MBBtoMoveCmp, + MachineRegisterInfo *MRI) { + + auto isEligibleBB = [&](MachineBasicBlock &BB) { + auto BII = BB.getFirstInstrTerminator(); + // We optimize BBs ending with a conditional branch. + // We check only for BCC here, not BCCLR, because BCCLR + // will be formed only later in the pipeline. + if (BB.succ_size() == 2 && + BII != BB.instr_end() && + (*BII).getOpcode() == PPC::BCC && + (*BII).getOperand(1).isReg()) { + // We optimize only if the condition code is used only by one BCC. + unsigned CndReg = (*BII).getOperand(1).getReg(); + if (!TargetRegisterInfo::isVirtualRegister(CndReg) || + !MRI->hasOneNonDBGUse(CndReg)) + return false; + + // We skip this BB if a physical register is used in comparison. + MachineInstr *CMPI = MRI->getVRegDef(CndReg); + for (MachineOperand &MO : CMPI->operands()) + if (MO.isReg() && !TargetRegisterInfo::isVirtualRegister(MO.getReg())) + return false; + + return true; + } + return false; + }; + + // If this BB has more than one successor, we can create a new BB and + // move the compare instruction in the new BB. + // So far, we do not move compare instruction to a BB having multiple + // successors to avoid potentially increasing code size. + auto isEligibleForMoveCmp = [](MachineBasicBlock &BB) { + return BB.succ_size() == 1; + }; + + if (!isEligibleBB(MBB)) + return false; + + unsigned NumPredBBs = MBB.pred_size(); + if (NumPredBBs == 1) { + MachineBasicBlock *TmpMBB = *MBB.pred_begin(); + if (isEligibleBB(*TmpMBB)) { + PredMBB = TmpMBB; + MBBtoMoveCmp = nullptr; + return true; + } + } + else if (NumPredBBs == 2) { + // We check for partially redundant case. + // So far, we support cases with only two predecessors + // to avoid increasing the number of instructions. + MachineBasicBlock::pred_iterator PI = MBB.pred_begin(); + MachineBasicBlock *Pred1MBB = *PI; + MachineBasicBlock *Pred2MBB = *(PI+1); + + if (isEligibleBB(*Pred1MBB) && isEligibleForMoveCmp(*Pred2MBB)) { + // We assume Pred1MBB is the BB containing the compare to be merged and + // Pred2MBB is the BB to which we will append a compare instruction. + // Hence we can proceed as is. + } + else if (isEligibleBB(*Pred2MBB) && isEligibleForMoveCmp(*Pred1MBB)) { + // We need to swap Pred1MBB and Pred2MBB to canonicalize. + std::swap(Pred1MBB, Pred2MBB); + } + else return false; + + // Here, Pred2MBB is the BB to which we need to append a compare inst. + // We cannot move the compare instruction if operands are not available + // in Pred2MBB (i.e. defined in MBB by an instruction other than PHI). + MachineInstr *BI = &*MBB.getFirstInstrTerminator(); + MachineInstr *CMPI = MRI->getVRegDef(BI->getOperand(1).getReg()); + for (int I = 1; I <= 2; I++) + if (CMPI->getOperand(I).isReg()) { + MachineInstr *Inst = MRI->getVRegDef(CMPI->getOperand(I).getReg()); + if (Inst->getParent() == &MBB && Inst->getOpcode() != PPC::PHI) + return false; + } + + PredMBB = Pred1MBB; + MBBtoMoveCmp = Pred2MBB; + return true; + } + + return false; +} + +// If multiple conditional branches are executed based on the (essentially) +// same comparison, we merge compare instructions into one and make multiple +// conditional branches on this comparison. +// For example, +// if (a == 0) { ... } +// else if (a < 0) { ... } +// can be executed by one compare and two conditional branches instead of +// two pairs of a compare and a conditional branch. +// +// This method merges two compare instructions in two MBBs and modifies the +// compare and conditional branch instructions if needed. +// For the above example, the input for this pass looks like: +// cmplwi r3, 0 +// beq 0, .LBB0_3 +// cmpwi r3, -1 +// bgt 0, .LBB0_4 +// So, before merging two compares, we need to modify these instructions as +// cmpwi r3, 0 ; cmplwi and cmpwi yield same result for beq +// beq 0, .LBB0_3 +// cmpwi r3, 0 ; greather than -1 means greater or equal to 0 +// bge 0, .LBB0_4 + +bool PPCMIPeephole::eliminateRedundantCompare(void) { + bool Simplified = false; + + for (MachineBasicBlock &MBB2 : *MF) { + MachineBasicBlock *MBB1 = nullptr, *MBBtoMoveCmp = nullptr; + + // For fully redundant case, we select two basic blocks MBB1 and MBB2 + // as an optimization target if + // - both MBBs end with a conditional branch, + // - MBB1 is the only predecessor of MBB2, and + // - compare does not take a physical register as a operand in both MBBs. + // In this case, eligibleForCompareElimination sets MBBtoMoveCmp nullptr. + // + // As partially redundant case, we additionally handle if MBB2 has one + // additional predecessor, which has only one successor (MBB2). + // In this case, we move the compre instruction originally in MBB2 into + // MBBtoMoveCmp. This partially redundant case is typically appear by + // compiling a while loop; here, MBBtoMoveCmp is the loop preheader. + // + // Overview of CFG of related basic blocks + // Fully redundant case Partially redundant case + // -------- ---------------- -------- + // | MBB1 | (w/ 2 succ) | MBBtoMoveCmp | | MBB1 | (w/ 2 succ) + // -------- ---------------- -------- + // | \ (w/ 1 succ) \ | \ + // | \ \ | \ + // | \ | + // -------- -------- + // | MBB2 | (w/ 1 pred | MBB2 | (w/ 2 pred + // -------- and 2 succ) -------- and 2 succ) + // | \ | \ + // | \ | \ + // + if (!eligibleForCompareElimination(MBB2, MBB1, MBBtoMoveCmp, MRI)) + continue; + + MachineInstr *BI1 = &*MBB1->getFirstInstrTerminator(); + MachineInstr *CMPI1 = MRI->getVRegDef(BI1->getOperand(1).getReg()); + + MachineInstr *BI2 = &*MBB2.getFirstInstrTerminator(); + MachineInstr *CMPI2 = MRI->getVRegDef(BI2->getOperand(1).getReg()); + bool IsPartiallyRedundant = (MBBtoMoveCmp != nullptr); + + // We cannot optimize an unsupported compare opcode or + // a mix of 32-bit and 64-bit comaprisons + if (!isSupportedCmpOp(CMPI1->getOpcode()) || + !isSupportedCmpOp(CMPI2->getOpcode()) || + is64bitCmpOp(CMPI1->getOpcode()) != is64bitCmpOp(CMPI2->getOpcode())) + continue; + + unsigned NewOpCode = 0; + unsigned NewPredicate1 = 0, NewPredicate2 = 0; + int16_t Imm1 = 0, NewImm1 = 0, Imm2 = 0, NewImm2 = 0; + bool SwapOperands = false; + + if (CMPI1->getOpcode() != CMPI2->getOpcode()) { + // Typically, unsigned comparison is used for equality check, but + // we replace it with a signed comparison if the comparison + // to be merged is a signed comparison. + // In other cases of opcode mismatch, we cannot optimize this. + if (isEqOrNe(BI2) && + CMPI1->getOpcode() == getSignedCmpOpCode(CMPI2->getOpcode())) + NewOpCode = CMPI1->getOpcode(); + else if (isEqOrNe(BI1) && + getSignedCmpOpCode(CMPI1->getOpcode()) == CMPI2->getOpcode()) + NewOpCode = CMPI2->getOpcode(); + else continue; + } + + if (CMPI1->getOperand(2).isReg() && CMPI2->getOperand(2).isReg()) { + // In case of comparisons between two registers, these two registers + // must be same to merge two comparisons. + unsigned Cmp1Operand1 = getSrcVReg(CMPI1->getOperand(1).getReg(), + nullptr, nullptr, MRI); + unsigned Cmp1Operand2 = getSrcVReg(CMPI1->getOperand(2).getReg(), + nullptr, nullptr, MRI); + unsigned Cmp2Operand1 = getSrcVReg(CMPI2->getOperand(1).getReg(), + MBB1, &MBB2, MRI); + unsigned Cmp2Operand2 = getSrcVReg(CMPI2->getOperand(2).getReg(), + MBB1, &MBB2, MRI); + + if (Cmp1Operand1 == Cmp2Operand1 && Cmp1Operand2 == Cmp2Operand2) { + // Same pair of registers in the same order; ready to merge as is. + } + else if (Cmp1Operand1 == Cmp2Operand2 && Cmp1Operand2 == Cmp2Operand1) { + // Same pair of registers in different order. + // We reverse the predicate to merge compare instructions. + PPC::Predicate Pred = (PPC::Predicate)BI2->getOperand(0).getImm(); + NewPredicate2 = (unsigned)PPC::getSwappedPredicate(Pred); + // In case of partial redundancy, we need to swap operands + // in another compare instruction. + SwapOperands = true; + } + else continue; + } + else if (CMPI1->getOperand(2).isImm() && CMPI2->getOperand(2).isImm()) { + // In case of comparisons between a register and an immediate, + // the operand register must be same for two compare instructions. + unsigned