Mercurial > hg > Members > tobaru > cbc > CbC_llvm
diff lib/Target/NVPTX/NVPTXISelDAGToDAG.cpp @ 0:95c75e76d11b
LLVM 3.4
author | Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 12 Dec 2013 13:56:28 +0900 |
parents | |
children | e4204d083e25 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/lib/Target/NVPTX/NVPTXISelDAGToDAG.cpp Thu Dec 12 13:56:28 2013 +0900 @@ -0,0 +1,2463 @@ +//===-- NVPTXISelDAGToDAG.cpp - A dag to dag inst selector for NVPTX ------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines an instruction selector for the NVPTX target. +// +//===----------------------------------------------------------------------===// + +#include "NVPTXISelDAGToDAG.h" +#include "llvm/IR/GlobalValue.h" +#include "llvm/IR/Instructions.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetIntrinsicInfo.h" + +#undef DEBUG_TYPE +#define DEBUG_TYPE "nvptx-isel" + +using namespace llvm; + +static cl::opt<int> +FMAContractLevel("nvptx-fma-level", cl::ZeroOrMore, cl::Hidden, + cl::desc("NVPTX Specific: FMA contraction (0: don't do it" + " 1: do it 2: do it aggressively"), + cl::init(2)); + +static cl::opt<int> UsePrecDivF32( + "nvptx-prec-divf32", cl::ZeroOrMore, cl::Hidden, + cl::desc("NVPTX Specifies: 0 use div.approx, 1 use div.full, 2 use" + " IEEE Compliant F32 div.rnd if avaiable."), + cl::init(2)); + +static cl::opt<bool> +UsePrecSqrtF32("nvptx-prec-sqrtf32", cl::Hidden, + cl::desc("NVPTX Specific: 0 use sqrt.approx, 1 use sqrt.rn."), + cl::init(true)); + +static cl::opt<bool> +FtzEnabled("nvptx-f32ftz", cl::ZeroOrMore, cl::Hidden, + cl::desc("NVPTX Specific: Flush f32 subnormals to sign-preserving zero."), + cl::init(false)); + + +/// createNVPTXISelDag - This pass converts a legalized DAG into a +/// NVPTX-specific DAG, ready for instruction scheduling. +FunctionPass *llvm::createNVPTXISelDag(NVPTXTargetMachine &TM, + llvm::CodeGenOpt::Level OptLevel) { + return new NVPTXDAGToDAGISel(TM, OptLevel); +} + +NVPTXDAGToDAGISel::NVPTXDAGToDAGISel(NVPTXTargetMachine &tm, + CodeGenOpt::Level OptLevel) + : SelectionDAGISel(tm, OptLevel), + Subtarget(tm.getSubtarget<NVPTXSubtarget>()) { + + doFMAF32 = (OptLevel > 0) && Subtarget.hasFMAF32() && (FMAContractLevel >= 1); + doFMAF64 = (OptLevel > 0) && Subtarget.hasFMAF64() && (FMAContractLevel >= 1); + doFMAF32AGG = + (OptLevel > 0) && Subtarget.hasFMAF32() && (FMAContractLevel == 2); + doFMAF64AGG = + (OptLevel > 0) && Subtarget.hasFMAF64() && (FMAContractLevel == 2); + + allowFMA = (FMAContractLevel >= 1); + + doMulWide = (OptLevel > 0); +} + +int NVPTXDAGToDAGISel::getDivF32Level() const { + if (UsePrecDivF32.getNumOccurrences() > 0) { + // If nvptx-prec-div32=N is used on the command-line, always honor it + return UsePrecDivF32; + } else { + // Otherwise, use div.approx if fast math is enabled + if (TM.Options.UnsafeFPMath) + return 0; + else + return 2; + } +} + +bool NVPTXDAGToDAGISel::usePrecSqrtF32() const { + if (UsePrecSqrtF32.getNumOccurrences() > 0) { + // If nvptx-prec-sqrtf32 is used on the command-line, always honor it + return UsePrecSqrtF32; + } else { + // Otherwise, use sqrt.approx if fast math is enabled + if (TM.Options.UnsafeFPMath) + return false; + else + return true; + } +} + +bool NVPTXDAGToDAGISel::useF32FTZ() const { + if (FtzEnabled.getNumOccurrences() > 0) { + // If nvptx-f32ftz is used on the command-line, always honor it + return FtzEnabled; + } else { + const Function *F = MF->getFunction(); + // Otherwise, check for an nvptx-f32ftz attribute on the function + if (F->hasFnAttribute("nvptx-f32ftz")) + return (F->getAttributes().getAttribute(AttributeSet::FunctionIndex, + "nvptx-f32ftz") + .getValueAsString() == "true"); + else + return false; + } +} + +/// Select - Select instructions not customized! Used for +/// expanded, promoted and normal instructions. +SDNode *NVPTXDAGToDAGISel::Select(SDNode *N) { + + if (N->isMachineOpcode()) { + N->setNodeId(-1); + return NULL; // Already selected. + } + + SDNode *ResNode = NULL; + switch (N->getOpcode()) { + case ISD::LOAD: + ResNode = SelectLoad(N); + break; + case ISD::STORE: + ResNode = SelectStore(N); + break; + case NVPTXISD::LoadV2: + case NVPTXISD::LoadV4: + ResNode = SelectLoadVector(N); + break; + case NVPTXISD::LDGV2: + case NVPTXISD::LDGV4: + case NVPTXISD::LDUV2: + case NVPTXISD::LDUV4: + ResNode = SelectLDGLDUVector(N); + break; + case NVPTXISD::StoreV2: + case NVPTXISD::StoreV4: + ResNode = SelectStoreVector(N); + break; + case NVPTXISD::LoadParam: + case NVPTXISD::LoadParamV2: + case NVPTXISD::LoadParamV4: + ResNode = SelectLoadParam(N); + break; + case NVPTXISD::StoreRetval: + case NVPTXISD::StoreRetvalV2: + case NVPTXISD::StoreRetvalV4: + ResNode = SelectStoreRetval(N); + break; + case NVPTXISD::StoreParam: + case NVPTXISD::StoreParamV2: + case NVPTXISD::StoreParamV4: + case NVPTXISD::StoreParamS32: + case NVPTXISD::StoreParamU32: + ResNode = SelectStoreParam(N); + break; + default: + break; + } + if (ResNode) + return ResNode; + return SelectCode(N); +} + +static unsigned int getCodeAddrSpace(MemSDNode *N, + const NVPTXSubtarget &Subtarget) { + const Value *Src = N->getSrcValue(); + + if (!Src) + return NVPTX::PTXLdStInstCode::GENERIC; + + if (const PointerType *PT = dyn_cast<PointerType>(Src->getType())) { + switch (PT->getAddressSpace()) { + case llvm::ADDRESS_SPACE_LOCAL: return NVPTX::PTXLdStInstCode::LOCAL; + case llvm::ADDRESS_SPACE_GLOBAL: return NVPTX::PTXLdStInstCode::GLOBAL; + case llvm::ADDRESS_SPACE_SHARED: return NVPTX::PTXLdStInstCode::SHARED; + case llvm::ADDRESS_SPACE_GENERIC: return NVPTX::PTXLdStInstCode::GENERIC; + case llvm::ADDRESS_SPACE_PARAM: return NVPTX::PTXLdStInstCode::PARAM; + case llvm::ADDRESS_SPACE_CONST: return NVPTX::PTXLdStInstCode::CONSTANT; + default: break; + } + } + return NVPTX::PTXLdStInstCode::GENERIC; +} + +SDNode *NVPTXDAGToDAGISel::SelectLoad(SDNode *N) { + SDLoc dl(N); + LoadSDNode *LD = cast<LoadSDNode>(N); + EVT LoadedVT = LD->getMemoryVT(); + SDNode *NVPTXLD = NULL; + + // do not support pre/post inc/dec + if (LD->isIndexed()) + return NULL; + + if (!LoadedVT.isSimple()) + return NULL; + + // Address Space Setting + unsigned int codeAddrSpace = getCodeAddrSpace(LD, Subtarget); + + // Volatile Setting + // - .volatile is only availalble for .global and .shared + bool isVolatile = LD->isVolatile(); + if (codeAddrSpace != NVPTX::PTXLdStInstCode::GLOBAL && + codeAddrSpace != NVPTX::PTXLdStInstCode::SHARED && + codeAddrSpace != NVPTX::PTXLdStInstCode::GENERIC) + isVolatile = false; + + // Vector Setting + MVT SimpleVT = LoadedVT.getSimpleVT(); + unsigned vecType = NVPTX::PTXLdStInstCode::Scalar; + if (SimpleVT.isVector()) { + unsigned num = SimpleVT.getVectorNumElements(); + if (num == 2) + vecType = NVPTX::PTXLdStInstCode::V2; + else if (num == 4) + vecType = NVPTX::PTXLdStInstCode::V4; + else + return NULL; + } + + // Type Setting: fromType + fromTypeWidth + // + // Sign : ISD::SEXTLOAD + // Unsign : ISD::ZEXTLOAD, ISD::NON_EXTLOAD or ISD::EXTLOAD and the + // type is integer + // Float : ISD::NON_EXTLOAD or ISD::EXTLOAD and the type is float + MVT ScalarVT = SimpleVT.getScalarType(); + // Read at least 8 bits (predicates are stored as 8-bit values) + unsigned fromTypeWidth = std::max(8U, ScalarVT.getSizeInBits()); + unsigned int fromType; + if ((LD->getExtensionType() == ISD::SEXTLOAD)) + fromType = NVPTX::PTXLdStInstCode::Signed; + else if (ScalarVT.isFloatingPoint()) + fromType = NVPTX::PTXLdStInstCode::Float; + else + fromType = NVPTX::PTXLdStInstCode::Unsigned; + + // Create the machine instruction DAG + SDValue Chain = N->getOperand(0); + SDValue N1 = N->getOperand(1); + SDValue Addr; + SDValue Offset, Base; + unsigned Opcode; + MVT::SimpleValueType TargetVT = LD->getSimpleValueType(0).SimpleTy; + + if (SelectDirectAddr(N1, Addr)) { + switch (TargetVT) { + case MVT::i8: + Opcode = NVPTX::LD_i8_avar; + break; + case MVT::i16: + Opcode = NVPTX::LD_i16_avar; + break; + case MVT::i32: + Opcode = NVPTX::LD_i32_avar; + break; + case MVT::i64: + Opcode = NVPTX::LD_i64_avar; + break; + case MVT::f32: + Opcode = NVPTX::LD_f32_avar; + break; + case MVT::f64: + Opcode = NVPTX::LD_f64_avar; + break; + default: + return NULL; + } + SDValue Ops[] = { getI32Imm(isVolatile), getI32Imm(codeAddrSpace), + getI32Imm(vecType), getI32Imm(fromType), + getI32Imm(fromTypeWidth), Addr, Chain }; + NVPTXLD = CurDAG->getMachineNode(Opcode, dl, TargetVT, MVT::Other, Ops); + } else if (Subtarget.is64Bit() + ? SelectADDRsi64(N1.getNode(), N1, Base, Offset) + : SelectADDRsi(N1.getNode(), N1, Base, Offset)) { + switch (TargetVT) { + case MVT::i8: + Opcode = NVPTX::LD_i8_asi; + break; + case MVT::i16: + Opcode = NVPTX::LD_i16_asi; + break; + case MVT::i32: + Opcode = NVPTX::LD_i32_asi; + break; + case MVT::i64: + Opcode = NVPTX::LD_i64_asi; + break; + case MVT::f32: + Opcode = NVPTX::LD_f32_asi; + break; + case MVT::f64: + Opcode = NVPTX::LD_f64_asi; + break; + default: + return NULL; + } + SDValue Ops[] = { getI32Imm(isVolatile), getI32Imm(codeAddrSpace), + getI32Imm(vecType), getI32Imm(fromType), + getI32Imm(fromTypeWidth), Base, Offset, Chain }; + NVPTXLD = CurDAG->getMachineNode(Opcode, dl, TargetVT, MVT::Other, Ops); + } else if (Subtarget.is64Bit() + ? SelectADDRri64(N1.getNode(), N1, Base, Offset) + : SelectADDRri(N1.getNode(), N1, Base, Offset)) { + if (Subtarget.is64Bit()) { + switch (TargetVT) { + case MVT::i8: + Opcode = NVPTX::LD_i8_ari_64; + break; + case MVT::i16: + Opcode = NVPTX::LD_i16_ari_64; + break; + case MVT::i32: + Opcode = NVPTX::LD_i32_ari_64; + break; + case MVT::i64: + Opcode = NVPTX::LD_i64_ari_64; + break; + case MVT::f32: + Opcode = NVPTX::LD_f32_ari_64; + break; + case MVT::f64: + Opcode = NVPTX::LD_f64_ari_64; + break; + default: + return NULL; + } + } else { + switch (TargetVT) { + case MVT::i8: + Opcode = NVPTX::LD_i8_ari; + break; + case MVT::i16: + Opcode = NVPTX::LD_i16_ari; + break; + case MVT::i32: + Opcode = NVPTX::LD_i32_ari; + break; + case MVT::i64: + Opcode = NVPTX::LD_i64_ari; + break; + case MVT::f32: + Opcode = NVPTX::LD_f32_ari; + break; + case MVT::f64: + Opcode = NVPTX::LD_f64_ari; + break; + default: + return NULL; + } + } + SDValue Ops[] = { getI32Imm(isVolatile), getI32Imm(codeAddrSpace), + getI32Imm(vecType), getI32Imm(fromType), + getI32Imm(fromTypeWidth), Base, Offset, Chain }; + NVPTXLD = CurDAG->getMachineNode(Opcode, dl, TargetVT, MVT::Other, Ops); + } else { + if (Subtarget.is64Bit()) { + switch (TargetVT) { + case MVT::i8: + Opcode = NVPTX::LD_i8_areg_64; + break; + case MVT::i16: + Opcode = NVPTX::LD_i16_areg_64; + break; + case MVT::i32: + Opcode = NVPTX::LD_i32_areg_64; + break; + case MVT::i64: + Opcode = NVPTX::LD_i64_areg_64; + break; + case MVT::f32: + Opcode = NVPTX::LD_f32_areg_64; + break; + case MVT::f64: + Opcode = NVPTX::LD_f64_areg_64; + break; + default: + return NULL; + } + } else { + switch (TargetVT) { + case MVT::i8: + Opcode = NVPTX::LD_i8_areg; + break; + case MVT::i16: + Opcode = NVPTX::LD_i16_areg; + break; + case MVT::i32: + Opcode = NVPTX::LD_i32_areg; + break; + case MVT::i64: + Opcode = NVPTX::LD_i64_areg; + break; + case MVT::f32: + Opcode = NVPTX::LD_f32_areg; + break; + case MVT::f64: + Opcode = NVPTX::LD_f64_areg; + break; + default: + return NULL; + } + } + SDValue Ops[] = { getI32Imm(isVolatile), getI32Imm(codeAddrSpace), + getI32Imm(vecType), getI32Imm(fromType), + getI32Imm(fromTypeWidth), N1, Chain }; + NVPTXLD = CurDAG->getMachineNode(Opcode, dl, TargetVT, MVT::Other, Ops); + } + + if (NVPTXLD != NULL) { + MachineSDNode::mmo_iterator MemRefs0 = MF->allocateMemRefsArray(1); + MemRefs0[0] = cast<MemSDNode>(N)->getMemOperand(); + cast<MachineSDNode>(NVPTXLD)->setMemRefs(MemRefs0, MemRefs0 + 1); + } + + return NVPTXLD; +} + +SDNode *NVPTXDAGToDAGISel::SelectLoadVector(SDNode *N) { + + SDValue Chain = N->getOperand(0); + SDValue Op1 = N->getOperand(1); + SDValue Addr, Offset, Base; + unsigned Opcode; + SDLoc DL(N); + SDNode *LD; + MemSDNode *MemSD = cast<MemSDNode>(N); + EVT LoadedVT = MemSD->getMemoryVT(); + + if (!LoadedVT.isSimple()) + return NULL; + + // Address Space Setting + unsigned int CodeAddrSpace = getCodeAddrSpace(MemSD, Subtarget); + + // Volatile Setting + // - .volatile is only availalble for .global and .shared + bool IsVolatile = MemSD->isVolatile(); + if (CodeAddrSpace != NVPTX::PTXLdStInstCode::GLOBAL && + CodeAddrSpace != NVPTX::PTXLdStInstCode::SHARED && + CodeAddrSpace != NVPTX::PTXLdStInstCode::GENERIC) + IsVolatile = false; + + // Vector Setting + MVT SimpleVT = LoadedVT.getSimpleVT(); + + // Type Setting: fromType + fromTypeWidth + // + // Sign : ISD::SEXTLOAD + // Unsign : ISD::ZEXTLOAD, ISD::NON_EXTLOAD or ISD::EXTLOAD and the + // type is integer + // Float : ISD::NON_EXTLOAD or ISD::EXTLOAD and the type is float + MVT ScalarVT = SimpleVT.getScalarType(); + // Read at least 8 bits (predicates are stored as 8-bit values) + unsigned FromTypeWidth = std::max(8U, ScalarVT.getSizeInBits()); + unsigned int FromType; + // The last operand holds the original LoadSDNode::getExtensionType() value + unsigned ExtensionType = cast<ConstantSDNode>( + N->getOperand(N->getNumOperands() - 1))->getZExtValue(); + if (ExtensionType == ISD::SEXTLOAD) + FromType = NVPTX::PTXLdStInstCode::Signed; + else if (ScalarVT.isFloatingPoint()) + FromType = NVPTX::PTXLdStInstCode::Float; + else + FromType = NVPTX::PTXLdStInstCode::Unsigned; + + unsigned VecType; + + switch (N->getOpcode()) { + case NVPTXISD::LoadV2: + VecType = NVPTX::PTXLdStInstCode::V2; + break; + case NVPTXISD::LoadV4: + VecType = NVPTX::PTXLdStInstCode::V4; + break; + default: + return NULL; + } + + EVT EltVT = N->getValueType(0); + + if (SelectDirectAddr(Op1, Addr)) { + switch (N->getOpcode()) { + default: + return NULL; + case NVPTXISD::LoadV2: + switch (EltVT.getSimpleVT().SimpleTy) { + default: + return NULL; + case MVT::i8: + Opcode = NVPTX::LDV_i8_v2_avar; + break; + case MVT::i16: + Opcode = NVPTX::LDV_i16_v2_avar; + break; + case MVT::i32: + Opcode = NVPTX::LDV_i32_v2_avar; + break; + case MVT::i64: + Opcode = NVPTX::LDV_i64_v2_avar; + break; + case MVT::f32: + Opcode = NVPTX::LDV_f32_v2_avar; + break; + case MVT::f64: + Opcode = NVPTX::LDV_f64_v2_avar; + break; + } + break; + case NVPTXISD::LoadV4: + switch (EltVT.getSimpleVT().SimpleTy) { + default: + return NULL; + case MVT::i8: + Opcode = NVPTX::LDV_i8_v4_avar; + break; + case MVT::i16: + Opcode = NVPTX::LDV_i16_v4_avar; + break; + case MVT::i32: + Opcode = NVPTX::LDV_i32_v4_avar; + break; + case MVT::f32: + Opcode = NVPTX::LDV_f32_v4_avar; + break; + } + break; + } + + SDValue Ops[] = { getI32Imm(IsVolatile), getI32Imm(CodeAddrSpace), + getI32Imm(VecType), getI32Imm(FromType), + getI32Imm(FromTypeWidth), Addr, Chain }; + LD = CurDAG->getMachineNode(Opcode, DL, N->getVTList(), Ops); + } else if (Subtarget.is64Bit() + ? SelectADDRsi64(Op1.getNode(), Op1, Base, Offset) + : SelectADDRsi(Op1.getNode(), Op1, Base, Offset)) { + switch (N->getOpcode()) { + default: + return NULL; + case NVPTXISD::LoadV2: + switch (EltVT.getSimpleVT().SimpleTy) { + default: + return NULL; + case MVT::i8: + Opcode = NVPTX::LDV_i8_v2_asi; + break; + case MVT::i16: + Opcode = NVPTX::LDV_i16_v2_asi; + break; + case MVT::i32: + Opcode = NVPTX::LDV_i32_v2_asi; + break; + case MVT::i64: + Opcode = NVPTX::LDV_i64_v2_asi; + break; + case MVT::f32: + Opcode = NVPTX::LDV_f32_v2_asi; + break; + case MVT::f64: + Opcode = NVPTX::LDV_f64_v2_asi; + break; + } + break; + case NVPTXISD::LoadV4: + switch (EltVT.getSimpleVT().SimpleTy) { + default: + return NULL; + case MVT::i8: + Opcode = NVPTX::LDV_i8_v4_asi; + break; + case MVT::i16: + Opcode = NVPTX::LDV_i16_v4_asi; + break; + case MVT::i32: + Opcode = NVPTX::LDV_i32_v4_asi; + break; + case MVT::f32: + Opcode = NVPTX::LDV_f32_v4_asi; + break; + } + break; + } + + SDValue Ops[] = { getI32Imm(IsVolatile), getI32Imm(CodeAddrSpace), + getI32Imm(VecType), getI32Imm(FromType), + getI32Imm(FromTypeWidth), Base, Offset, Chain }; + LD = CurDAG->getMachineNode(Opcode, DL, N->getVTList(), Ops); + } else if (Subtarget.is64Bit() + ? SelectADDRri64(Op1.getNode(), Op1, Base, Offset) + : SelectADDRri(Op1.getNode(), Op1, Base, Offset)) { + if (Subtarget.is64Bit()) { + switch (N->getOpcode()) { + default: + return NULL; + case NVPTXISD::LoadV2: + switch (EltVT.getSimpleVT().SimpleTy) { + default: + return NULL; + case MVT::i8: + Opcode = NVPTX::LDV_i8_v2_ari_64; + break; + case MVT::i16: + Opcode = NVPTX::LDV_i16_v2_ari_64; + break; + case MVT::i32: + Opcode = NVPTX::LDV_i32_v2_ari_64; + break; + case MVT::i64: + Opcode = NVPTX::LDV_i64_v2_ari_64; + break; + case MVT::f32: + Opcode = NVPTX::LDV_f32_v2_ari_64; + break; + case MVT::f64: + Opcode = NVPTX::LDV_f64_v2_ari_64; + break; + } + break; + case NVPTXISD::LoadV4: + switch (EltVT.getSimpleVT().SimpleTy) { + default: + return NULL; + case MVT::i8: + Opcode = NVPTX::LDV_i8_v4_ari_64; + break; + case MVT::i16: + Opcode = NVPTX::LDV_i16_v4_ari_64; + break; + case MVT::i32: + Opcode = NVPTX::LDV_i32_v4_ari_64; + break; + case MVT::f32: + Opcode = NVPTX::LDV_f32_v4_ari_64; + break; + } + break; + } + } else { + switch (N->getOpcode()) { + default: + return NULL; + case NVPTXISD::LoadV2: + switch (EltVT.getSimpleVT().SimpleTy) { + default: + return NULL; + case MVT::i8: + Opcode = NVPTX::LDV_i8_v2_ari; + break; + case MVT::i16: + Opcode = NVPTX::LDV_i16_v2_ari; + break; + case MVT::i32: + Opcode = NVPTX::LDV_i32_v2_ari; + break; + case MVT::i64: + Opcode = NVPTX::LDV_i64_v2_ari; + break; + case MVT::f32: + Opcode = NVPTX::LDV_f32_v2_ari; + break; + case MVT::f64: + Opcode = NVPTX::LDV_f64_v2_ari; + break; + } + break; + case NVPTXISD::LoadV4: + switch (EltVT.getSimpleVT().SimpleTy) { + default: + return NULL; + case MVT::i8: + Opcode = NVPTX::LDV_i8_v4_ari; + break; + case MVT::i16: + Opcode = NVPTX::LDV_i16_v4_ari; + break; + case MVT::i32: + Opcode = NVPTX::LDV_i32_v4_ari; + break; + case MVT::f32: + Opcode = NVPTX::LDV_f32_v4_ari; + break; + } + break; + } + } + + SDValue Ops[] = { getI32Imm(IsVolatile), getI32Imm(CodeAddrSpace), + getI32Imm(VecType), getI32Imm(FromType), + getI32Imm(FromTypeWidth), Base, Offset, Chain }; + + LD = CurDAG->getMachineNode(Opcode, DL, N->getVTList(), Ops); + } else { + if (Subtarget.is64Bit()) { + switch (N->getOpcode()) { + default: + return NULL; + case NVPTXISD::LoadV2: + switch (EltVT.getSimpleVT().SimpleTy) { + default: + return NULL; + case MVT::i8: + Opcode = NVPTX::LDV_i8_v2_areg_64; + break; + case MVT::i16: + Opcode = NVPTX::LDV_i16_v2_areg_64; + break; + case MVT::i32: + Opcode = NVPTX::LDV_i32_v2_areg_64; + break; + case MVT::i64: + Opcode = NVPTX::LDV_i64_v2_areg_64; + break; + case MVT::f32: + Opcode = NVPTX::LDV_f32_v2_areg_64; + break; + case MVT::f64: + Opcode = NVPTX::LDV_f64_v2_areg_64; + break; + } + break; + case NVPTXISD::LoadV4: + switch (EltVT.getSimpleVT().SimpleTy) { + default: + return NULL; + case MVT::i8: + Opcode = NVPTX::LDV_i8_v4_areg_64; + break; + case MVT::i16: + Opcode = NVPTX::LDV_i16_v4_areg_64; + break; + case MVT::i32: + Opcode = NVPTX::LDV_i32_v4_areg_64; + break; + case MVT::f32: + Opcode = NVPTX::LDV_f32_v4_areg_64; + break; + } + break; + } + } else { + switch (N->getOpcode()) { + default: + return NULL; + case NVPTXISD::LoadV2: + switch (EltVT.getSimpleVT().SimpleTy) { + default: + return NULL; + case MVT::i8: + Opcode = NVPTX::LDV_i8_v2_areg; + break; + case MVT::i16: + Opcode = NVPTX::LDV_i16_v2_areg; + break; + case MVT::i32: + Opcode = NVPTX::LDV_i32_v2_areg; + break; + case MVT::i64: + Opcode = NVPTX::LDV_i64_v2_areg; + break; + case MVT::f32: + Opcode = NVPTX::LDV_f32_v2_areg; + break; + case MVT::f64: + Opcode = NVPTX::LDV_f64_v2_areg; + break; + } + break; + case NVPTXISD::LoadV4: + switch (EltVT.getSimpleVT().SimpleTy) { + default: + return NULL; + case MVT::i8: + Opcode = NVPTX::LDV_i8_v4_areg; + break; + case MVT::i16: + Opcode = NVPTX::LDV_i16_v4_areg; + break; + case MVT::i32: + Opcode = NVPTX::LDV_i32_v4_areg; + break; + case MVT::f32: + Opcode = NVPTX::LDV_f32_v4_areg; + break; + } + break; + } + } + + SDValue Ops[] = { getI32Imm(IsVolatile), getI32Imm(CodeAddrSpace), + getI32Imm(VecType), getI32Imm(FromType), + getI32Imm(FromTypeWidth), Op1, Chain }; + LD = CurDAG->getMachineNode(Opcode, DL, N->getVTList(), Ops); + } + + MachineSDNode::mmo_iterator MemRefs0 = MF->allocateMemRefsArray(1); + MemRefs0[0] = cast<MemSDNode>(N)->getMemOperand(); + cast<MachineSDNode>(LD)->setMemRefs(MemRefs0, MemRefs0 + 1); + + return LD; +} + +SDNode *NVPTXDAGToDAGISel::SelectLDGLDUVector(SDNode *N) { + + SDValue Chain = N->getOperand(0); + SDValue Op1 = N->getOperand(1); + unsigned Opcode; + SDLoc DL(N); + SDNode *LD; + MemSDNode *Mem = cast<MemSDNode>(N); + SDValue Base, Offset, Addr; + + EVT EltVT = Mem->getMemoryVT().getVectorElementType(); + + if (SelectDirectAddr(Op1, Addr)) { + switch (N->getOpcode()) { + default: + return NULL; + case NVPTXISD::LDGV2: + switch (EltVT.getSimpleVT().SimpleTy) { + default: + return NULL; + case MVT::i8: + Opcode = NVPTX::INT_PTX_LDG_G_v2i8_ELE_avar; + break; + case MVT::i16: + Opcode = NVPTX::INT_PTX_LDG_G_v2i16_ELE_avar; + break; + case MVT::i32: + Opcode = NVPTX::INT_PTX_LDG_G_v2i32_ELE_avar; + break; + case MVT::i64: + Opcode = NVPTX::INT_PTX_LDG_G_v2i64_ELE_avar; + break; + case MVT::f32: + Opcode = NVPTX::INT_PTX_LDG_G_v2f32_ELE_avar; + break; + case MVT::f64: + Opcode = NVPTX::INT_PTX_LDG_G_v2f64_ELE_avar; + break; + } + break; + case NVPTXISD::LDUV2: + switch (EltVT.getSimpleVT().SimpleTy) { + default: + return NULL; + case MVT::i8: + Opcode = NVPTX::INT_PTX_LDU_G_v2i8_ELE_avar; + break; + case MVT::i16: + Opcode = NVPTX::INT_PTX_LDU_G_v2i16_ELE_avar; + break; + case MVT::i32: + Opcode = NVPTX::INT_PTX_LDU_G_v2i32_ELE_avar; + break; + case MVT::i64: + Opcode = NVPTX::INT_PTX_LDU_G_v2i64_ELE_avar; + break; + case MVT::f32: + Opcode = NVPTX::INT_PTX_LDU_G_v2f32_ELE_avar; + break; + case MVT::f64: + Opcode = NVPTX::INT_PTX_LDU_G_v2f64_ELE_avar; + break; + } + break; + case NVPTXISD::LDGV4: + switch (EltVT.getSimpleVT().SimpleTy) { + default: + return NULL; + case MVT::i8: + Opcode = NVPTX::INT_PTX_LDG_G_v4i8_ELE_avar; + break; + case MVT::i16: + Opcode = NVPTX::INT_PTX_LDG_G_v4i16_ELE_avar; + break; + case MVT::i32: + Opcode = NVPTX::INT_PTX_LDG_G_v4i32_ELE_avar; + break; + case MVT::f32: + Opcode = NVPTX::INT_PTX_LDG_G_v4f32_ELE_avar; + break; + } + break; + case