Mercurial > hg > Members > tobaru > cbc > CbC_llvm
diff lib/Transforms/IPO/DeadArgumentElimination.cpp @ 0:95c75e76d11b
LLVM 3.4
author | Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 12 Dec 2013 13:56:28 +0900 |
parents | |
children | 54457678186b |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/lib/Transforms/IPO/DeadArgumentElimination.cpp Thu Dec 12 13:56:28 2013 +0900 @@ -0,0 +1,1144 @@ +//===-- DeadArgumentElimination.cpp - Eliminate dead arguments ------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This pass deletes dead arguments from internal functions. Dead argument +// elimination removes arguments which are directly dead, as well as arguments +// only passed into function calls as dead arguments of other functions. This +// pass also deletes dead return values in a similar way. +// +// This pass is often useful as a cleanup pass to run after aggressive +// interprocedural passes, which add possibly-dead arguments or return values. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "deadargelim" +#include "llvm/Transforms/IPO.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/DIBuilder.h" +#include "llvm/DebugInfo.h" +#include "llvm/IR/CallingConv.h" +#include "llvm/IR/Constant.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Module.h" +#include "llvm/Pass.h" +#include "llvm/Support/CallSite.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include <map> +#include <set> +using namespace llvm; + +STATISTIC(NumArgumentsEliminated, "Number of unread args removed"); +STATISTIC(NumRetValsEliminated , "Number of unused return values removed"); +STATISTIC(NumArgumentsReplacedWithUndef, + "Number of unread args replaced with undef"); +namespace { + /// DAE - The dead argument elimination pass. + /// + class DAE : public ModulePass { + public: + + /// Struct that represents (part of) either a return value or a function + /// argument. Used so that arguments and return values can be used + /// interchangeably. + struct RetOrArg { + RetOrArg(const Function *F, unsigned Idx, bool IsArg) : F(F), Idx(Idx), + IsArg(IsArg) {} + const Function *F; + unsigned Idx; + bool IsArg; + + /// Make RetOrArg comparable, so we can put it into a map. + bool operator<(const RetOrArg &O) const { + if (F != O.F) + return F < O.F; + else if (Idx != O.Idx) + return Idx < O.Idx; + else + return IsArg < O.IsArg; + } + + /// Make RetOrArg comparable, so we can easily iterate the multimap. + bool operator==(const RetOrArg &O) const { + return F == O.F && Idx == O.Idx && IsArg == O.IsArg; + } + + std::string getDescription() const { + return std::string((IsArg ? "Argument #" : "Return value #")) + + utostr(Idx) + " of function " + F->getName().str(); + } + }; + + /// Liveness enum - During our initial pass over the program, we determine + /// that things are either alive or maybe alive. We don't mark anything + /// explicitly dead (even if we know they are), since anything not alive + /// with no registered uses (in Uses) will never be marked alive and will + /// thus become dead in the end. + enum Liveness { Live, MaybeLive }; + + /// Convenience wrapper + RetOrArg CreateRet(const Function *F, unsigned Idx) { + return RetOrArg(F, Idx, false); + } + /// Convenience wrapper + RetOrArg CreateArg(const Function *F, unsigned Idx) { + return RetOrArg(F, Idx, true); + } + + typedef std::multimap<RetOrArg, RetOrArg> UseMap; + /// This maps a return value or argument to any MaybeLive return values or + /// arguments it uses. This allows the MaybeLive values to be marked live + /// when any of its users is marked live. + /// For example (indices are left out for clarity): + /// - Uses[ret F] = ret G + /// This means that F calls G, and F returns the value returned by G. + /// - Uses[arg F] = ret G + /// This means that some function calls G and passes its result as an + /// argument to F. + /// - Uses[ret F] = arg F + /// This means that F returns one of its own arguments. + /// - Uses[arg F] = arg G + /// This means