diff lib/Analysis/MemoryDependenceAnalysis.cpp @ 0:95c75e76d11b

LLVM 3.4
author Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp>
date Thu, 12 Dec 2013 13:56:28 +0900
parents
children 54457678186b
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/lib/Analysis/MemoryDependenceAnalysis.cpp	Thu Dec 12 13:56:28 2013 +0900
@@ -0,0 +1,1539 @@
+//===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements an analysis that determines, for a given memory
+// operation, what preceding memory operations it depends on.  It builds on
+// alias analysis information, and tries to provide a lazy, caching interface to
+// a common kind of alias information query.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "memdep"
+#include "llvm/Analysis/MemoryDependenceAnalysis.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/Dominators.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/MemoryBuiltins.h"
+#include "llvm/Analysis/PHITransAddr.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/PredIteratorCache.h"
+using namespace llvm;
+
+STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
+STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
+STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
+
+STATISTIC(NumCacheNonLocalPtr,
+          "Number of fully cached non-local ptr responses");
+STATISTIC(NumCacheDirtyNonLocalPtr,
+          "Number of cached, but dirty, non-local ptr responses");
+STATISTIC(NumUncacheNonLocalPtr,
+          "Number of uncached non-local ptr responses");
+STATISTIC(NumCacheCompleteNonLocalPtr,
+          "Number of block queries that were completely cached");
+
+// Limit for the number of instructions to scan in a block.
+static const int BlockScanLimit = 100;
+
+char MemoryDependenceAnalysis::ID = 0;
+
+// Register this pass...
+INITIALIZE_PASS_BEGIN(MemoryDependenceAnalysis, "memdep",
+                "Memory Dependence Analysis", false, true)
+INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
+INITIALIZE_PASS_END(MemoryDependenceAnalysis, "memdep",
+                      "Memory Dependence Analysis", false, true)
+
+MemoryDependenceAnalysis::MemoryDependenceAnalysis()
+: FunctionPass(ID), PredCache(0) {
+  initializeMemoryDependenceAnalysisPass(*PassRegistry::getPassRegistry());
+}
+MemoryDependenceAnalysis::~MemoryDependenceAnalysis() {
+}
+
+/// Clean up memory in between runs
+void MemoryDependenceAnalysis::releaseMemory() {
+  LocalDeps.clear();
+  NonLocalDeps.clear();
+  NonLocalPointerDeps.clear();
+  ReverseLocalDeps.clear();
+  ReverseNonLocalDeps.clear();
+  ReverseNonLocalPtrDeps.clear();
+  PredCache->clear();
+}
+
+
+
+/// getAnalysisUsage - Does not modify anything.  It uses Alias Analysis.
+///
+void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
+  AU.setPreservesAll();
+  AU.addRequiredTransitive<AliasAnalysis>();
+}
+
+bool MemoryDependenceAnalysis::runOnFunction(Function &) {
+  AA = &getAnalysis<AliasAnalysis>();
+  TD = getAnalysisIfAvailable<DataLayout>();
+  DT = getAnalysisIfAvailable<DominatorTree>();
+  if (!PredCache)
+    PredCache.reset(new PredIteratorCache());
+  return false;
+}
+
+/// RemoveFromReverseMap - This is a helper function that removes Val from
+/// 'Inst's set in ReverseMap.  If the set becomes empty, remove Inst's entry.
+template <typename KeyTy>
+static void RemoveFromReverseMap(DenseMap<Instruction*,
+                                 SmallPtrSet<KeyTy, 4> > &ReverseMap,
+                                 Instruction *Inst, KeyTy Val) {
+  typename DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> >::iterator
+  InstIt = ReverseMap.find(Inst);
+  assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
+  bool Found = InstIt->second.erase(Val);
+  assert(Found && "Invalid reverse map!"); (void)Found;
+  if (InstIt->second.empty())
+    ReverseMap.erase(InstIt);
+}
+
+/// GetLocation - If the given instruction references a specific memory
+/// location, fill in Loc with the details, otherwise set Loc.Ptr to null.
+/// Return a ModRefInfo value describing the general behavior of the
+/// instruction.
+static
+AliasAnalysis::ModRefResult GetLocation(const Instruction *Inst,
+                                        AliasAnalysis::Location &Loc,
+                                        AliasAnalysis *AA) {
+  if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
+    if (LI->isUnordered()) {
+      Loc = AA->getLocation(LI);
+      return AliasAnalysis::Ref;
+    }
+    if (LI->getOrdering() == Monotonic) {
+      Loc = AA->getLocation(LI);
+      return AliasAnalysis::ModRef;
+    }
+    Loc = AliasAnalysis::Location();
+    return AliasAnalysis::ModRef;
+  }
+
+  if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
+    if (SI->isUnordered()) {
+      Loc = AA->getLocation(SI);
+      return AliasAnalysis::Mod;
+    }
+    if (SI->getOrdering() == Monotonic) {
+      Loc = AA->getLocation(SI);
+      return AliasAnalysis::ModRef;
+    }
+    Loc = AliasAnalysis::Location();
+    return AliasAnalysis::ModRef;
+  }
+
+  if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
+    Loc = AA->getLocation(V);
+    return AliasAnalysis::ModRef;
+  }
+
+  if (const CallInst *CI = isFreeCall(Inst, AA->getTargetLibraryInfo())) {
+    // calls to free() deallocate the entire structure
+    Loc = AliasAnalysis::Location(CI->getArgOperand(0));
+    return AliasAnalysis::Mod;
+  }
+
+  if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
+    switch (II->getIntrinsicID()) {
+    case Intrinsic::lifetime_start:
+    case Intrinsic::lifetime_end:
+    case Intrinsic::invariant_start:
+      Loc = AliasAnalysis::Location(II->getArgOperand(1),
+                                    cast<ConstantInt>(II->getArgOperand(0))
+                                      ->getZExtValue(),
+                                    II->getMetadata(LLVMContext::MD_tbaa));
+      // These intrinsics don't really modify the memory, but returning Mod
+      // will allow them to be handled conservatively.
+      return AliasAnalysis::Mod;
+    case Intrinsic::invariant_end:
+      Loc = AliasAnalysis::Location(II->getArgOperand(2),
+                                    cast<ConstantInt>(II->getArgOperand(1))
+                                      ->getZExtValue(),
+                                    II->getMetadata(LLVMContext::MD_tbaa));
+      // These intrinsics don't really modify the memory, but returning Mod
+      // will allow them to be handled conservatively.
+      return AliasAnalysis::Mod;
+    default:
+      break;
+    }
+
+  // Otherwise, just do the coarse-grained thing that always works.
+  if (Inst->mayWriteToMemory())
+    return AliasAnalysis::ModRef;
+  if (Inst->mayReadFromMemory())
+    return AliasAnalysis::Ref;
+  return AliasAnalysis::NoModRef;
+}
+
+/// getCallSiteDependencyFrom - Private helper for finding the local
+/// dependencies of a call site.
+MemDepResult MemoryDependenceAnalysis::
+getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall,
+                          BasicBlock::iterator ScanIt, BasicBlock *BB) {
+  unsigned Limit = BlockScanLimit;
+
+  // Walk backwards through the block, looking for dependencies
+  while (ScanIt != BB->begin()) {
+    // Limit the amount of scanning we do so we don't end up with quadratic
+    // running time on extreme testcases.
+    --Limit;
+    if (!Limit)
+      return MemDepResult::getUnknown();
+
+    Instruction *Inst = --ScanIt;
+
+    // If this inst is a memory op, get the pointer it accessed
+    AliasAnalysis::Location Loc;
+    AliasAnalysis::ModRefResult MR = GetLocation(Inst, Loc, AA);
+    if (Loc.Ptr) {
+      // A simple instruction.