NVPTXISD::LDUV4: + switch (EltVT.getSimpleVT().SimpleTy) { + default: + return NULL; + case MVT::i8: + Opcode = NVPTX::INT_PTX_LDU_G_v4i8_ELE_avar; + break; + case MVT::i16: + Opcode = NVPTX::INT_PTX_LDU_G_v4i16_ELE_avar; + break; + case MVT::i32: + Opcode = NVPTX::INT_PTX_LDU_G_v4i32_ELE_avar; + break; + case MVT::f32: + Opcode = NVPTX::INT_PTX_LDU_G_v4f32_ELE_avar; + break; + } + break; + } + + SDValue Ops[] = { Addr, Chain }; + LD = CurDAG->getMachineNode(Opcode, DL, N->getVTList(), + ArrayRef<SDValue>(Ops, 2)); + } else if (Subtarget.is64Bit() + ? SelectADDRri64(Op1.getNode(), Op1, Base, Offset) + : SelectADDRri(Op1.getNode(), Op1, Base, Offset)) { + if (Subtarget.is64Bit()) { + switch (N->getOpcode()) { + default: + return NULL; + case NVPTXISD::LDGV2: + switch (EltVT.getSimpleVT().SimpleTy) { + default: + return NULL; + case MVT::i8: + Opcode = NVPTX::INT_PTX_LDG_G_v2i8_ELE_ari64; + break; + case MVT::i16: + Opcode = NVPTX::INT_PTX_LDG_G_v2i16_ELE_ari64; + break; + case MVT::i32: + Opcode = NVPTX::INT_PTX_LDG_G_v2i32_ELE_ari64; + break; + case MVT::i64: + Opcode = NVPTX::INT_PTX_LDG_G_v2i64_ELE_ari64; + break; + case MVT::f32: + Opcode = NVPTX::INT_PTX_LDG_G_v2f32_ELE_ari64; + break; + case MVT::f64: + Opcode = NVPTX::INT_PTX_LDG_G_v2f64_ELE_ari64; + break; + } + break; + case NVPTXISD::LDUV2: + switch (EltVT.getSimpleVT().SimpleTy) { + default: + return NULL; + case MVT::i8: + Opcode = NVPTX::INT_PTX_LDU_G_v2i8_ELE_ari64; + break; + case MVT::i16: + Opcode = NVPTX::INT_PTX_LDU_G_v2i16_ELE_ari64; + break; + case MVT::i32: + Opcode = NVPTX::INT_PTX_LDU_G_v2i32_ELE_ari64; + break; + case MVT::i64: + Opcode = NVPTX::INT_PTX_LDU_G_v2i64_ELE_ari64; + break; + case MVT::f32: + Opcode = NVPTX::INT_PTX_LDU_G_v2f32_ELE_ari64; + break; + case MVT::f64: + Opcode = NVPTX::INT_PTX_LDU_G_v2f64_ELE_ari64; + break; + } + break; + case NVPTXISD::LDGV4: + switch (EltVT.getSimpleVT().SimpleTy) { + default: + return NULL; + case MVT::i8: + Opcode = NVPTX::INT_PTX_LDG_G_v4i8_ELE_ari64; + break; + case MVT::i16: + Opcode = NVPTX::INT_PTX_LDG_G_v4i16_ELE_ari64; + break; + case MVT::i32: + Opcode = NVPTX::INT_PTX_LDG_G_v4i32_ELE_ari64; + break; + case MVT::f32: + Opcode = NVPTX::INT_PTX_LDG_G_v4f32_ELE_ari64; + break; + } + break; + case NVPTXISD::LDUV4: + switch (EltVT.getSimpleVT().SimpleTy) { + default: + return NULL; + case MVT::i8: + Opcode = NVPTX::INT_PTX_LDU_G_v4i8_ELE_ari64; + break; + case MVT::i16: + Opcode = NVPTX::INT_PTX_LDU_G_v4i16_ELE_ari64; + break; + case MVT::i32: + Opcode = NVPTX::INT_PTX_LDU_G_v4i32_ELE_ari64; + break; + case MVT::f32: + Opcode = NVPTX::INT_PTX_LDU_G_v4f32_ELE_ari64; + break; + } + break; + } + } else { + switch (N->getOpcode()) { + default: + return NULL; + case NVPTXISD::LDGV2: + switch (EltVT.getSimpleVT().SimpleTy) { + default: + return NULL; + case MVT::i8: + Opcode = NVPTX::INT_PTX_LDG_G_v2i8_ELE_ari32; + break; + case MVT::i16: + Opcode = NVPTX::INT_PTX_LDG_G_v2i16_ELE_ari32; + break; + case MVT::i32: + Opcode = NVPTX::INT_PTX_LDG_G_v2i32_ELE_ari32; + break; + case MVT::i64: + Opcode = NVPTX::INT_PTX_LDG_G_v2i64_ELE_ari32; + break; + case MVT::f32: + Opcode = NVPTX::INT_PTX_LDG_G_v2f32_ELE_ari32; + break; + case MVT::f64: + Opcode = NVPTX::INT_PTX_LDG_G_v2f64_ELE_ari32; + break; + } + break; + case NVPTXISD::LDUV2: + switch (EltVT.getSimpleVT().SimpleTy) { + default: + return NULL; + case MVT::i8: + Opcode = NVPTX::INT_PTX_LDU_G_v2i8_ELE_ari32; + break; + case MVT::i16: + Opcode = NVPTX::INT_PTX_LDU_G_v2i16_ELE_ari32; + break; + case MVT::i32: + Opcode = NVPTX::INT_PTX_LDU_G_v2i32_ELE_ari32; + break; + case MVT::i64: + Opcode = NVPTX::INT_PTX_LDU_G_v2i64_ELE_ari32; + break; + case MVT::f32: + Opcode = NVPTX::INT_PTX_LDU_G_v2f32_ELE_ari32; + break; + case MVT::f64: + Opcode = NVPTX::INT_PTX_LDU_G_v2f64_ELE_ari32; + break; + } + break; + case NVPTXISD::LDGV4: + switch (EltVT.getSimpleVT().SimpleTy) { + default: + return NULL; + case MVT::i8: + Opcode = NVPTX::INT_PTX_LDG_G_v4i8_ELE_ari32; + break; + case MVT::i16: + Opcode = NVPTX::INT_PTX_LDG_G_v4i16_ELE_ari32; + break; + case MVT::i32: + Opcode = NVPTX::INT_PTX_LDG_G_v4i32_ELE_ari32; + break; + case MVT::f32: + Opcode = NVPTX::INT_PTX_LDG_G_v4f32_ELE_ari32; + break; + } + break; + case NVPTXISD::LDUV4: + switch (EltVT.getSimpleVT().SimpleTy) { + default: + return NULL; + case MVT::i8: + Opcode = NVPTX::INT_PTX_LDU_G_v4i8_ELE_ari32; + break; + case MVT::i16: + Opcode = NVPTX::INT_PTX_LDU_G_v4i16_ELE_ari32; + break; + case MVT::i32: + Opcode = NVPTX::INT_PTX_LDU_G_v4i32_ELE_ari32; + break; + case MVT::f32: + Opcode = NVPTX::INT_PTX_LDU_G_v4f32_ELE_ari32; + break; + } + break; + } + } + + SDValue Ops[] = { Base, Offset, Chain }; + + LD = CurDAG->getMachineNode(Opcode, DL, N->getVTList(), + ArrayRef<SDValue>(Ops, 3)); + } else { + if (Subtarget.is64Bit()) { + switch (N->getOpcode()) { + default: + return NULL; + case NVPTXISD::LDGV2: + switch (EltVT.getSimpleVT().SimpleTy) { + default: + return NULL; + case MVT::i8: + Opcode = NVPTX::INT_PTX_LDG_G_v2i8_ELE_areg64; + break; + case MVT::i16: + Opcode = NVPTX::INT_PTX_LDG_G_v2i16_ELE_areg64; + break; + case MVT::i32: + Opcode = NVPTX::INT_PTX_LDG_G_v2i32_ELE_areg64; + break; + case MVT::i64: + Opcode = NVPTX::INT_PTX_LDG_G_v2i64_ELE_areg64; + break; + case MVT::f32: + Opcode = NVPTX::INT_PTX_LDG_G_v2f32_ELE_areg64; + break; + case MVT::f64: + Opcode = NVPTX::INT_PTX_LDG_G_v2f64_ELE_areg64; + break; + } + break; + case NVPTXISD::LDUV2: + switch (EltVT.getSimpleVT().SimpleTy) { + default: + return NULL; + case MVT::i8: + Opcode = NVPTX::INT_PTX_LDU_G_v2i8_ELE_areg64; + break; + case MVT::i16: + Opcode = NVPTX::INT_PTX_LDU_G_v2i16_ELE_areg64; + break; + case MVT::i32: + Opcode = NVPTX::INT_PTX_LDU_G_v2i32_ELE_areg64; + break; + case MVT::i64: + Opcode = NVPTX::INT_PTX_LDU_G_v2i64_ELE_areg64; + break; + case MVT::f32: + Opcode = NVPTX::INT_PTX_LDU_G_v2f32_ELE_areg64; + break; + case MVT::f64: + Opcode = NVPTX::INT_PTX_LDU_G_v2f64_ELE_areg64; + break; + } + break; + case NVPTXISD::LDGV4: + switch (EltVT.getSimpleVT().SimpleTy) { + default: + return NULL; + case MVT::i8: + Opcode = NVPTX::INT_PTX_LDG_G_v4i8_ELE_areg64; + break; + case MVT::i16: + Opcode = NVPTX::INT_PTX_LDG_G_v4i16_ELE_areg64; + break; + case MVT::i32: + Opcode = NVPTX::INT_PTX_LDG_G_v4i32_ELE_areg64; + break; + case MVT::f32: + Opcode = NVPTX::INT_PTX_LDG_G_v4f32_ELE_areg64; + break; + } + break; + case NVPTXISD::LDUV4: + switch (EltVT.getSimpleVT().SimpleTy) { + default: + return NULL; + case MVT::i8: + Opcode = NVPTX::INT_PTX_LDU_G_v4i8_ELE_areg64; + break; + case MVT::i16: + Opcode = NVPTX::INT_PTX_LDU_G_v4i16_ELE_areg64; + break; + case MVT::i32: + Opcode = NVPTX::INT_PTX_LDU_G_v4i32_ELE_areg64; + break; + case MVT::f32: + Opcode = NVPTX::INT_PTX_LDU_G_v4f32_ELE_areg64; + break; + } + break; + } + } else { + switch (N->getOpcode()) { + default: + return NULL; + case NVPTXISD::LDGV2: + switch (EltVT.getSimpleVT().SimpleTy) { + default: + return NULL; + case MVT::i8: + Opcode = NVPTX::INT_PTX_LDG_G_v2i8_ELE_areg32; + break; + case MVT::i16: + Opcode = NVPTX::INT_PTX_LDG_G_v2i16_ELE_areg32; + break; + case MVT::i32: + Opcode = NVPTX::INT_PTX_LDG_G_v2i32_ELE_areg32; + break; + case MVT::i64: + Opcode = NVPTX::INT_PTX_LDG_G_v2i64_ELE_areg32; + break; + case MVT::f32: + Opcode = NVPTX::INT_PTX_LDG_G_v2f32_ELE_areg32; + break; + case MVT::f64: + Opcode = NVPTX::INT_PTX_LDG_G_v2f64_ELE_areg32; + break; + } + break; + case