that G calls F and passes one of its own (G's) arguments + /// directly to F. + UseMap Uses; + + typedef std::set<RetOrArg> LiveSet; + typedef std::set<const Function*> LiveFuncSet; + + /// This set contains all values that have been determined to be live. + LiveSet LiveValues; + /// This set contains all values that are cannot be changed in any way. + LiveFuncSet LiveFunctions; + + typedef SmallVector<RetOrArg, 5> UseVector; + + // Map each LLVM function to corresponding metadata with debug info. If + // the function is replaced with another one, we should patch the pointer + // to LLVM function in metadata. + // As the code generation for module is finished (and DIBuilder is + // finalized) we assume that subprogram descriptors won't be changed, and + // they are stored in map for short duration anyway. + typedef DenseMap<Function*, DISubprogram> FunctionDIMap; + FunctionDIMap FunctionDIs; + + protected: + // DAH uses this to specify a different ID. + explicit DAE(char &ID) : ModulePass(ID) {} + + public: + static char ID; // Pass identification, replacement for typeid + DAE() : ModulePass(ID) { + initializeDAEPass(*PassRegistry::getPassRegistry()); + } + + bool runOnModule(Module &M); + + virtual bool ShouldHackArguments() const { return false; } + + private: + Liveness MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses); + Liveness SurveyUse(Value::const_use_iterator U, UseVector &MaybeLiveUses, + unsigned RetValNum = 0); + Liveness SurveyUses(const Value *V, UseVector &MaybeLiveUses); + + void CollectFunctionDIs(Module &M); + void SurveyFunction(const Function &F); + void MarkValue(const RetOrArg &RA, Liveness L, + const UseVector &MaybeLiveUses); + void MarkLive(const RetOrArg &RA); + void MarkLive(const Function &F); + void PropagateLiveness(const RetOrArg &RA); + bool RemoveDeadStuffFromFunction(Function *F); + bool DeleteDeadVarargs(Function &Fn); + bool RemoveDeadArgumentsFromCallers(Function &Fn); + }; +} + + +char DAE::ID = 0; +INITIALIZE_PASS(DAE, "deadargelim", "Dead Argument Elimination", false, false) + +namespace { + /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but + /// deletes arguments to functions which are external. This is only for use + /// by bugpoint. + struct DAH : public DAE { + static char ID; + DAH() : DAE(ID) {} + + virtual bool ShouldHackArguments() const { return true; } + }; +} + +char DAH::ID = 0; +INITIALIZE_PASS(DAH, "deadarghaX0r", + "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)", + false, false) + +/// createDeadArgEliminationPass - This pass removes arguments from functions +/// which are not used by the body of the function. +/// +ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); } +ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); } + +/// CollectFunctionDIs - Map each function in the module to its debug info +/// descriptor. +void DAE::CollectFunctionDIs(Module &M) { + FunctionDIs.clear(); + + for (Module::named_metadata_iterator I = M.named_metadata_begin(), + E = M.named_metadata_end(); I != E; ++I) { + NamedMDNode &NMD = *I; + for (unsigned MDIndex = 0, MDNum = NMD.getNumOperands(); + MDIndex < MDNum; ++MDIndex) { + MDNode *Node = NMD.getOperand(MDIndex); + if (!DIDescriptor(Node).isCompileUnit()) + continue; + DICompileUnit CU(Node); + const DIArray &SPs = CU.getSubprograms(); + for (unsigned SPIndex = 0, SPNum = SPs.getNumElements(); + SPIndex < SPNum; ++SPIndex) { + DISubprogram SP(SPs.getElement(SPIndex)); + assert((!SP || SP.isSubprogram()) && + "A MDNode in subprograms of a CU should be null or a DISubprogram."); + if (!SP) + continue; + if (Function *F = SP.getFunction()) + FunctionDIs[F] = SP; + } + } + } +} + +/// DeleteDeadVarargs - If this is an function that takes a ... list, and if +/// llvm.vastart is never called, the varargs list is dead for the function. +bool DAE::DeleteDeadVarargs(Function &Fn) { + assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!"); + if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false; + + // Ensure