+      if (AA->getModRefInfo(CS, Loc) != AliasAnalysis::NoModRef)
+        return MemDepResult::getClobber(Inst);
+      continue;
+    }
+
+    if (CallSite InstCS = cast<Value>(Inst)) {
+      // Debug intrinsics don't cause dependences.
+      if (isa<DbgInfoIntrinsic>(Inst)) continue;
+      // If these two calls do not interfere, look past it.
+      switch (AA->getModRefInfo(CS, InstCS)) {
+      case AliasAnalysis::NoModRef:
+        // If the two calls are the same, return InstCS as a Def, so that
+        // CS can be found redundant and eliminated.
+        if (isReadOnlyCall && !(MR & AliasAnalysis::Mod) &&
+            CS.getInstruction()->isIdenticalToWhenDefined(Inst))
+          return MemDepResult::getDef(Inst);
+
+        // Otherwise if the two calls don't interact (e.g. InstCS is readnone)
+        // keep scanning.
+        continue;
+      default:
+        return MemDepResult::getClobber(Inst);
+      }
+    }
+
+    // If we could not obtain a pointer for the instruction and the instruction
+    // touches memory then assume that this is a dependency.
+    if (MR != AliasAnalysis::NoModRef)
+      return MemDepResult::getClobber(Inst);
+  }
+
+  // No dependence found.  If this is the entry block of the function, it is
+  // unknown, otherwise it is non-local.
+  if (BB != &BB->getParent()->getEntryBlock())
+    return MemDepResult::getNonLocal();
+  return MemDepResult::getNonFuncLocal();
+}
+
+/// isLoadLoadClobberIfExtendedToFullWidth - Return true if LI is a load that
+/// would fully overlap MemLoc if done as a wider legal integer load.
+///
+/// MemLocBase, MemLocOffset are lazily computed here the first time the
+/// base/offs of memloc is needed.
+static bool
+isLoadLoadClobberIfExtendedToFullWidth(const AliasAnalysis::Location &MemLoc,
+                                       const Value *&MemLocBase,
+                                       int64_t &MemLocOffs,
+                                       const LoadInst *LI,
+                                       const DataLayout *TD) {
+  // If we have no target data, we can't do this.
+  if (TD == 0) return false;
+
+  // If we haven't already computed the base/offset of MemLoc, do so now.
+  if (MemLocBase == 0)
+    MemLocBase = GetPointerBaseWithConstantOffset(MemLoc.Ptr, MemLocOffs, TD);
+
+  unsigned Size = MemoryDependenceAnalysis::
+    getLoadLoadClobberFullWidthSize(MemLocBase, MemLocOffs, MemLoc.Size,
+                                    LI, *TD);
+  return Size != 0;
+}
+
+/// getLoadLoadClobberFullWidthSize - This is a little bit of analysis that
+/// looks at a memory location for a load (specified by MemLocBase, Offs,
+/// and Size) and compares it against a load.  If the specified load could
+/// be safely widened to a larger integer load that is 1) still efficient,
+/// 2) safe for the target, and 3) would provide the specified memory
+/// location value, then this function returns the size in bytes of the
+/// load width to use.  If not, this returns zero.
+unsigned MemoryDependenceAnalysis::
+getLoadLoadClobberFullWidthSize(const Value *MemLocBase, int64_t MemLocOffs,
+                                unsigned MemLocSize, const LoadInst *LI,
+                                const DataLayout &TD) {
+  // We can only extend simple integer loads.
+  if (!isa<IntegerType>(LI->getType()) || !LI->isSimple()) return 0;
+
+  // Load widening is hostile to ThreadSanitizer: it may cause false positives
+  // or make the reports more cryptic (access sizes are wrong).
+  if (LI->getParent()->getParent()->getAttributes().
+      hasAttribute(AttributeSet::FunctionIndex, Attribute::SanitizeThread))
+    return 0;
+
+  // Get the base of this load.
+  int64_t LIOffs = 0;
+  const Value *LIBase =
+    GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, &TD);
+
+  // If the two pointers are not based on the same pointer, we can't tell that
+  // they are related.
+  if (LIBase != MemLocBase) return 0;
+
+  // Okay, the two values are based on the same pointer, but returned as
+  // no-alias.  This happens when we have things like two byte loads at "P+1"
+  // and "P+3".  Check to see if increasing the size of the "LI" load up to its
+  // alignment (or the largest native integer type) will allow us to load all
+  // the bits required by MemLoc.
+
+  // If MemLoc is before LI, then no widening of LI will help us out.
+  if (MemLocOffs < LIOffs) return 0;
+
+  // Get the alignment of the load in bytes.  We assume that it is safe to load
+  // any legal integer up to this size without a problem.  For example, if we're
+  // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can
+  // widen it up to an i32 load.  If it is known 2-byte aligned, we can widen it
+  // to i16.
+  unsigned LoadAlign = LI->getAlignment();
+
+  int64_t MemLocEnd = MemLocOffs+MemLocSize;
+
+  // If no amount of rounding up will let MemLoc fit into LI, then bail out.
+  if (LIOffs+LoadAlign < MemLocEnd) return 0;
+
+  // This is the size of the load to try.  Start with the next larger power of
+  // two.
+  unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits()/8U;
+  NewLoadByteSize = NextPowerOf2(NewLoadByteSize);
+
+  while (1) {
+    // If this load size is bigger than our known alignment or would not fit
+    // into a native integer register, then we fail.
+    if (NewLoadByteSize > LoadAlign ||
+        !TD.fitsInLegalInteger(NewLoadByteSize*8))
+      return 0;
+
+    if (LIOffs+NewLoadByteSize > MemLocEnd &&
+        LI->getParent()->getParent()->getAttributes().
+          hasAttribute(AttributeSet::FunctionIndex, Attribute::SanitizeAddress))
+      // We will be reading past the location accessed by the original program.
+      // While this is safe in a regular build, Address Safety analysis tools
+      // may start reporting false warnings. So, don't do widening.
+      return 0;
+
+    // If a load of this width would include all of MemLoc, then we succeed.
+    if (LIOffs+NewLoadByteSize >= MemLocEnd)
+      return NewLoadByteSize;
+
+    NewLoadByteSize <<= 1;
+  }
+}
+
+/// getPointerDependencyFrom - Return the instruction on which a memory
+/// location depends.  If isLoad is true, this routine ignores may-aliases with
+/// read-only operations.  If isLoad is false, this routine ignores may-aliases
+/// with reads from read-only locations.  If possible, pass the query
+/// instruction as well; this function may take advantage of the metadata
+/// annotated to the query instruction to refine the result.
+MemDepResult MemoryDependenceAnalysis::
+getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad,
+                         BasicBlock::iterator ScanIt, BasicBlock *BB,
+                         Instruction *QueryInst) {
+
+  const Value *MemLocBase = 0;
+  int64_t MemLocOffset = 0;
+  unsigned Limit = BlockScanLimit;
+  bool isInvariantLoad = false;
+  if (isLoad && QueryInst) {
+    LoadInst *LI = dyn_cast<LoadInst>(QueryInst);
+    if (LI && LI->getMetadata(LLVMContext::MD_invariant_load) != 0)
+      isInvariantLoad = true;
+  }
+
+  // Walk backwards through the basic block, looking for dependencies.
+  while (ScanIt != BB->begin()) {
+    Instruction *Inst = --ScanIt;
+
+    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
+      // Debug intrinsics don't (and can't) cause dependencies.
+      if (isa<DbgInfoIntrinsic>(II)) continue;
+
+    // Limit the amount of scanning we do so we don't end up with quadratic
+    // running time on extreme testcases.