NVPTXISD::LDUV2: + switch (EltVT.getSimpleVT().SimpleTy) { + default: + return NULL; + case MVT::i8: + Opcode = NVPTX::INT_PTX_LDU_G_v2i8_ELE_areg32; + break; + case MVT::i16: + Opcode = NVPTX::INT_PTX_LDU_G_v2i16_ELE_areg32; + break; + case MVT::i32: + Opcode = NVPTX::INT_PTX_LDU_G_v2i32_ELE_areg32; + break; + case MVT::i64: + Opcode = NVPTX::INT_PTX_LDU_G_v2i64_ELE_areg32; + break; + case MVT::f32: + Opcode = NVPTX::INT_PTX_LDU_G_v2f32_ELE_areg32; + break; + case MVT::f64: + Opcode = NVPTX::INT_PTX_LDU_G_v2f64_ELE_areg32; + break; + } + break; + case NVPTXISD::LDGV4: + switch (EltVT.getSimpleVT().SimpleTy) { + default: + return NULL; + case MVT::i8: + Opcode = NVPTX::INT_PTX_LDG_G_v4i8_ELE_areg32; + break; + case MVT::i16: + Opcode = NVPTX::INT_PTX_LDG_G_v4i16_ELE_areg32; + break; + case MVT::i32: + Opcode = NVPTX::INT_PTX_LDG_G_v4i32_ELE_areg32; + break; + case MVT::f32: + Opcode = NVPTX::INT_PTX_LDG_G_v4f32_ELE_areg32; + break; + } + break; + case NVPTXISD::LDUV4: + switch (EltVT.getSimpleVT().SimpleTy) { + default: + return NULL; + case MVT::i8: + Opcode = NVPTX::INT_PTX_LDU_G_v4i8_ELE_areg32; + break; + case MVT::i16: + Opcode = NVPTX::INT_PTX_LDU_G_v4i16_ELE_areg32; + break; + case MVT::i32: + Opcode = NVPTX::INT_PTX_LDU_G_v4i32_ELE_areg32; + break; + case MVT::f32: + Opcode = NVPTX::INT_PTX_LDU_G_v4f32_ELE_areg32; + break; + } + break; + } + } + + SDValue Ops[] = { Op1, Chain }; + LD = CurDAG->getMachineNode(Opcode, DL, N->getVTList(), + ArrayRef<SDValue>(Ops, 2)); + } + + MachineSDNode::mmo_iterator MemRefs0 = MF->allocateMemRefsArray(1); + MemRefs0[0] = cast<MemSDNode>(N)->getMemOperand(); + cast<MachineSDNode>(LD)->setMemRefs(MemRefs0, MemRefs0 + 1); + + return LD; +} + +SDNode *NVPTXDAGToDAGISel::SelectStore(SDNode *N) { + SDLoc dl(N); + StoreSDNode *ST = cast<StoreSDNode>(N); + EVT StoreVT = ST->getMemoryVT(); + SDNode *NVPTXST = NULL; + + // do not support pre/post inc/dec + if (ST->isIndexed()) + return NULL; + + if (!StoreVT.isSimple()) + return NULL; + + // Address Space Setting + unsigned int codeAddrSpace = getCodeAddrSpace(ST, Subtarget); + + // Volatile Setting + // - .volatile is only availalble for .global and .shared + bool isVolatile = ST->isVolatile(); + if (codeAddrSpace != NVPTX::PTXLdStInstCode::GLOBAL && + codeAddrSpace != NVPTX::PTXLdStInstCode::SHARED && + codeAddrSpace != NVPTX::PTXLdStInstCode::GENERIC) + isVolatile = false; + + // Vector Setting + MVT SimpleVT = StoreVT.getSimpleVT(); + unsigned vecType = NVPTX::PTXLdStInstCode::Scalar; + if (SimpleVT.isVector()) { + unsigned num = SimpleVT.getVectorNumElements(); + if (num == 2) + vecType = NVPTX::PTXLdStInstCode::V2; + else if (num == 4) + vecType = NVPTX::PTXLdStInstCode::V4; + else + return NULL; + } + + // Type Setting: toType + toTypeWidth + // - for integer type, always use 'u' + // + MVT ScalarVT = SimpleVT.getScalarType(); + unsigned toTypeWidth = ScalarVT.getSizeInBits(); + unsigned int toType; + if (ScalarVT.isFloatingPoint()) + toType = NVPTX::PTXLdStInstCode::Float; + else + toType = NVPTX::PTXLdStInstCode::Unsigned; + + // Create the machine instruction DAG + SDValue Chain = N->getOperand(0); + SDValue N1 = N->getOperand(1); + SDValue N2 = N->getOperand(2); + SDValue Addr; + SDValue Offset, Base; + unsigned Opcode; + MVT::SimpleValueType SourceVT = N1.getNode()->getSimpleValueType(0).SimpleTy; + + if (SelectDirectAddr(N2, Addr)) { + switch (SourceVT) { + case MVT::i8: + Opcode = NVPTX::ST_i8_avar; + break; + case MVT::i16: + Opcode = NVPTX::ST_i16_avar; + break; + case MVT::i32: + Opcode = NVPTX::ST_i32_avar; + break; + case MVT::i64: + Opcode = NVPTX::ST_i64_avar; + break; + case MVT::f32: + Opcode = NVPTX::ST_f32_avar; + break; + case MVT::f64: + Opcode = NVPTX::ST_f64_avar; + break; + default: + return NULL; + } + SDValue Ops[] = { N1, getI32Imm(isVolatile), getI32Imm(codeAddrSpace), + getI32Imm(vecType), getI32Imm(toType), + getI32Imm(toTypeWidth), Addr, Chain }; + NVPTXST = CurDAG->getMachineNode(Opcode, dl, MVT::Other, Ops); + } else if (Subtarget.is64Bit() + ? SelectADDRsi64(N2.getNode(), N2, Base, Offset) + : SelectADDRsi(N2.getNode(), N2, Base, Offset)) { + switch (SourceVT) { + case MVT::i8: + Opcode = NVPTX::ST_i8_asi; + break; + case MVT::i16: + Opcode = NVPTX::ST_i16_asi; + break; + case MVT::i32: + Opcode = NVPTX::ST_i32_asi; + break; + case MVT::i64: + Opcode = NVPTX::ST_i64_asi; + break; + case MVT::f32: + Opcode = NVPTX::ST_f32_asi; + break; + case MVT::f64: + Opcode = NVPTX::ST_f64_asi; + break; + default: + return NULL; + } + SDValue Ops[] = { N1, getI32Imm(isVolatile), getI32Imm(codeAddrSpace), + getI32Imm(vecType), getI32Imm(toType), + getI32Imm(toTypeWidth), Base, Offset, Chain }; + NVPTXST = CurDAG->getMachineNode(Opcode, dl, MVT::Other, Ops); + } else if (Subtarget.is64Bit() + ? SelectADDRri64(N2.getNode(), N2, Base, Offset) + : SelectADDRri(N2.getNode(), N2, Base, Offset)) { + if (Subtarget.is64Bit()) { + switch (SourceVT) { + case MVT::i8: + Opcode = NVPTX::ST_i8_ari_64; + break; + case MVT::i16: + Opcode = NVPTX::ST_i16_ari_64; + break; + case MVT::i32: + Opcode = NVPTX::ST_i32_ari_64; + break; + case MVT::i64: + Opcode = NVPTX::ST_i64_ari_64; + break; + case MVT::f32: + Opcode = NVPTX::ST_f32_ari_64; + break; + case MVT::f64: + Opcode = NVPTX::ST_f64_ari_64; + break; + default: + return NULL; + } + } else { + switch (SourceVT) { + case MVT::i8: + Opcode = NVPTX::ST_i8_ari; + break; + case MVT::i16: + Opcode = NVPTX::ST_i16_ari; + break; + case MVT::i32: + Opcode = NVPTX::ST_i32_ari; + break; + case MVT::i64: + Opcode = NVPTX::ST_i64_ari; + break; + case MVT::f32: + Opcode = NVPTX::ST_f32_ari; + break; + case MVT::f64: + Opcode = NVPTX::ST_f64_ari; + break; + default: + return NULL; + } + } + SDValue Ops[] = { N1, getI32Imm(isVolatile), getI32Imm(codeAddrSpace), + getI32Imm(vecType), getI32Imm(toType), + getI32Imm(toTypeWidth), Base, Offset, Chain }; + NVPTXST = CurDAG->getMachineNode(Opcode, dl, MVT::Other, Ops); + } else { + if (Subtarget.is64Bit()) { + switch (SourceVT) { + case MVT::i8: + Opcode = NVPTX::ST_i8_areg_64; + break; + case MVT::i16: + Opcode = NVPTX::ST_i16_areg_64; + break; + case MVT::i32: + Opcode = NVPTX::ST_i32_areg_64; + break; + case MVT::i64: + Opcode = NVPTX::ST_i64_areg_64; + break; + case MVT::f32: + Opcode = NVPTX::ST_f32_areg_64; + break; + case MVT::f64: + Opcode = NVPTX::ST_f64_areg_64; + break; + default: + return NULL; + } + } else { + switch (SourceVT) { + case MVT::i8: + Opcode = NVPTX::ST_i8_areg; + break; + case MVT::i16: + Opcode = NVPTX::ST_i16_areg; + break; + case MVT::i32: + Opcode = NVPTX::ST_i32_areg; + break; + case MVT::i64: + Opcode = NVPTX::ST_i64_areg; + break; + case MVT::f32: + Opcode = NVPTX::ST_f32_areg; + break; + case MVT::f64: + Opcode = NVPTX::ST_f64_areg; + break; + default: + return NULL; + } + } + SDValue Ops[] = { N1, getI32Imm(isVolatile), getI32Imm(codeAddrSpace), + getI32Imm(vecType), getI32Imm(toType), + getI32Imm(toTypeWidth), N2, Chain }; + NVPTXST = CurDAG->getMachineNode(Opcode, dl, MVT::Other, Ops); + } + + if (NVPTXST != NULL) { + MachineSDNode::mmo_iterator MemRefs0 = MF->allocateMemRefsArray(1); + MemRefs0[0] = cast<MemSDNode>(N)->getMemOperand(); + cast<MachineSDNode>(NVPTXST)->setMemRefs(MemRefs0, MemRefs0 + 1); + } + + return NVPTXST; +} + +SDNode *NVPTXDAGToDAGISel::SelectStoreVector(SDNode *N) { + SDValue Chain = N->getOperand(0); + SDValue Op1 = N->getOperand(1); + SDValue Addr, Offset, Base; + unsigned