that the function is only directly called. + if (Fn.hasAddressTaken()) + return false; + + // Okay, we know we can transform this function if safe. Scan its body + // looking for calls to llvm.vastart. + for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) { + for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { + if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { + if (II->getIntrinsicID() == Intrinsic::vastart) + return false; + } + } + } + + // If we get here, there are no calls to llvm.vastart in the function body, + // remove the "..." and adjust all the calls. + + // Start by computing a new prototype for the function, which is the same as + // the old function, but doesn't have isVarArg set. + FunctionType *FTy = Fn.getFunctionType(); + + std::vector<Type*> Params(FTy->param_begin(), FTy->param_end()); + FunctionType *NFTy = FunctionType::get(FTy->getReturnType(), + Params, false); + unsigned NumArgs = Params.size(); + + // Create the new function body and insert it into the module... + Function *NF = Function::Create(NFTy, Fn.getLinkage()); + NF->copyAttributesFrom(&Fn); + Fn.getParent()->getFunctionList().insert(&Fn, NF); + NF->takeName(&Fn); + + // Loop over all of the callers of the function, transforming the call sites + // to pass in a smaller number of arguments into the new function. + // + std::vector<Value*> Args; + for (Value::use_iterator I = Fn.use_begin(), E = Fn.use_end(); I != E; ) { + CallSite CS(*I++); + if (!CS) + continue; + Instruction *Call = CS.getInstruction(); + + // Pass all the same arguments. + Args.assign(CS.arg_begin(), CS.arg_begin() + NumArgs); + + // Drop any attributes that were on the vararg arguments. + AttributeSet PAL = CS.getAttributes(); + if (!PAL.isEmpty() && PAL.getSlotIndex(PAL.getNumSlots() - 1) > NumArgs) { + SmallVector<AttributeSet, 8> AttributesVec; + for (unsigned i = 0; PAL.getSlotIndex(i) <= NumArgs; ++i) + AttributesVec.push_back(PAL.getSlotAttributes(i)); + if (PAL.hasAttributes(AttributeSet::FunctionIndex)) + AttributesVec.push_back(AttributeSet::get(Fn.getContext(), + PAL.getFnAttributes())); + PAL = AttributeSet::get(Fn.getContext(), AttributesVec); + } + + Instruction *New; + if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) { + New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(), + Args, "", Call); + cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv()); + cast<InvokeInst>(New)->setAttributes(PAL); + } else { + New = CallInst::Create(NF, Args, "", Call); + cast<CallInst>(New)->setCallingConv(CS.getCallingConv()); + cast<CallInst>(New)->setAttributes(PAL); + if (cast<CallInst>(Call)->isTailCall()) + cast<CallInst>(New)->setTailCall(); + } + New->setDebugLoc(Call->getDebugLoc()); + + Args.clear(); + + if (!Call->use_empty()) + Call->replaceAllUsesWith(New); + + New->takeName(Call); + + // Finally, remove the old call from the program, reducing the use-count of + // F. + Call->eraseFromParent(); + } + + // Since we have now created the new function, splice the body of the old + // function right into the new function, leaving the old rotting hulk of the + // function empty. + NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList()); + + // Loop over the argument list, transferring uses of the old arguments over to + // the new arguments, also transferring over the names as well. While we're at + // it, remove the dead arguments from the DeadArguments list. + // + for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(), + I2 = NF->arg_begin(); I != E; ++I, ++I2) { + // Move the name and users over to the new version. + I->replaceAllUsesWith(I2); + I2->takeName(I); + } + + // Patch the pointer to LLVM function in debug info descriptor. + FunctionDIMap::iterator DI = FunctionDIs.find(&Fn); + if (DI != FunctionDIs.end()) + DI->second.replaceFunction(NF); + + // Fix up any BlockAddresses that refer to the function. + Fn.replaceAllUsesWith(ConstantExpr::getBitCast(NF, Fn.getType())); + // Delete