+    --Limit;
+    if (!Limit)
+      return MemDepResult::getUnknown();
+
+    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
+      // If we reach a lifetime begin or end marker, then the query ends here
+      // because the value is undefined.
+      if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
+        // FIXME: This only considers queries directly on the invariant-tagged
+        // pointer, not on query pointers that are indexed off of them.  It'd
+        // be nice to handle that at some point (the right approach is to use
+        // GetPointerBaseWithConstantOffset).
+        if (AA->isMustAlias(AliasAnalysis::Location(II->getArgOperand(1)),
+                            MemLoc))
+          return MemDepResult::getDef(II);
+        continue;
+      }
+    }
+
+    // Values depend on loads if the pointers are must aliased.  This means that
+    // a load depends on another must aliased load from the same value.
+    if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
+      // Atomic loads have complications involved.
+      // FIXME: This is overly conservative.
+      if (!LI->isUnordered())
+        return MemDepResult::getClobber(LI);
+
+      AliasAnalysis::Location LoadLoc = AA->getLocation(LI);
+
+      // If we found a pointer, check if it could be the same as our pointer.
+      AliasAnalysis::AliasResult R = AA->alias(LoadLoc, MemLoc);
+
+      if (isLoad) {
+        if (R == AliasAnalysis::NoAlias) {
+          // If this is an over-aligned integer load (for example,
+          // "load i8* %P, align 4") see if it would obviously overlap with the
+          // queried location if widened to a larger load (e.g. if the queried
+          // location is 1 byte at P+1).  If so, return it as a load/load
+          // clobber result, allowing the client to decide to widen the load if
+          // it wants to.
+          if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType()))
+            if (LI->getAlignment()*8 > ITy->getPrimitiveSizeInBits() &&
+                isLoadLoadClobberIfExtendedToFullWidth(MemLoc, MemLocBase,
+                                                       MemLocOffset, LI, TD))
+              return MemDepResult::getClobber(Inst);
+
+          continue;
+        }
+
+        // Must aliased loads are defs of each other.
+        if (R == AliasAnalysis::MustAlias)
+          return MemDepResult::getDef(Inst);
+
+#if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads
+      // in terms of clobbering loads, but since it does this by looking
+      // at the clobbering load directly, it doesn't know about any
+      // phi translation that may have happened along the way.
+
+        // If we have a partial alias, then return this as a clobber for the
+        // client to handle.
+        if (R == AliasAnalysis::PartialAlias)
+          return MemDepResult::getClobber(Inst);
+#endif
+
+        // Random may-alias loads don't depend on each other without a
+        // dependence.
+        continue;
+      }
+
+      // Stores don't depend on other no-aliased accesses.
+      if (R == AliasAnalysis::NoAlias)
+        continue;
+
+      // Stores don't alias loads from read-only memory.
+      if (AA->pointsToConstantMemory(LoadLoc))
+        continue;
+
+      // Stores depend on may/must aliased loads.
+      return MemDepResult::getDef(Inst);
+    }
+
+    if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
+      // Atomic stores have complications involved.
+      // FIXME: This is overly conservative.
+      if (!SI->isUnordered())
+        return MemDepResult::getClobber(SI);
+
+      // If alias analysis can tell that this store is guaranteed to not modify
+      // the query pointer, ignore it.  Use getModRefInfo to handle cases where
+      // the query pointer points to constant memory etc.
+      if (AA->getModRefInfo(SI, MemLoc) == AliasAnalysis::NoModRef)
+        continue;
+
+      // Ok, this store might clobber the query pointer.  Check to see if it is
+      // a must alias: in this case, we want to return this as a def.
+      AliasAnalysis::Location StoreLoc = AA->getLocation(SI);
+
+      // If we found a pointer, check if it could be the same as our pointer.
+      AliasAnalysis::AliasResult R = AA->alias(StoreLoc, MemLoc);
+
+      if (R == AliasAnalysis::NoAlias)
+        continue;
+      if (R == AliasAnalysis::MustAlias)
+        return MemDepResult::getDef(Inst);
+      if (isInvariantLoad)
+       continue;
+      return MemDepResult::getClobber(Inst);
+    }
+
+    // If this is an allocation, and if we know that the accessed pointer is to
+    // the allocation, return Def.  This means that there is no dependence and
+    // the access can be optimized based on that.  For example, a load could
+    // turn into undef.
+    // Note: Only determine this to be a malloc if Inst is the malloc call, not
+    // a subsequent bitcast of the malloc call result.  There can be stores to
+    // the malloced memory between the malloc call and its bitcast uses, and we
+    // need to continue scanning until the malloc call.
+    const TargetLibraryInfo *TLI = AA->getTargetLibraryInfo();
+    if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, TLI)) {
+      const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, TD);
+
+      if (AccessPtr == Inst || AA->isMustAlias(Inst, AccessPtr))
+        return MemDepResult::getDef(Inst);
+      // Be conservative if the accessed pointer may alias the allocation.
+      if (AA->alias(Inst, AccessPtr) != AliasAnalysis::NoAlias)
+        return MemDepResult::getClobber(Inst);
+      // If the allocation is not aliased and does not read memory (like
+      // strdup), it is safe to ignore.
+      if (isa<AllocaInst>(Inst) ||
+          isMallocLikeFn(Inst, TLI) || isCallocLikeFn(Inst, TLI))
+        continue;
+    }
+
+    // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
+    AliasAnalysis::ModRefResult MR = AA->getModRefInfo(Inst, MemLoc);
+    // If necessary, perform additional analysis.
+    if (MR == AliasAnalysis::ModRef)
+      MR = AA->callCapturesBefore(Inst, MemLoc, DT);
+    switch (MR) {
+    case AliasAnalysis::NoModRef:
+      // If the call has no effect on the queried pointer, just ignore it.
+      continue;
+    case AliasAnalysis::Mod:
+      return MemDepResult::getClobber(Inst);
+    case AliasAnalysis::Ref:
+      // If the call is known to never store to the pointer, and if this is a
+      // load query, we can safely ignore it (scan past it).
+      if (isLoad)
+        continue;
+    default:
+      // Otherwise, there is a potential dependence.  Return a clobber.
+      return MemDepResult::getClobber(Inst);
+    }
+  }
+
+  // No dependence found.  If this is the entry block of the function, it is
+  // unknown, otherwise it is non-local.
+  if (BB != &BB->getParent()->getEntryBlock())
+    return MemDepResult::getNonLocal();
+  return MemDepResult::getNonFuncLocal();
+}
+
+/// getDependency - Return the instruction on which a memory operation
+/// depends.
+MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) {
+  Instruction *ScanPos = QueryInst;
+
+  // Check for a cached result
+  MemDepResult &LocalCache = LocalDeps[QueryInst];
+
+  // If the cached entry is non-dirty, just return it.  Note that this depends
+  // on MemDepResult's default constructing to 'dirty'.
+  if (!LocalCache.isDirty())
+    return LocalCache;
+
+  // Otherwise, if we have a dirty entry, we know we can start the scan at that
+  // instruction, which may save us some work.
+  if (Instruction *Inst = LocalCache.getInst()) {
+    ScanPos = Inst;
+
+    RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
+  }
+
+  BasicBlock *QueryParent = QueryInst->getParent();
+
+  // Do the scan.
+  if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
+    // No dependence found.  If this is the entry block of the function, it is
+    // unknown, otherwise it is non-local.