Opcode; + SDLoc DL(N); + SDNode *ST; + EVT EltVT = Op1.getValueType(); + MemSDNode *MemSD = cast<MemSDNode>(N); + EVT StoreVT = MemSD->getMemoryVT(); + + // Address Space Setting + unsigned CodeAddrSpace = getCodeAddrSpace(MemSD, Subtarget); + + if (CodeAddrSpace == NVPTX::PTXLdStInstCode::CONSTANT) { + report_fatal_error("Cannot store to pointer that points to constant " + "memory space"); + } + + // Volatile Setting + // - .volatile is only availalble for .global and .shared + bool IsVolatile = MemSD->isVolatile(); + if (CodeAddrSpace != NVPTX::PTXLdStInstCode::GLOBAL && + CodeAddrSpace != NVPTX::PTXLdStInstCode::SHARED && + CodeAddrSpace != NVPTX::PTXLdStInstCode::GENERIC) + IsVolatile = false; + + // Type Setting: toType + toTypeWidth + // - for integer type, always use 'u' + assert(StoreVT.isSimple() && "Store value is not simple"); + MVT ScalarVT = StoreVT.getSimpleVT().getScalarType(); + unsigned ToTypeWidth = ScalarVT.getSizeInBits(); + unsigned ToType; + if (ScalarVT.isFloatingPoint()) + ToType = NVPTX::PTXLdStInstCode::Float; + else + ToType = NVPTX::PTXLdStInstCode::Unsigned; + + SmallVector<SDValue, 12> StOps; + SDValue N2; + unsigned VecType; + + switch (N->getOpcode()) { + case NVPTXISD::StoreV2: + VecType = NVPTX::PTXLdStInstCode::V2; + StOps.push_back(N->getOperand(1)); + StOps.push_back(N->getOperand(2)); + N2 = N->getOperand(3); + break; + case NVPTXISD::StoreV4: + VecType = NVPTX::PTXLdStInstCode::V4; + StOps.push_back(N->getOperand(1)); + StOps.push_back(N->getOperand(2)); + StOps.push_back(N->getOperand(3)); + StOps.push_back(N->getOperand(4)); + N2 = N->getOperand(5); + break; + default: + return NULL; + } + + StOps.push_back(getI32Imm(IsVolatile)); + StOps.push_back(getI32Imm(CodeAddrSpace)); + StOps.push_back(getI32Imm(VecType)); + StOps.push_back(getI32Imm(ToType)); + StOps.push_back(getI32Imm(ToTypeWidth)); + + if (SelectDirectAddr(N2, Addr)) { + switch (N->getOpcode()) { + default: + return NULL; + case NVPTXISD::StoreV2: + switch (EltVT.getSimpleVT().SimpleTy) { + default: + return NULL; + case MVT::i8: + Opcode = NVPTX::STV_i8_v2_avar; + break; + case MVT::i16: + Opcode = NVPTX::STV_i16_v2_avar; + break; + case MVT::i32: + Opcode = NVPTX::STV_i32_v2_avar; + break; + case MVT::i64: + Opcode = NVPTX::STV_i64_v2_avar; + break; + case MVT::f32: + Opcode = NVPTX::STV_f32_v2_avar; + break; + case MVT::f64: + Opcode = NVPTX::STV_f64_v2_avar; + break; + } + break; + case NVPTXISD::StoreV4: + switch (EltVT.getSimpleVT().SimpleTy) { + default: + return NULL; + case MVT::i8: + Opcode = NVPTX::STV_i8_v4_avar; + break; + case MVT::i16: + Opcode = NVPTX::STV_i16_v4_avar; + break; + case MVT::i32: + Opcode = NVPTX::STV_i32_v4_avar; + break; + case MVT::f32: + Opcode = NVPTX::STV_f32_v4_avar; + break; + } + break; + } + StOps.push_back(Addr); + } else if (Subtarget.is64Bit() + ? SelectADDRsi64(N2.getNode(), N2, Base, Offset) + : SelectADDRsi(N2.getNode(), N2, Base, Offset)) { + switch (N->getOpcode()) { + default: + return NULL; + case NVPTXISD::StoreV2: + switch (EltVT.getSimpleVT().SimpleTy) { + default: + return NULL; + case MVT::i8: + Opcode = NVPTX::STV_i8_v2_asi; + break; + case MVT::i16: + Opcode = NVPTX::STV_i16_v2_asi; + break; + case MVT::i32: + Opcode = NVPTX::STV_i32_v2_asi; + break; + case MVT::i64: + Opcode = NVPTX::STV_i64_v2_asi; + break; + case MVT::f32: + Opcode = NVPTX::STV_f32_v2_asi; + break; + case MVT::f64: + Opcode = NVPTX::STV_f64_v2_asi; + break; + } + break; + case NVPTXISD::StoreV4: + switch (EltVT.getSimpleVT().SimpleTy) { + default: + return NULL; + case MVT::i8: + Opcode = NVPTX::STV_i8_v4_asi; + break; + case MVT::i16: + Opcode = NVPTX::STV_i16_v4_asi; + break; + case MVT::i32: + Opcode = NVPTX::STV_i32_v4_asi; + break; + case MVT::f32: + Opcode = NVPTX::STV_f32_v4_asi; + break; + } + break; + } + StOps.push_back(Base); + StOps.push_back(Offset); + } else if (Subtarget.is64Bit() + ? SelectADDRri64(N2.getNode(), N2, Base, Offset) + : SelectADDRri(N2.getNode(), N2, Base, Offset)) { + if (Subtarget.is64Bit()) { + switch (N->getOpcode()) { + default: + return NULL; + case NVPTXISD::StoreV2: + switch (EltVT.getSimpleVT().SimpleTy) { + default: + return NULL; + case MVT::i8: + Opcode = NVPTX::STV_i8_v2_ari_64; + break; + case MVT::i16: + Opcode = NVPTX::STV_i16_v2_ari_64; + break; + case MVT::i32: + Opcode = NVPTX::STV_i32_v2_ari_64; + break; + case MVT::i64: + Opcode = NVPTX::STV_i64_v2_ari_64; + break; + case MVT::f32: + Opcode = NVPTX::STV_f32_v2_ari_64; + break; + case MVT::f64: + Opcode = NVPTX::STV_f64_v2_ari_64; + break; + } + break; + case NVPTXISD::StoreV4: + switch (EltVT.getSimpleVT().SimpleTy) { + default: + return NULL; + case MVT::i8: + Opcode = NVPTX::STV_i8_v4_ari_64; + break; + case MVT::i16: + Opcode = NVPTX::STV_i16_v4_ari_64; + break; + case MVT::i32: + Opcode = NVPTX::STV_i32_v4_ari_64; + break; + case MVT::f32: + Opcode = NVPTX::STV_f32_v4_ari_64; + break; + } + break; + } + } else { + switch (N->getOpcode()) { + default: + return NULL; + case NVPTXISD::StoreV2: + switch (EltVT.getSimpleVT().SimpleTy) { + default: + return NULL; + case MVT::i8: + Opcode = NVPTX::STV_i8_v2_ari; + break; + case MVT::i16: + Opcode = NVPTX::STV_i16_v2_ari; + break; + case MVT::i32: + Opcode = NVPTX::STV_i32_v2_ari; + break; + case MVT::i64: + Opcode = NVPTX::STV_i64_v2_ari; + break; + case MVT::f32: + Opcode = NVPTX::STV_f32_v2_ari; + break; + case MVT::f64: + Opcode = NVPTX::STV_f64_v2_ari; + break; + } + break; + case NVPTXISD::StoreV4: + switch (EltVT.getSimpleVT().SimpleTy) { + default: + return NULL; + case MVT::i8: + Opcode = NVPTX::STV_i8_v4_ari; + break; + case MVT::i16: + Opcode = NVPTX::STV_i16_v4_ari; + break; + case MVT::i32: + Opcode = NVPTX::STV_i32_v4_ari; + break; + case MVT::f32: + Opcode = NVPTX::STV_f32_v4_ari; + break; + } + break; + } + } + StOps.push_back(Base); + StOps.push_back(Offset); + } else { + if (Subtarget.is64Bit()) { + switch (N->getOpcode()) { + default: + return NULL; + case NVPTXISD::StoreV2: + switch (EltVT.getSimpleVT().SimpleTy) { + default: + return NULL; + case MVT::i8: + Opcode = NVPTX::STV_i8_v2_areg_64; + break; + case MVT::i16: + Opcode = NVPTX::STV_i16_v2_areg_64; + break; + case MVT::i32: + Opcode = NVPTX::STV_i32_v2_areg_64; + break; + case MVT::i64: + Opcode = NVPTX::STV_i64_v2_areg_64; + break; + case MVT::f32: + Opcode = NVPTX::STV_f32_v2_areg_64; + break; + case MVT::f64: + Opcode = NVPTX::STV_f64_v2_areg_64; + break; + } + break; + case NVPTXISD::StoreV4: + switch (EltVT.getSimpleVT().SimpleTy) { + default: + return NULL; + case MVT::i8: + Opcode = NVPTX::STV_i8_v4_areg_64; + break; + case MVT::i16: + Opcode = NVPTX::STV_i16_v4_areg_64; + break; + case MVT::i32: + Opcode = NVPTX::STV_i32_v4_areg_64; + break; + case MVT::f32: + Opcode = NVPTX::STV_f32_v4_areg_64; + break; + } + break; + } + } else { + switch (N->getOpcode()) { + default: + return NULL; + case NVPTXISD::StoreV2: + switch (EltVT.getSimpleVT().SimpleTy) { + default: + return NULL; + case MVT::i8: + Opcode = NVPTX::STV_i8_v2_areg; + break; + case MVT::i16: + Opcode = NVPTX::STV_i16_v2_areg; + break; + case MVT::i32: + Opcode = NVPTX::STV_i32_v2_areg; + break; + case MVT::i64: + Opcode = NVPTX::STV_i64_v2_areg; + break; + case MVT::f32: + Opcode = NVPTX::STV_f32_v2_areg; + break; + case MVT::f64: + Opcode = NVPTX::STV_f64_v2_areg; + break; + } + break; + case NVPTXISD::StoreV4: + switch (EltVT.getSimpleVT().SimpleTy) { + default: + return