the bitcast that we just created, so that NF does not + // appear to be address-taken. + NF->removeDeadConstantUsers(); + // Finally, nuke the old function. + Fn.eraseFromParent(); + return true; +} + +/// RemoveDeadArgumentsFromCallers - Checks if the given function has any +/// arguments that are unused, and changes the caller parameters to be undefined +/// instead. +bool DAE::RemoveDeadArgumentsFromCallers(Function &Fn) +{ + if (Fn.isDeclaration() || Fn.mayBeOverridden()) + return false; + + // Functions with local linkage should already have been handled, except the + // fragile (variadic) ones which we can improve here. + if (Fn.hasLocalLinkage() && !Fn.getFunctionType()->isVarArg()) + return false; + + // If a function seen at compile time is not necessarily the one linked to + // the binary being built, it is illegal to change the actual arguments + // passed to it. These functions can be captured by isWeakForLinker(). + // *NOTE* that mayBeOverridden() is insufficient for this purpose as it + // doesn't include linkage types like AvailableExternallyLinkage and + // LinkOnceODRLinkage. Take link_odr* as an example, it indicates a set of + // *EQUIVALENT* globals that can be merged at link-time. However, the + // semantic of *EQUIVALENT*-functions includes parameters. Changing + // parameters breaks this assumption. + // + if (Fn.isWeakForLinker()) + return false; + + if (Fn.use_empty()) + return false; + + SmallVector<unsigned, 8> UnusedArgs; + for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(); + I != E; ++I) { + Argument *Arg = I; + + if (Arg->use_empty() && !Arg->hasByValAttr()) + UnusedArgs.push_back(Arg->getArgNo()); + } + + if (UnusedArgs.empty()) + return false; + + bool Changed = false; + + for (Function::use_iterator I = Fn.use_begin(), E = Fn.use_end(); + I != E; ++I) { + CallSite CS(*I); + if (!CS || !CS.isCallee(I)) + continue; + + // Now go through all unused args and replace them with "undef". + for (unsigned I = 0, E = UnusedArgs.size(); I != E; ++I) { + unsigned ArgNo = UnusedArgs[I]; + + Value *Arg = CS.getArgument(ArgNo); + CS.setArgument(ArgNo, UndefValue::get(Arg->getType())); + ++NumArgumentsReplacedWithUndef; + Changed = true; + } + } + + return Changed; +} + +/// Convenience function that returns the number of return values. It returns 0 +/// for void functions and 1 for functions not returning a struct. It returns +/// the number of struct elements for functions returning a struct. +static unsigned NumRetVals(const Function *F) { + if (F->getReturnType()->isVoidTy()) + return 0; + else if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) + return STy->getNumElements(); + else + return 1; +} + +/// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not +/// live, it adds Use to the MaybeLiveUses argument. Returns the determined +/// liveness of Use. +DAE::Liveness DAE::MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses) { + // We're live if our use or its Function is already marked as live. + if (LiveFunctions.count(Use.F) || LiveValues.count(Use)) + return Live; + + // We're maybe live otherwise, but remember that we must become live if + // Use becomes live. + MaybeLiveUses.push_back(Use); + return MaybeLive; +} + + +/// SurveyUse - This looks at a single use of an argument or return value +/// and determines if it should be alive or not. Adds this use to MaybeLiveUses +/// if it causes the used value to become MaybeLive. +/// +/// RetValNum is the return value number to use when this use is used in a +/// return instruction. This is used in the recursion, you should always leave +/// it at 0. +DAE::Liveness DAE::SurveyUse(Value::const_use_iterator U, + UseVector &MaybeLiveUses, unsigned RetValNum) { + const User *V = *U; + if (const ReturnInst *RI = dyn_cast<ReturnInst>(V)) { + // The value is returned from a function. It's only live when the + // function's return value is live. We use RetValNum here, for the case + // that U is really a use