+    if (QueryParent != &QueryParent->getParent()->getEntryBlock())
+      LocalCache = MemDepResult::getNonLocal();
+    else
+      LocalCache = MemDepResult::getNonFuncLocal();
+  } else {
+    AliasAnalysis::Location MemLoc;
+    AliasAnalysis::ModRefResult MR = GetLocation(QueryInst, MemLoc, AA);
+    if (MemLoc.Ptr) {
+      // If we can do a pointer scan, make it happen.
+      bool isLoad = !(MR & AliasAnalysis::Mod);
+      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(QueryInst))
+        isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start;
+
+      LocalCache = getPointerDependencyFrom(MemLoc, isLoad, ScanPos,
+                                            QueryParent, QueryInst);
+    } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) {
+      CallSite QueryCS(QueryInst);
+      bool isReadOnly = AA->onlyReadsMemory(QueryCS);
+      LocalCache = getCallSiteDependencyFrom(QueryCS, isReadOnly, ScanPos,
+                                             QueryParent);
+    } else
+      // Non-memory instruction.
+      LocalCache = MemDepResult::getUnknown();
+  }
+
+  // Remember the result!
+  if (Instruction *I = LocalCache.getInst())
+    ReverseLocalDeps[I].insert(QueryInst);
+
+  return LocalCache;
+}
+
+#ifndef NDEBUG
+/// AssertSorted - This method is used when -debug is specified to verify that
+/// cache arrays are properly kept sorted.
+static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
+                         int Count = -1) {
+  if (Count == -1) Count = Cache.size();
+  if (Count == 0) return;
+
+  for (unsigned i = 1; i != unsigned(Count); ++i)
+    assert(!(Cache[i] < Cache[i-1]) && "Cache isn't sorted!");
+}
+#endif
+
+/// getNonLocalCallDependency - Perform a full dependency query for the
+/// specified call, returning the set of blocks that the value is
+/// potentially live across.  The returned set of results will include a
+/// "NonLocal" result for all blocks where the value is live across.
+///
+/// This method assumes the instruction returns a "NonLocal" dependency
+/// within its own block.
+///
+/// This returns a reference to an internal data structure that may be
+/// invalidated on the next non-local query or when an instruction is
+/// removed.  Clients must copy this data if they want it around longer than
+/// that.
+const MemoryDependenceAnalysis::NonLocalDepInfo &
+MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) {
+  assert(getDependency(QueryCS.getInstruction()).isNonLocal() &&
+ "getNonLocalCallDependency should only be used on calls with non-local deps!");
+  PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()];
+  NonLocalDepInfo &Cache = CacheP.first;
+
+  /// DirtyBlocks - This is the set of blocks that need to be recomputed.  In
+  /// the cached case, this can happen due to instructions being deleted etc. In
+  /// the uncached case, this starts out as the set of predecessors we care
+  /// about.
+  SmallVector<BasicBlock*, 32> DirtyBlocks;
+
+  if (!Cache.empty()) {
+    // Okay, we have a cache entry.  If we know it is not dirty, just return it
+    // with no computation.
+    if (!CacheP.second) {
+      ++NumCacheNonLocal;
+      return Cache;
+    }
+
+    // If we already have a partially computed set of results, scan them to
+    // determine what is dirty, seeding our initial DirtyBlocks worklist.
+    for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end();
+       I != E; ++I)
+      if (I->getResult().isDirty())
+        DirtyBlocks.push_back(I->getBB());
+
+    // Sort the cache so that we can do fast binary search lookups below.
+    std::sort(Cache.begin(), Cache.end());
+
+    ++NumCacheDirtyNonLocal;
+    //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
+    //     << Cache.size() << " cached: " << *QueryInst;
+  } else {
+    // Seed DirtyBlocks with each of the preds of QueryInst's block.
+    BasicBlock *QueryBB = QueryCS.getInstruction()->getParent();
+    for (BasicBlock **PI = PredCache->GetPreds(QueryBB); *PI; ++PI)
+      DirtyBlocks.push_back(*PI);
+    ++NumUncacheNonLocal;
+  }
+
+  // isReadonlyCall - If this is a read-only call, we can be more aggressive.
+  bool isReadonlyCall = AA->onlyReadsMemory(QueryCS);
+
+  SmallPtrSet<BasicBlock*, 64> Visited;
+
+  unsigned NumSortedEntries = Cache.size();
+  DEBUG(AssertSorted(Cache));
+
+  // Iterate while we still have blocks to update.
+  while (!DirtyBlocks.empty()) {
+    BasicBlock *DirtyBB = DirtyBlocks.back();
+    DirtyBlocks.pop_back();
+
+    // Already processed this block?
+    if (!Visited.insert(DirtyBB))
+      continue;
+
+    // Do a binary search to see if we already have an entry for this block in
+    // the cache set.  If so, find it.
+    DEBUG(AssertSorted(Cache, NumSortedEntries));
+    NonLocalDepInfo::iterator Entry =
+      std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries,
+                       NonLocalDepEntry(DirtyBB));
+    if (Entry != Cache.begin() && prior(Entry)->getBB() == DirtyBB)
+      --Entry;
+
+    NonLocalDepEntry *ExistingResult = 0;
+    if (Entry != Cache.begin()+NumSortedEntries &&
+        Entry->getBB() == DirtyBB) {
+      // If we already have an entry, and if it isn't already dirty, the block
+      // is done.
+      if (!Entry->getResult().isDirty())
+        continue;
+
+      // Otherwise, remember this slot so we can update the value.
+      ExistingResult = &*Entry;
+    }
+
+    // If the dirty entry has a pointer, start scanning from it so we don't have
+    // to rescan the entire block.
+    BasicBlock::iterator ScanPos = DirtyBB->end();
+    if (ExistingResult) {
+      if (Instruction *Inst = ExistingResult->getResult().getInst()) {
+        ScanPos = Inst;
+        // We're removing QueryInst's use of Inst.
+        RemoveFromReverseMap(ReverseNonLocalDeps, Inst,
+                             QueryCS.getInstruction());
+      }
+    }
+
+    // Find out if this block has a local dependency for QueryInst.
+    MemDepResult Dep;
+
+    if (ScanPos != DirtyBB->begin()) {
+      Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB);
+    } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
+      // No dependence found.  If this is the entry block of the function, it is
+      // a clobber, otherwise it is unknown.
+      Dep = MemDepResult::getNonLocal();
+    } else {
+      Dep = MemDepResult::getNonFuncLocal();
+    }
+
+    // If we had a dirty entry for the block, update it.  Otherwise, just add
+    // a new entry.
+    if (ExistingResult)
+      ExistingResult->setResult(Dep);
+    else
+      Cache.push_back(NonLocalDepEntry(DirtyBB, Dep));
+
+    // If the block has a dependency (i.e. it isn't completely transparent to
+    // the value), remember the association!
+    if (!Dep.isNonLocal()) {
+      // Keep the ReverseNonLocalDeps map up to date so we can efficiently
+      // update this when we remove instructions.
+      if (Instruction *Inst = Dep.getInst())
+        ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction());
+    } else {
+
+      // If the block *is* completely transparent to the load, we need to check
+      // the predecessors of this block.  Add them to our worklist.
+      for (BasicBlock **PI = PredCache->GetPreds(DirtyBB); *PI; ++PI)
+        DirtyBlocks.push_back(*PI);
+    }
+  }
+
+  return Cache;
+}
+
+/// getNonLocalPointerDependency - Perform a full dependency query for an
+/// access to the specified (non-volatile) memory location, returning the
+/// set of instructions that either define or clobber the value.
+///
+/// This method assumes the pointer has a "NonLocal" dependency within its
+/// own block.