Cmp1Operand1 = getSrcVReg(CMPI1->getOperand(1).getReg(), + nullptr, nullptr, MRI); + unsigned Cmp2Operand1 = getSrcVReg(CMPI2->getOperand(1).getReg(), + MBB1, &MBB2, MRI); + if (Cmp1Operand1 != Cmp2Operand1) + continue; + + NewImm1 = Imm1 = (int16_t)CMPI1->getOperand(2).getImm(); + NewImm2 = Imm2 = (int16_t)CMPI2->getOperand(2).getImm(); + + // If immediate are not same, we try to adjust by changing predicate; + // e.g. GT imm means GE (imm+1). + if (Imm1 != Imm2 && (!isEqOrNe(BI2) || !isEqOrNe(BI1))) { + int Diff = Imm1 - Imm2; + if (Diff < -2 || Diff > 2) + continue; + + unsigned PredToInc1 = getPredicateToIncImm(BI1, CMPI1); + unsigned PredToDec1 = getPredicateToDecImm(BI1, CMPI1); + unsigned PredToInc2 = getPredicateToIncImm(BI2, CMPI2); + unsigned PredToDec2 = getPredicateToDecImm(BI2, CMPI2); + if (Diff == 2) { + if (PredToInc2 && PredToDec1) { + NewPredicate2 = PredToInc2; + NewPredicate1 = PredToDec1; + NewImm2++; + NewImm1--; + } + } + else if (Diff == 1) { + if (PredToInc2) { + NewImm2++; + NewPredicate2 = PredToInc2; + } + else if (PredToDec1) { + NewImm1--; + NewPredicate1 = PredToDec1; + } + } + else if (Diff == -1) { + if (PredToDec2) { + NewImm2--; + NewPredicate2 = PredToDec2; + } + else if (PredToInc1) { + NewImm1++; + NewPredicate1 = PredToInc1; + } + } + else if (Diff == -2) { + if (PredToDec2 && PredToInc1) { + NewPredicate2 = PredToDec2; + NewPredicate1 = PredToInc1; + NewImm2--; + NewImm1++; + } + } + } + + // We cannnot merge two compares if the immediates are not same. + if (NewImm2 != NewImm1) + continue; + } + + DEBUG(dbgs() << "Optimize two pairs of compare and branch:\n"); + DEBUG(CMPI1->dump()); + DEBUG(BI1->dump()); + DEBUG(CMPI2->dump()); + DEBUG(BI2->dump()); + + // We adjust opcode, predicates and immediate as we determined above. + if (NewOpCode != 0 && NewOpCode != CMPI1->getOpcode()) { + CMPI1->setDesc(TII->get(NewOpCode)); + } + if (NewPredicate1) { + BI1->getOperand(0).setImm(NewPredicate1); + } + if (NewPredicate2) { + BI2->getOperand(0).setImm(NewPredicate2); + } + if (NewImm1 != Imm1) { + CMPI1->getOperand(2).setImm(NewImm1); + } + + if (IsPartiallyRedundant) { + // We touch up the compare instruction in MBB2 and move it to + // a previous BB to handle partially redundant case. + if (SwapOperands) { + unsigned Op1 = CMPI2->getOperand(1).getReg(); + unsigned Op2 = CMPI2->getOperand(2).getReg(); + CMPI2->getOperand(1).setReg(Op2); + CMPI2->getOperand(2).setReg(Op1); + } + if (NewImm2 != Imm2) + CMPI2->getOperand(2).setImm(NewImm2); + + for (int I = 1; I <= 2; I++) { + if (CMPI2->getOperand(I).isReg()) { + MachineInstr *Inst = MRI->getVRegDef(CMPI2->getOperand(I).getReg()); + if (Inst->getParent() != &MBB2) + continue; + + assert(Inst->getOpcode() == PPC::PHI && + "We cannot support if an operand comes from this BB."); + unsigned SrcReg = getIncomingRegForBlock(Inst, MBBtoMoveCmp); + CMPI2->getOperand(I).setReg(SrcReg); + } + } + auto I = MachineBasicBlock::iterator(MBBtoMoveCmp->getFirstTerminator()); + MBBtoMoveCmp->splice(I, &MBB2, MachineBasicBlock::iterator(CMPI2)); + + DebugLoc DL = CMPI2->getDebugLoc(); + unsigned NewVReg = MRI->createVirtualRegister(&PPC::CRRCRegClass); + BuildMI(MBB2, MBB2.begin(), DL, + TII->get(PPC::PHI), NewVReg) + .addReg(BI1->getOperand(1).getReg()).addMBB(MBB1) + .addReg(BI2->getOperand(1).getReg()).addMBB(MBBtoMoveCmp); + BI2->getOperand(1).setReg(NewVReg); + } + else { + // We finally eliminate compare instruction in MBB2. + BI2->getOperand(1).setReg(BI1->getOperand(1).getReg()); + CMPI2->eraseFromParent(); + } + BI2->getOperand(1).setIsKill(true); + BI1->getOperand(1).setIsKill(false); + + DEBUG(dbgs() << "into a compare and two branches:\n"); + DEBUG(CMPI1->dump()); + DEBUG(BI1->dump()); + DEBUG(BI2->dump()); + if (IsPartiallyRedundant) { + DEBUG(dbgs() << "The following compare is moved into BB#" << + MBBtoMoveCmp->getNumber() << " to handle partial redundancy.\n"); + DEBUG(CMPI2->dump()); + } + + Simplified = true; + } + return Simplified; }