NULL; + case MVT::i8: + Opcode = NVPTX::STV_i8_v4_areg; + break; + case MVT::i16: + Opcode = NVPTX::STV_i16_v4_areg; + break; + case MVT::i32: + Opcode = NVPTX::STV_i32_v4_areg; + break; + case MVT::f32: + Opcode = NVPTX::STV_f32_v4_areg; + break; + } + break; + } + } + StOps.push_back(N2); + } + + StOps.push_back(Chain); + + ST = CurDAG->getMachineNode(Opcode, DL, MVT::Other, StOps); + + MachineSDNode::mmo_iterator MemRefs0 = MF->allocateMemRefsArray(1); + MemRefs0[0] = cast<MemSDNode>(N)->getMemOperand(); + cast<MachineSDNode>(ST)->setMemRefs(MemRefs0, MemRefs0 + 1); + + return ST; +} + +SDNode *NVPTXDAGToDAGISel::SelectLoadParam(SDNode *Node) { + SDValue Chain = Node->getOperand(0); + SDValue Offset = Node->getOperand(2); + SDValue Flag = Node->getOperand(3); + SDLoc DL(Node); + MemSDNode *Mem = cast<MemSDNode>(Node); + + unsigned VecSize; + switch (Node->getOpcode()) { + default: + return NULL; + case NVPTXISD::LoadParam: + VecSize = 1; + break; + case NVPTXISD::LoadParamV2: + VecSize = 2; + break; + case NVPTXISD::LoadParamV4: + VecSize = 4; + break; + } + + EVT EltVT = Node->getValueType(0); + EVT MemVT = Mem->getMemoryVT(); + + unsigned Opc = 0; + + switch (VecSize) { + default: + return NULL; + case 1: + switch (MemVT.getSimpleVT().SimpleTy) { + default: + return NULL; + case MVT::i1: + Opc = NVPTX::LoadParamMemI8; + break; + case MVT::i8: + Opc = NVPTX::LoadParamMemI8; + break; + case MVT::i16: + Opc = NVPTX::LoadParamMemI16; + break; + case MVT::i32: + Opc = NVPTX::LoadParamMemI32; + break; + case MVT::i64: + Opc = NVPTX::LoadParamMemI64; + break; + case MVT::f32: + Opc = NVPTX::LoadParamMemF32; + break; + case MVT::f64: + Opc = NVPTX::LoadParamMemF64; + break; + } + break; + case 2: + switch (MemVT.getSimpleVT().SimpleTy) { + default: + return NULL; + case MVT::i1: + Opc = NVPTX::LoadParamMemV2I8; + break; + case MVT::i8: + Opc = NVPTX::LoadParamMemV2I8; + break; + case MVT::i16: + Opc = NVPTX::LoadParamMemV2I16; + break; + case MVT::i32: + Opc = NVPTX::LoadParamMemV2I32; + break; + case MVT::i64: + Opc = NVPTX::LoadParamMemV2I64; + break; + case MVT::f32: + Opc = NVPTX::LoadParamMemV2F32; + break; + case MVT::f64: + Opc = NVPTX::LoadParamMemV2F64; + break; + } + break; + case 4: + switch (MemVT.getSimpleVT().SimpleTy) { + default: + return NULL; + case MVT::i1: + Opc = NVPTX::LoadParamMemV4I8; + break; + case MVT::i8: + Opc = NVPTX::LoadParamMemV4I8; + break; + case MVT::i16: + Opc = NVPTX::LoadParamMemV4I16; + break; + case MVT::i32: + Opc = NVPTX::LoadParamMemV4I32; + break; + case MVT::f32: + Opc = NVPTX::LoadParamMemV4F32; + break; + } + break; + } + + SDVTList VTs; + if (VecSize == 1) { + VTs = CurDAG->getVTList(EltVT, MVT::Other, MVT::Glue); + } else if (VecSize == 2) { + VTs = CurDAG->getVTList(EltVT, EltVT, MVT::Other, MVT::Glue); + } else { + EVT EVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other, MVT::Glue }; + VTs = CurDAG->getVTList(&EVTs[0], 5); + } + + unsigned OffsetVal = cast<ConstantSDNode>(Offset)->getZExtValue(); + + SmallVector<SDValue, 2> Ops; + Ops.push_back(CurDAG->getTargetConstant(OffsetVal, MVT::i32)); + Ops.push_back(Chain); + Ops.push_back(Flag); + + SDNode *Ret = + CurDAG->getMachineNode(Opc, DL, VTs, Ops); + return Ret; +} + +SDNode *NVPTXDAGToDAGISel::SelectStoreRetval(SDNode *N) { + SDLoc DL(N); + SDValue Chain = N->getOperand(0); + SDValue Offset = N->getOperand(1); + unsigned OffsetVal = cast<ConstantSDNode>(Offset)->getZExtValue(); + MemSDNode *Mem = cast<MemSDNode>(N); + + // How many elements do we have? + unsigned NumElts = 1; + switch (N->getOpcode()) { + default: + return NULL; + case NVPTXISD::StoreRetval: + NumElts = 1; + break; + case NVPTXISD::StoreRetvalV2: + NumElts = 2; + break; + case NVPTXISD::StoreRetvalV4: + NumElts = 4; + break; + } + + // Build vector of operands + SmallVector<SDValue, 6> Ops; + for (unsigned i = 0; i < NumElts; ++i) + Ops.push_back(N->getOperand(i + 2)); + Ops.push_back(CurDAG->getTargetConstant(OffsetVal, MVT::i32)); + Ops.push_back(Chain); + + // Determine target opcode + // If we have an i1, use an 8-bit store. The lowering code in + // NVPTXISelLowering will have already emitted an upcast. + unsigned Opcode = 0; + switch (NumElts) { + default: + return NULL; + case 1: + switch (Mem->getMemoryVT().getSimpleVT().SimpleTy) { + default: + return NULL; + case MVT::i1: + Opcode = NVPTX::StoreRetvalI8; + break; + case MVT::i8: + Opcode = NVPTX::StoreRetvalI8; + break; + case MVT::i16: + Opcode = NVPTX::StoreRetvalI16; + break; + case MVT::i32: + Opcode = NVPTX::StoreRetvalI32; + break; + case MVT::i64: + Opcode = NVPTX::StoreRetvalI64; + break; + case MVT::f32: + Opcode = NVPTX::StoreRetvalF32; + break; + case MVT::f64: + Opcode = NVPTX::StoreRetvalF64; + break; + } + break; + case 2: + switch (Mem->getMemoryVT().getSimpleVT().SimpleTy) { + default: + return NULL; + case MVT::i1: + Opcode = NVPTX::StoreRetvalV2I8; + break; + case MVT::i8: + Opcode = NVPTX::StoreRetvalV2I8; + break; + case MVT::i16: + Opcode = NVPTX::StoreRetvalV2I16; + break; + case MVT::i32: + Opcode = NVPTX::StoreRetvalV2I32; + break; + case MVT::i64: + Opcode = NVPTX::StoreRetvalV2I64; + break; + case MVT::f32: + Opcode = NVPTX::StoreRetvalV2F32; + break; + case MVT::f64: + Opcode = NVPTX::StoreRetvalV2F64; + break; + } + break; + case 4: + switch (Mem->getMemoryVT().getSimpleVT().SimpleTy) { + default: + return NULL; + case MVT::i1: + Opcode = NVPTX::StoreRetvalV4I8; + break; + case MVT::i8: + Opcode = NVPTX::StoreRetvalV4I8; + break; + case MVT::i16: + Opcode = NVPTX::StoreRetvalV4I16; + break; + case MVT::i32: + Opcode = NVPTX::StoreRetvalV4I32; + break; + case MVT::f32: + Opcode = NVPTX::StoreRetvalV4F32; + break; + } + break; + } + + SDNode *Ret = + CurDAG->getMachineNode(Opcode, DL, MVT::Other, Ops); + MachineSDNode::mmo_iterator MemRefs0 = MF->allocateMemRefsArray(1); + MemRefs0[0] = cast<MemSDNode>(N)->getMemOperand(); + cast<MachineSDNode>(Ret)->setMemRefs(MemRefs0, MemRefs0 + 1); + + return Ret; +} + +SDNode *NVPTXDAGToDAGISel::SelectStoreParam(SDNode *N) { + SDLoc DL(N); + SDValue Chain = N->getOperand(0); + SDValue Param = N->getOperand(1); + unsigned ParamVal = cast<ConstantSDNode>(Param)->getZExtValue(); + SDValue Offset = N->getOperand(2); + unsigned OffsetVal = cast<ConstantSDNode>(Offset)->getZExtValue(); + MemSDNode *Mem = cast<MemSDNode>(N); + SDValue Flag = N->getOperand(N->getNumOperands() - 1); + + // How many elements do we have? + unsigned NumElts = 1; + switch (N->getOpcode()) { + default: + return NULL; + case NVPTXISD::StoreParamU32: + case NVPTXISD::StoreParamS32: + case NVPTXISD::StoreParam: + NumElts = 1; + break; + case NVPTXISD::StoreParamV2: + NumElts = 2; + break; + case NVPTXISD::StoreParamV4: + NumElts = 4; + break; + } + + // Build vector of operands + SmallVector<SDValue, 8> Ops; + for (unsigned i = 0; i < NumElts; ++i) + Ops.push_back(N->getOperand(i + 3)); + Ops.push_back(CurDAG->getTargetConstant(ParamVal, MVT::i32)); + Ops.push_back(CurDAG->getTargetConstant(OffsetVal, MVT::i32)); + Ops.push_back(Chain); + Ops.push_back(Flag); + + // Determine target opcode + // If we have an i1, use an 8-bit store. The lowering code in + // NVPTXISelLowering will have already emitted an upcast. + unsigned Opcode = 0; + switch (N->getOpcode()) { + default: + switch (NumElts) { + default: + return NULL; + case 1: + switch (Mem->getMemoryVT().getSimpleVT().SimpleTy) { + default: + return NULL; + case MVT::i1: + Opcode = NVPTX::StoreParamI8; + break; + case MVT::i8: + Opcode = NVPTX::StoreParamI8; + break; + case MVT::i16: + Opcode = NVPTX::StoreParamI16; + break; + case MVT::i32: + Opcode = NVPTX::StoreParamI32; + break; + case MVT::i64: + Opcode = NVPTX::StoreParamI64; + break; + case MVT::f32: + Opcode = NVPTX::StoreParamF32; + break; + case MVT::f64: + Opcode = NVPTX::StoreParamF64; + break; + } + break; + case 2: + switch (Mem->getMemoryVT().getSimpleVT().SimpleTy) { + default: + return NULL; + case MVT::i1: + Opcode = NVPTX::StoreParamV2I8; + break; + case MVT::i8: + Opcode = NVPTX::StoreParamV2I8; + break; + case MVT::i16: + Opcode = NVPTX::StoreParamV2I16; + break; + case MVT::i32: + Opcode = NVPTX::StoreParamV2I32; + break; + case MVT::i64: + Opcode = NVPTX::StoreParamV2I64; + break; + case MVT::f32: + Opcode = NVPTX::StoreParamV2F32; + break; + case MVT::f64: + Opcode = NVPTX::StoreParamV2F64; + break; + } + break; + case 4: + switch (Mem->getMemoryVT().getSimpleVT().SimpleTy) { + default: + return NULL; + case MVT::i1: + Opcode = NVPTX::StoreParamV4I8; + break; + case MVT::i8: + Opcode = NVPTX::StoreParamV4I8; + break; + case MVT::i16: + Opcode = NVPTX::StoreParamV4I16; + break; + case MVT::i32: + Opcode = NVPTX::StoreParamV4I32; + break; + case MVT::f32: + Opcode = NVPTX::StoreParamV4F32; + break; + } + break; + } + break; + // Special case: if we have a sign-extend/zero-extend node, insert the + // conversion instruction first, and use that as the value operand to + // the selected StoreParam node. + case NVPTXISD::StoreParamU32: { + Opcode = NVPTX::StoreParamI32; + SDValue CvtNone = CurDAG->getTargetConstant(NVPTX::PTXCvtMode::NONE, + MVT::i32); + SDNode *Cvt = CurDAG->getMachineNode(NVPTX::CVT_u32_u16, DL, + MVT::i32, Ops[0], CvtNone); + Ops[0] = SDValue(Cvt, 0); + break; + } + case NVPTXISD::StoreParamS32: { + Opcode = NVPTX::StoreParamI32; + SDValue CvtNone = CurDAG->getTargetConstant(NVPTX::PTXCvtMode::NONE, + MVT::i32); + SDNode *Cvt = CurDAG->getMachineNode(NVPTX::CVT_s32_s16, DL, + MVT::i32, Ops[0], CvtNone); + Ops[0] = SDValue(Cvt, 0); + break; + } + } + + SDVTList RetVTs = CurDAG->getVTList(MVT::Other, MVT::Glue); + SDNode *Ret = + CurDAG->getMachineNode(Opcode, DL, RetVTs, Ops); + MachineSDNode::mmo_iterator MemRefs0 = MF->allocateMemRefsArray(1); + MemRefs0[0] = cast<MemSDNode>(N)->getMemOperand(); + cast<MachineSDNode>(Ret)->setMemRefs(MemRefs0, MemRefs0 + 1); + + return Ret; +} + +// SelectDirectAddr - Match a direct address for DAG. +// A direct address could be a globaladdress or externalsymbol. +bool NVPTXDAGToDAGISel::SelectDirectAddr(SDValue N, SDValue &Address) { + // Return true if TGA or ES. + if (N.getOpcode() == ISD::TargetGlobalAddress || + N.getOpcode() == ISD::TargetExternalSymbol) { + Address = N; + return true; + } + if (N.getOpcode() == NVPTXISD::Wrapper) { + Address = N.getOperand(0); + return true; + } + if (N.getOpcode() == ISD::INTRINSIC_WO_CHAIN) { + unsigned IID = cast<ConstantSDNode>(N.getOperand(0))->getZExtValue(); + if (IID == Intrinsic::nvvm_ptr_gen_to_param) + if (N.getOperand(1).getOpcode() == NVPTXISD::MoveParam) + return (SelectDirectAddr(N.getOperand(1).getOperand(0), Address)); + } + return false; +} + +// symbol+offset +bool NVPTXDAGToDAGISel::SelectADDRsi_imp( + SDNode *OpNode, SDValue Addr, SDValue &Base, SDValue &Offset, MVT mvt) { + if (Addr.getOpcode() == ISD::ADD) { + if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Addr.getOperand(1))) { + SDValue base = Addr.getOperand(0); + if (SelectDirectAddr(base, Base)) { + Offset = CurDAG->getTargetConstant(CN->getZExtValue(), mvt); + return true; + } + } + } + return false; +} + +// symbol+offset +bool NVPTXDAGToDAGISel::SelectADDRsi(SDNode *OpNode, SDValue Addr, + SDValue &Base, SDValue &Offset) { + return SelectADDRsi_imp(OpNode, Addr, Base, Offset, MVT::i32); +} + +// symbol+offset +bool NVPTXDAGToDAGISel::SelectADDRsi64(SDNode *OpNode, SDValue Addr, + SDValue &Base, SDValue &Offset) { + return SelectADDRsi_imp(OpNode, Addr, Base, Offset, MVT::i64); +} + +// register+offset +bool NVPTXDAGToDAGISel::SelectADDRri_imp( + SDNode *OpNode, SDValue Addr, SDValue &Base, SDValue &Offset, MVT mvt) { + if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) { + Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), mvt); + Offset = CurDAG->getTargetConstant(0, mvt); + return true; + } + if (Addr.getOpcode() == ISD::TargetExternalSymbol || + Addr.getOpcode() == ISD::TargetGlobalAddress) + return false; // direct calls. + + if (Addr.getOpcode() == ISD::ADD) { + if (SelectDirectAddr(Addr.getOperand(0), Addr)) { + return false; + } + if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Addr.getOperand(1))) { + if (FrameIndexSDNode *FIN = + dyn_cast<FrameIndexSDNode>(Addr.getOperand(0))) + // Constant offset from frame ref. + Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), mvt); + else + Base = Addr.getOperand(0); + Offset = CurDAG->getTargetConstant(CN->getZExtValue(), mvt); + return true; + } + } + return false; +} + +// register+offset +bool NVPTXDAGToDAGISel::SelectADDRri(SDNode *OpNode, SDValue Addr, + SDValue &Base, SDValue &Offset) { + return SelectADDRri_imp(OpNode, Addr, Base, Offset, MVT::i32); +} + +// register+offset +bool NVPTXDAGToDAGISel::SelectADDRri64(SDNode *OpNode, SDValue Addr, + SDValue &Base, SDValue &Offset) { + return SelectADDRri_imp(OpNode, Addr, Base, Offset, MVT::i64); +} + +bool NVPTXDAGToDAGISel::ChkMemSDNodeAddressSpace(SDNode *N, + unsigned int spN) const { + const Value *Src = NULL; + // Even though MemIntrinsicSDNode is a subclas of MemSDNode, + // the classof() for MemSDNode does not include MemIntrinsicSDNode + // (See SelectionDAGNodes.h). So we need to check for both. + if (MemSDNode *mN = dyn_cast<MemSDNode>(N)) { + Src = mN->getSrcValue(); + } else if (MemSDNode *mN = dyn_cast<MemIntrinsicSDNode>(N)) { + Src = mN->getSrcValue(); + } + if (!Src) + return false; + if (const PointerType *PT = dyn_cast<PointerType>(Src->getType())) + return (PT->getAddressSpace() == spN); + return false; +} + +/// SelectInlineAsmMemoryOperand - Implement addressing mode selection for +/// inline asm expressions. +bool NVPTXDAGToDAGISel::SelectInlineAsmMemoryOperand( + const SDValue &Op, char ConstraintCode, std::vector<SDValue> &OutOps) { + SDValue Op0, Op1; + switch (ConstraintCode) { + default: + return true; + case 'm': // memory + if (SelectDirectAddr(Op, Op0)) { + OutOps.push_back(Op0); + OutOps.push_back(CurDAG->getTargetConstant(0, MVT::i32)); + return false; + } + if (SelectADDRri(Op.getNode(), Op, Op0, Op1)) { + OutOps.push_back(Op0); + OutOps.push_back(Op1); + return false; + } + break; + } + return true; +} + +// Return true if N is a undef or a constant. +// If N was undef, return a (i8imm 0) in Retval +// If N was imm, convert it to i8imm and return in Retval +// Note: The convert to i8imm is required, otherwise the +// pattern matcher inserts a bunch of IMOVi8rr to convert +// the imm to i8imm, and this causes instruction selection +// to fail. +bool NVPTXDAGToDAGISel::UndefOrImm(SDValue Op, SDValue N, SDValue &Retval) { + if (!(N.getOpcode() == ISD::UNDEF) && !(N.getOpcode() == ISD::Constant)) + return false; + + if (N.getOpcode() == ISD::UNDEF) + Retval = CurDAG->getTargetConstant(0, MVT::i8); + else { + ConstantSDNode *cn = cast<ConstantSDNode>(N.getNode()); + unsigned retval = cn->getZExtValue(); + Retval = CurDAG->getTargetConstant(retval, MVT::i8); + } + return true; +}