+///
+void MemoryDependenceAnalysis::
+getNonLocalPointerDependency(const AliasAnalysis::Location &Loc, bool isLoad,
+                             BasicBlock *FromBB,
+                             SmallVectorImpl<NonLocalDepResult> &Result) {
+  assert(Loc.Ptr->getType()->isPointerTy() &&
+         "Can't get pointer deps of a non-pointer!");
+  Result.clear();
+
+  PHITransAddr Address(const_cast<Value *>(Loc.Ptr), TD);
+
+  // This is the set of blocks we've inspected, and the pointer we consider in
+  // each block.  Because of critical edges, we currently bail out if querying
+  // a block with multiple different pointers.  This can happen during PHI
+  // translation.
+  DenseMap<BasicBlock*, Value*> Visited;
+  if (!getNonLocalPointerDepFromBB(Address, Loc, isLoad, FromBB,
+                                   Result, Visited, true))
+    return;
+  Result.clear();
+  Result.push_back(NonLocalDepResult(FromBB,
+                                     MemDepResult::getUnknown(),
+                                     const_cast<Value *>(Loc.Ptr)));
+}
+
+/// GetNonLocalInfoForBlock - Compute the memdep value for BB with
+/// Pointer/PointeeSize using either cached information in Cache or by doing a
+/// lookup (which may use dirty cache info if available).  If we do a lookup,
+/// add the result to the cache.
+MemDepResult MemoryDependenceAnalysis::
+GetNonLocalInfoForBlock(const AliasAnalysis::Location &Loc,
+                        bool isLoad, BasicBlock *BB,
+                        NonLocalDepInfo *Cache, unsigned NumSortedEntries) {
+
+  // Do a binary search to see if we already have an entry for this block in
+  // the cache set.  If so, find it.
+  NonLocalDepInfo::iterator Entry =
+    std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries,
+                     NonLocalDepEntry(BB));
+  if (Entry != Cache->begin() && (Entry-1)->getBB() == BB)
+    --Entry;
+
+  NonLocalDepEntry *ExistingResult = 0;
+  if (Entry != Cache->begin()+NumSortedEntries && Entry->getBB() == BB)
+    ExistingResult = &*Entry;
+
+  // If we have a cached entry, and it is non-dirty, use it as the value for
+  // this dependency.
+  if (ExistingResult && !ExistingResult->getResult().isDirty()) {
+    ++NumCacheNonLocalPtr;
+    return ExistingResult->getResult();
+  }
+
+  // Otherwise, we have to scan for the value.  If we have a dirty cache
+  // entry, start scanning from its position, otherwise we scan from the end
+  // of the block.
+  BasicBlock::iterator ScanPos = BB->end();
+  if (ExistingResult && ExistingResult->getResult().getInst()) {
+    assert(ExistingResult->getResult().getInst()->getParent() == BB &&
+           "Instruction invalidated?");
+    ++NumCacheDirtyNonLocalPtr;
+    ScanPos = ExistingResult->getResult().getInst();
+
+    // Eliminating the dirty entry from 'Cache', so update the reverse info.
+    ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
+    RemoveFromReverseMap(ReverseNonLocalPtrDeps, ScanPos, CacheKey);
+  } else {
+    ++NumUncacheNonLocalPtr;
+  }
+
+  // Scan the block for the dependency.
+  MemDepResult Dep = getPointerDependencyFrom(Loc, isLoad, ScanPos, BB);
+
+  // If we had a dirty entry for the block, update it.  Otherwise, just add
+  // a new entry.
+  if (ExistingResult)
+    ExistingResult->setResult(Dep);
+  else
+    Cache->push_back(NonLocalDepEntry(BB, Dep));
+
+  // If the block has a dependency (i.e. it isn't completely transparent to
+  // the value), remember the reverse association because we just added it
+  // to Cache!
+  if (!Dep.isDef() && !Dep.isClobber())
+    return Dep;
+
+  // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
+  // update MemDep when we remove instructions.
+  Instruction *Inst = Dep.getInst();
+  assert(Inst && "Didn't depend on anything?");
+  ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
+  ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
+  return Dep;
+}
+
+/// SortNonLocalDepInfoCache - Sort the a NonLocalDepInfo cache, given a certain
+/// number of elements in the array that are already properly ordered.  This is
+/// optimized for the case when only a few entries are added.
+static void
+SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
+                         unsigned NumSortedEntries) {
+  switch (Cache.size() - NumSortedEntries) {
+  case 0:
+    // done, no new entries.
+    break;
+  case 2: {
+    // Two new entries, insert the last one into place.
+    NonLocalDepEntry Val = Cache.back();
+    Cache.pop_back();
+    MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
+      std::upper_bound(Cache.begin(), Cache.end()-1, Val);
+    Cache.insert(Entry, Val);
+    // FALL THROUGH.
+  }
+  case 1:
+    // One new entry, Just insert the new value at the appropriate position.
+    if (Cache.size() != 1) {
+      NonLocalDepEntry Val = Cache.back();
+      Cache.pop_back();
+      MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
+        std::upper_bound(Cache.begin(), Cache.end(), Val);
+      Cache.insert(Entry, Val);
+    }
+    break;
+  default:
+    // Added many values, do a full scale sort.
+    std::sort(Cache.begin(), Cache.end());
+    break;
+  }
+}
+
+/// getNonLocalPointerDepFromBB - Perform a dependency query based on
+/// pointer/pointeesize starting at the end of StartBB.  Add any clobber/def
+/// results to the results vector and keep track of which blocks are visited in
+/// 'Visited'.
+///
+/// This has special behavior for the first block queries (when SkipFirstBlock
+/// is true).  In this special case, it ignores the contents of the specified
+/// block and starts returning dependence info for its predecessors.
+///
+/// This function returns false on success, or true to indicate that it could
+/// not compute dependence information for some reason.  This should be treated
+/// as a clobber dependence on the first instruction in the predecessor block.
+bool MemoryDependenceAnalysis::
+getNonLocalPointerDepFromBB(const PHITransAddr &Pointer,
+                            const AliasAnalysis::Location &Loc,
+                            bool isLoad, BasicBlock *StartBB,
+                            SmallVectorImpl<NonLocalDepResult> &Result,
+                            DenseMap<BasicBlock*, Value*> &Visited,
+                            bool SkipFirstBlock) {
+  // Look up the cached info for Pointer.
+  ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad);
+
+  // Set up a temporary NLPI value. If the map doesn't yet have an entry for
+  // CacheKey, this value will be inserted as the associated value. Otherwise,
+  // it'll be ignored, and we'll have to check to see if the cached size and
+  // tbaa tag are consistent with the current query.
+  NonLocalPointerInfo InitialNLPI;
+  InitialNLPI.Size = Loc.Size;
+  InitialNLPI.TBAATag = Loc.TBAATag;
+
+  // Get the NLPI for CacheKey, inserting one into the map if it doesn't
+  // already have one.
+  std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair =
+    NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI));
+  NonLocalPointerInfo *CacheInfo = &Pair.first->second;
+
+  // If we already have a cache entry for this CacheKey, we may need to do some
+  // work to reconcile the cache entry and the current query.
+  if (!Pair.second) {
+    if (CacheInfo->Size < Loc.Size) {
+      // The query's Size is greater than the cached one. Throw out the
+      // cached data and proceed with the query at the greater size.
+      CacheInfo->Pair = BBSkipFirstBlockPair();
+      CacheInfo->Size = Loc.Size;
+      for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(),
+           DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI)
+        if (Instruction *Inst = DI->getResult().getInst())
+          RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
+      CacheInfo->NonLocalDeps.clear();
+    } else if (CacheInfo->Size > Loc.Size) {
+      // This query's Size is less than the cached one. Conservatively restart
+      // the query using the greater size.
+      return getNonLocalPointerDepFromBB(Pointer,
+                                         Loc.getWithNewSize(CacheInfo->Size),
+                                         isLoad, StartBB, Result, Visited,
+                                         SkipFirstBlock);
+    }
+
+    // If the query's TBAATag is inconsistent with the cached one,
+    // conservatively throw out the cached data and restart the query with
+    // no tag if needed.
+    if (CacheInfo->TBAATag != Loc.TBAATag) {
+      if (CacheInfo->TBAATag) {
+        CacheInfo->Pair = BBSkipFirstBlockPair();
+        CacheInfo->TBAATag = 0;
+        for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(),
+             DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI)
+          if (Instruction *Inst = DI->getResult().getInst())
+            RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
+        CacheInfo->NonLocalDeps.clear();
+      }
+      if (Loc.TBAATag)
+        return getNonLocalPointerDepFromBB(Pointer, Loc.getWithoutTBAATag(),
+                                           isLoad, StartBB, Result, Visited,
+                                           SkipFirstBlock);
+    }
+  }
+
+  NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps;
+
+  // If we have valid cached information for exactly the block we are
+  // investigating, just return it with no recomputation.
+  if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
+    // We have a fully cached result for this query then we can just return the
+    // cached results and populate the visited set.  However, we have to verify
+    // that we don't already have conflicting results for these blocks.  Check
+    // to ensure that if a block in the results set is in the visited set that
+    // it was for the same pointer query.
+    if (!Visited.empty()) {
+      for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
+           I != E; ++I) {
+        DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->getBB());
+        if (VI == Visited.end() || VI->second == Pointer.getAddr())
+          continue;
+
+        // We have a pointer mismatch in a block.  Just return clobber, saying
+        // that something was clobbered in this result.  We could also do a
+        // non-fully cached query, but there is little point in doing this.
+        return true;
+      }
+    }
+
+    Value *Addr = Pointer.getAddr();
+    for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
+         I != E; ++I) {
+      Visited.insert(std::make_pair(I->getBB(), Addr));
+      if (I->getResult().isNonLocal()) {
+        continue;
+      }
+
+      if (!DT) {
+        Result.push_back(NonLocalDepResult(I->getBB(),
+                                           MemDepResult::getUnknown(),
+                                           Addr));
+      } else if (DT->isReachableFromEntry(I->getBB())) {
+        Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), Addr));
+      }
+    }
+    ++NumCacheCompleteNonLocalPtr;
+    return false;
+  }
+
+  // Otherwise, either this is a new block, a block with an invalid cache
+  // pointer or one that we're about to invalidate by putting more info into it
+  // than its valid cache info.  If empty, the result will be valid cache info,
+  // otherwise it isn't.
+  if (Cache->empty())
+    CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
+  else
+    CacheInfo->Pair = BBSkipFirstBlockPair();
+
+  SmallVector<BasicBlock*, 32> Worklist;
+  Worklist.push_back(StartBB);
+
+  // PredList used inside loop.
+  SmallVector<std::pair<BasicBlock*, PHITransAddr>, 16> PredList;
+
+  // Keep track of the entries that we know are sorted.  Previously cached
+  // entries will all be sorted.  The entries we add we only sort on demand (we
+  // don't insert every element into its sorted position).  We know that we
+  // won't get any reuse from currently inserted values, because we don't
+  // revisit blocks after we insert info for them.
+  unsigned NumSortedEntries = Cache->size();
+  DEBUG(AssertSorted(*Cache));
+
+  while (!Worklist.empty()) {
+    BasicBlock *BB = Worklist.pop_back_val();
+
+    // Skip the first block if we have it.
+    if (!SkipFirstBlock) {
+      // Analyze the dependency of *Pointer in FromBB.  See if we already have
+      // been here.
+      assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
+
+      // Get the dependency info for Pointer in BB.  If we have cached
+      // information, we will use it, otherwise we compute it.
+      DEBUG(AssertSorted(*Cache, NumSortedEntries));
+      MemDepResult Dep = GetNonLocalInfoForBlock(Loc, isLoad, BB, Cache,
+                                                 NumSortedEntries);
+
+      // If we got a Def or Clobber, add this to the list of results.
+      if (!Dep.isNonLocal()) {
+        if (!DT) {
+          Result.push_back(NonLocalDepResult(BB,
+                                             MemDepResult::getUnknown(),
+                                             Pointer.getAddr()));
+          continue;
+        } else if (DT->isReachableFromEntry(BB)) {
+          Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr()));
+          continue;
+        }
+      }
+    }
+
+    // If 'Pointer' is an instruction defined in this block, then we need to do
+    // phi translation to change it into a value live in the predecessor block.
+    // If not, we just add the predecessors to the worklist and scan them with
+    // the same Pointer.
+    if (!Pointer.NeedsPHITranslationFromBlock(BB)) {
+      SkipFirstBlock = false;
+      SmallVector<BasicBlock*, 16> NewBlocks;
+      for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
+        // Verify that we haven't looked at this block yet.
+        std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
+          InsertRes = Visited.insert(std::make_pair(*PI, Pointer.getAddr()));
+        if (InsertRes.second) {
+          // First time we've looked at *PI.
+          NewBlocks.push_back(*PI);
+          continue;
+        }
+
+        // If we have seen this block before, but it was with a different
+        // pointer then we have a phi translation failure and we have to treat
+        // this as a clobber.
+        if (InsertRes.first->second != Pointer.getAddr()) {
+          // Make sure to clean up the Visited map before continuing on to
+          // PredTranslationFailure.
+          for (unsigned i = 0; i < NewBlocks.size(); i++)
+            Visited.erase(NewBlocks[i]);
+          goto PredTranslationFailure;
+        }
+      }
+      Worklist.append(NewBlocks.begin(), NewBlocks.end());
+      continue;
+    }
+
+    // We do need to do phi translation, if we know ahead of time we can't phi
+    // translate this value, don't even try.
+    if (!Pointer.IsPotentiallyPHITranslatable())
+      goto PredTranslationFailure;
+
+    // We may have added values to the cache list before this PHI translation.
+    // If so, we haven't done anything to ensure that the cache remains sorted.
+    // Sort it now (if needed) so that recursive invocations of
+    // getNonLocalPointerDepFromBB and other routines that could reuse the cache
+    // value will only see properly sorted cache arrays.
+    if (Cache && NumSortedEntries != Cache->size()) {
+      SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
+      NumSortedEntries = Cache->size();
+    }
+    Cache = 0;
+
+    PredList.clear();
+    for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
+      BasicBlock *Pred = *PI;
+      PredList.push_back(std::make_pair(Pred, Pointer));
+
+      // Get the PHI translated pointer in this predecessor.  This can fail if
+      // not translatable, in which case the getAddr() returns null.
+      PHITransAddr &PredPointer = PredList.back().second;
+      PredPointer.PHITranslateValue(BB, Pred, 0);
+
+      Value *PredPtrVal = PredPointer.getAddr();
+
+      // Check to see if we have already visited this pred block with another
+      // pointer.  If so, we can't do this lookup.  This failure can occur
+      // with PHI translation when a critical edge exists and the PHI node in
+      // the successor translates to a pointer value different than the
+      // pointer the block was first analyzed with.
+      std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
+        InsertRes = Visited.insert(std::make_pair(Pred, PredPtrVal));
+
+      if (!InsertRes.second) {
+        // We found the pred; take it off the list of preds to visit.
+        PredList.pop_back();
+
+        // If the predecessor was visited with PredPtr, then we already did
+        // the analysis and can ignore it.
+        if (InsertRes.first->second == PredPtrVal)
+          continue;
+
+        // Otherwise, the block was previously analyzed with a different
+        // pointer.  We can't represent the result of this case, so we just
+        // treat this as a phi translation failure.
+
+        // Make sure to clean up the Visited map before continuing on to
+        // PredTranslationFailure.
+        for (unsigned i = 0, n = PredList.size(); i < n; ++i)
+          Visited.erase(PredList[i].first);
+
+        goto PredTranslationFailure;
+      }
+    }
+
+    // Actually process results here; this need to be a separate loop to avoid
+    // calling getNonLocalPointerDepFromBB for blocks we don't want to return
+    // any results for.  (getNonLocalPointerDepFromBB will modify our
+    // datastructures in ways the code after the PredTranslationFailure label
+    // doesn't expect.)
+    for (unsigned i = 0, n = PredList.size(); i < n; ++i) {
+      BasicBlock *Pred = PredList[i].first;
+      PHITransAddr &PredPointer = PredList[i].second;
+      Value *PredPtrVal = PredPointer.getAddr();
+
+      bool CanTranslate = true;
+      // If PHI translation was unable to find an available pointer in this
+      // predecessor, then we have to assume that the pointer is clobbered in
+      // that predecessor.  We can still do PRE of the load, which would insert
+      // a computation of the pointer in this predecessor.
+      if (PredPtrVal == 0)
+        CanTranslate = false;
+
+      // FIXME: it is entirely possible that PHI translating will end up with
+      // the same value.  Consider PHI translating something like:
+      // X = phi [x, bb1], [y, bb2].  PHI translating for bb1 doesn't *need*
+      // to recurse here, pedantically speaking.
+
+      // If getNonLocalPointerDepFromBB fails here, that means the cached
+      // result conflicted with the Visited list; we have to conservatively
+      // assume it is unknown, but this also does not block PRE of the load.
+      if (!CanTranslate ||
+          getNonLocalPointerDepFromBB(PredPointer,
+                                      Loc.getWithNewPtr(PredPtrVal),
+                                      isLoad, Pred,
+                                      Result, Visited)) {
+        // Add the entry to the Result list.
+        NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal);
+        Result.push_back(Entry);
+
+        // Since we had a phi translation failure, the cache for CacheKey won't
+        // include all of the entries that we need to immediately satisfy future
+        // queries.  Mark this in NonLocalPointerDeps by setting the
+        // BBSkipFirstBlockPair pointer to null.  This requires reuse of the
+        // cached value to do more work but not miss the phi trans failure.
+        NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey];
+        NLPI.Pair = BBSkipFirstBlockPair();
+        continue;
+      }
+    }
+
+    // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
+    CacheInfo = &NonLocalPointerDeps[CacheKey];
+    Cache = &CacheInfo->NonLocalDeps;
+    NumSortedEntries = Cache->size();
+
+    // Since we did phi translation, the "Cache" set won't contain all of the
+    // results for the query.  This is ok (we can still use it to accelerate
+    // specific block queries) but we can't do the fastpath "return all
+    // results from the set"  Clear out the indicator for this.
+    CacheInfo->Pair = BBSkipFirstBlockPair();
+    SkipFirstBlock = false;
+    continue;
+
+  PredTranslationFailure:
+    // The following code is "failure"; we can't produce a sane translation
+    // for the given block.  It assumes that we haven't modified any of
+    // our datastructures while processing the current block.
+
+    if (Cache == 0) {
+      // Refresh the CacheInfo/Cache pointer if it got invalidated.
+      CacheInfo = &NonLocalPointerDeps[CacheKey];
+      Cache = &CacheInfo->NonLocalDeps;
+      NumSortedEntries = Cache->size();
+    }
+
+    // Since we failed phi translation, the "Cache" set won't contain all of the
+    // results for the query.  This is ok (we can still use it to accelerate
+    // specific block queries) but we can't do the fastpath "return all
+    // results from the set".  Clear out the indicator for this.
+    CacheInfo->Pair = BBSkipFirstBlockPair();
+
+    // If *nothing* works, mark the pointer as unknown.
+    //
+    // If this is the magic first block, return this as a clobber of the whole
+    // incoming value.  Since we can't phi translate to one of the predecessors,
+    // we have to bail out.
+    if (SkipFirstBlock)
+      return true;
+
+    for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) {
+      assert(I != Cache->rend() && "Didn't find current block??");
+      if (I->getBB() != BB)
+        continue;
+
+      assert(I->getResult().isNonLocal() &&
+             "Should only be here with transparent block");
+      I->setResult(MemDepResult::getUnknown());
+      Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(),
+                                         Pointer.getAddr()));
+      break;
+    }
+  }
+
+  // Okay, we're done now.  If we added new values to the cache, re-sort it.
+  SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
+  DEBUG(AssertSorted(*Cache));
+  return false;
+}
+
+/// RemoveCachedNonLocalPointerDependencies - If P exists in
+/// CachedNonLocalPointerInfo, remove it.
+void MemoryDependenceAnalysis::
+RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) {
+  CachedNonLocalPointerInfo::iterator It =
+    NonLocalPointerDeps.find(P);
+  if (It == NonLocalPointerDeps.end()) return;
+
+  // Remove all of the entries in the BB->val map.  This involves removing
+  // instructions from the reverse map.
+  NonLocalDepInfo &PInfo = It->second.NonLocalDeps;
+
+  for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
+    Instruction *Target = PInfo[i].getResult().getInst();
+    if (Target == 0) continue;  // Ignore non-local dep results.
+    assert(Target->getParent() == PInfo[i].getBB());
+
+    // Eliminating the dirty entry from 'Cache', so update the reverse info.
+    RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
+  }
+
+  // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
+  NonLocalPointerDeps.erase(It);
+}
+
+
+/// invalidateCachedPointerInfo - This method is used to invalidate cached
+/// information about the specified pointer, because it may be too
+/// conservative in memdep.  This is an optional call that can be used when
+/// the client detects an equivalence between the pointer and some other
+/// value and replaces the other value with ptr. This can make Ptr available
+/// in more places that cached info does not necessarily keep.
+void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value *Ptr) {
+  // If Ptr isn't really a pointer, just ignore it.
+  if (!Ptr->getType()->isPointerTy()) return;
+  // Flush store info for the pointer.
+  RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
+  // Flush load info for the pointer.
+  RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
+}
+
+/// invalidateCachedPredecessors - Clear the PredIteratorCache info.
+/// This needs to be done when the CFG changes, e.g., due to splitting
+/// critical edges.
+void MemoryDependenceAnalysis::invalidateCachedPredecessors() {
+  PredCache->clear();
+}
+
+/// removeInstruction - Remove an instruction from the dependence analysis,
+/// updating the dependence of instructions that previously depended on it.
+/// This method attempts to keep the cache coherent using the reverse map.
+void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
+  // Walk through the Non-local dependencies, removing this one as the value
+  // for any cached queries.
+  NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
+  if (NLDI != NonLocalDeps.end()) {
+    NonLocalDepInfo &BlockMap = NLDI->second.first;
+    for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end();
+         DI != DE; ++DI)
+      if (Instruction *Inst = DI->getResult().getInst())
+        RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
+    NonLocalDeps.erase(NLDI);
+  }
+
+  // If we have a cached local dependence query for this instruction, remove it.
+  //
+  LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
+  if (LocalDepEntry != LocalDeps.end()) {
+    // Remove us from DepInst's reverse set now that the local dep info is gone.
+    if (Instruction *Inst = LocalDepEntry->second.getInst())
+      RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
+
+    // Remove this local dependency info.
+    LocalDeps.erase(LocalDepEntry);
+  }
+
+  // If we have any cached pointer dependencies on this instruction, remove
+  // them.  If the instruction has non-pointer type, then it can't be a pointer
+  // base.
+
+  // Remove it from both the load info and the store info.  The instruction
+  // can't be in either of these maps if it is non-pointer.
+  if (RemInst->getType()->isPointerTy()) {
+    RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
+    RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
+  }
+
+  // Loop over all of the things that depend on the instruction we're removing.
+  //
+  SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd;
+
+  // If we find RemInst as a clobber or Def in any of the maps for other values,
+  // we need to replace its entry with a dirty version of the instruction after
+  // it.  If RemInst is a terminator, we use a null dirty value.
+  //
+  // Using a dirty version of the instruction after RemInst saves having to scan
+  // the entire block to get to this point.
+  MemDepResult NewDirtyVal;
+  if (!RemInst->isTerminator())
+    NewDirtyVal = MemDepResult::getDirty(++BasicBlock::iterator(RemInst));
+
+  ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
+  if (ReverseDepIt != ReverseLocalDeps.end()) {
+    SmallPtrSet<Instruction*, 4> &ReverseDeps = ReverseDepIt->second;
+    // RemInst can't be the terminator if it has local stuff depending on it.
+    assert(!ReverseDeps.empty() && !isa<TerminatorInst>(RemInst) &&
+           "Nothing can locally depend on a terminator");
+
+    for (SmallPtrSet<Instruction*, 4>::iterator I = ReverseDeps.begin(),
+         E = ReverseDeps.end(); I != E; ++I) {
+      Instruction *InstDependingOnRemInst = *I;
+      assert(InstDependingOnRemInst != RemInst &&
+             "Already removed our local dep info");
+
+      LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
+
+      // Make sure to remember that new things depend on NewDepInst.
+      assert(NewDirtyVal.getInst() && "There is no way something else can have "
+             "a local dep on this if it is a terminator!");
+      ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(),
+                                                InstDependingOnRemInst));
+    }
+
+    ReverseLocalDeps.erase(ReverseDepIt);
+
+    // Add new reverse deps after scanning the set, to avoid invalidating the
+    // 'ReverseDeps' reference.
+    while (!ReverseDepsToAdd.empty()) {
+      ReverseLocalDeps[ReverseDepsToAdd.back().first]
+        .insert(ReverseDepsToAdd.back().second);
+      ReverseDepsToAdd.pop_back();
+    }
+  }
+
+  ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
+  if (ReverseDepIt != ReverseNonLocalDeps.end()) {
+    SmallPtrSet<Instruction*, 4> &Set = ReverseDepIt->second;
+    for (SmallPtrSet<Instruction*, 4>::iterator I = Set.begin(), E = Set.end();
+         I != E; ++I) {
+      assert(*I != RemInst && "Already removed NonLocalDep info for RemInst");
+
+      PerInstNLInfo &INLD = NonLocalDeps[*I];
+      // The information is now dirty!
+      INLD.second = true;
+
+      for (NonLocalDepInfo::iterator DI = INLD.first.begin(),
+           DE = INLD.first.end(); DI != DE; ++DI) {
+        if (DI->getResult().getInst() != RemInst) continue;
+
+        // Convert to a dirty entry for the subsequent instruction.
+        DI->setResult(NewDirtyVal);
+
+        if (Instruction *NextI = NewDirtyVal.getInst())
+          ReverseDepsToAdd.push_back(std::make_pair(NextI, *I));
+      }
+    }
+
+    ReverseNonLocalDeps.erase(ReverseDepIt);
+
+    // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
+    while (!ReverseDepsToAdd.empty()) {
+      ReverseNonLocalDeps[ReverseDepsToAdd.back().first]
+        .insert(ReverseDepsToAdd.back().second);
+      ReverseDepsToAdd.pop_back();
+    }
+  }
+
+  // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
+  // value in the NonLocalPointerDeps info.
+  ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
+    ReverseNonLocalPtrDeps.find(RemInst);
+  if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
+    SmallPtrSet<ValueIsLoadPair, 4> &Set = ReversePtrDepIt->second;
+    SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd;
+
+    for (SmallPtrSet<ValueIsLoadPair, 4>::iterator I = Set.begin(),
+         E = Set.end(); I != E; ++I) {
+      ValueIsLoadPair P = *I;
+      assert(P.getPointer() != RemInst &&
+             "Already removed NonLocalPointerDeps info for RemInst");
+
+      NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps;
+
+      // The cache is not valid for any specific block anymore.
+      NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair();
+
+      // Update any entries for RemInst to use the instruction after it.
+      for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end();
+           DI != DE; ++DI) {
+        if (DI->getResult().getInst() != RemInst) continue;
+
+        // Convert to a dirty entry for the subsequent instruction.
+        DI->setResult(NewDirtyVal);
+
+        if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
+          ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
+      }
+
+      // Re-sort the NonLocalDepInfo.  Changing the dirty entry to its
+      // subsequent value may invalidate the sortedness.
+      std::sort(NLPDI.begin(), NLPDI.end());
+    }
+
+    ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
+
+    while (!ReversePtrDepsToAdd.empty()) {
+      ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first]
+        .insert(ReversePtrDepsToAdd.back().second);
+      ReversePtrDepsToAdd.pop_back();
+    }
+  }
+
+
+  assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
+  AA->deleteValue(RemInst);
+  DEBUG(verifyRemoved(RemInst));
+}
+/// verifyRemoved - Verify that the specified instruction does not occur
+/// in our internal data structures.
+void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
+  for (LocalDepMapType::const_iterator I = LocalDeps.begin(),
+       E = LocalDeps.end(); I != E; ++I) {
+    assert(I->first != D && "Inst occurs in data structures");
+    assert(I->second.getInst() != D &&
+           "Inst occurs in data structures");
+  }
+
+  for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(),
+       E = NonLocalPointerDeps.end(); I != E; ++I) {
+    assert(I->first.getPointer() != D && "Inst occurs in NLPD map key");
+    const NonLocalDepInfo &Val = I->second.NonLocalDeps;
+    for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end();
+         II != E; ++II)
+      assert(II->getResult().getInst() != D && "Inst occurs as NLPD value");
+  }
+
+  for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(),
+       E = NonLocalDeps.end(); I != E; ++I) {
+    assert(I->first != D && "Inst occurs in data structures");
+    const PerInstNLInfo &INLD = I->second;
+    for (NonLocalDepInfo::const_iterator II = INLD.first.begin(),
+         EE = INLD.first.end(); II  != EE; ++II)
+      assert(II->getResult().getInst() != D && "Inst occurs in data structures");
+  }
+
+  for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(),
+       E = ReverseLocalDeps.end(); I != E; ++I) {
+    assert(I->first != D && "Inst occurs in data structures");
+    for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
+         EE = I->second.end(); II != EE; ++II)
+      assert(*II != D && "Inst occurs in data structures");
+  }
+
+  for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(),
+       E = ReverseNonLocalDeps.end();
+       I != E; ++I) {
+    assert(I->first != D && "Inst occurs in data structures");
+    for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
+         EE = I->second.end(); II != EE; ++II)
+      assert(*II != D && "Inst occurs in data structures");
+  }
+
+  for (ReverseNonLocalPtrDepTy::const_iterator
+       I = ReverseNonLocalPtrDeps.begin(),
+       E = ReverseNonLocalPtrDeps.end(); I != E; ++I) {
+    assert(I->first != D && "Inst occurs in rev NLPD map");
+
+    for (SmallPtrSet<ValueIsLoadPair, 4>::const_iterator II = I->second.begin(),
+         E = I->second.end(); II != E; ++II)
+      assert(*II != ValueIsLoadPair(D, false) &&
+             *II != ValueIsLoadPair(D, true) &&
+             "Inst occurs in ReverseNonLocalPtrDeps map");
+  }
+
+}