of an insertvalue instruction that uses the + // original Use. + RetOrArg Use = CreateRet(RI->getParent()->getParent(), RetValNum); + // We might be live, depending on the liveness of Use. + return MarkIfNotLive(Use, MaybeLiveUses); + } + if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) { + if (U.getOperandNo() != InsertValueInst::getAggregateOperandIndex() + && IV->hasIndices()) + // The use we are examining is inserted into an aggregate. Our liveness + // depends on all uses of that aggregate, but if it is used as a return + // value, only index at which we were inserted counts. + RetValNum = *IV->idx_begin(); + + // Note that if we are used as the aggregate operand to the insertvalue, + // we don't change RetValNum, but do survey all our uses. + + Liveness Result = MaybeLive; + for (Value::const_use_iterator I = IV->use_begin(), + E = V->use_end(); I != E; ++I) { + Result = SurveyUse(I, MaybeLiveUses, RetValNum); + if (Result == Live) + break; + } + return Result; + } + + if (ImmutableCallSite CS = V) { + const Function *F = CS.getCalledFunction(); + if (F) { + // Used in a direct call. + + // Find the argument number. We know for sure that this use is an + // argument, since if it was the function argument this would be an + // indirect call and the we know can't be looking at a value of the + // label type (for the invoke instruction). + unsigned ArgNo = CS.getArgumentNo(U); + + if (ArgNo >= F->getFunctionType()->getNumParams()) + // The value is passed in through a vararg! Must be live. + return Live; + + assert(CS.getArgument(ArgNo) + == CS->getOperand(U.getOperandNo()) + && "Argument is not where we expected it"); + + // Value passed to a normal call. It's only live when the corresponding + // argument to the called function turns out live. + RetOrArg Use = CreateArg(F, ArgNo); + return MarkIfNotLive(Use, MaybeLiveUses); + } + } + // Used in any other way? Value must be live. + return Live; +} + +/// SurveyUses - This looks at all the uses of the given value +/// Returns the Liveness deduced from the uses of this value. +/// +/// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If +/// the result is Live, MaybeLiveUses might be modified but its content should +/// be ignored (since it might not be complete). +DAE::Liveness DAE::SurveyUses(const Value *V, UseVector &MaybeLiveUses) { + // Assume it's dead (which will only hold if there are no uses at all..). + Liveness Result = MaybeLive; + // Check each use. + for (Value::const_use_iterator I = V->use_begin(), + E = V->use_end(); I != E; ++I) { + Result = SurveyUse(I, MaybeLiveUses); + if (Result == Live) + break; + } + return Result; +} + +// SurveyFunction - This performs the initial survey of the specified function, +// checking out whether or not it uses any of its incoming arguments or whether +// any callers use the return value. This fills in the LiveValues set and Uses +// map. +// +// We consider arguments of non-internal functions to be intrinsically alive as +// well as arguments to functions which have their "address taken". +// +void DAE::SurveyFunction(const Function &F) { + unsigned RetCount = NumRetVals(&F); + // Assume all return values are dead + typedef SmallVector<Liveness, 5> RetVals; + RetVals RetValLiveness(RetCount, MaybeLive); + + typedef SmallVector<UseVector, 5> RetUses; + // These vectors map each return value to the uses that make it MaybeLive, so + // we can add those to the Uses map if the return value really turns out to be + // MaybeLive. Initialized to a list of RetCount empty lists. + RetUses MaybeLiveRetUses(RetCount); + + for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) + if (const ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) + if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType() + != F.getFunctionType()->getReturnType()) { + // We don't support old style multiple return values. + MarkLive(F); + return; + } + + if (!F.hasLocalLinkage() && (!ShouldHackArguments() || F.isIntrinsic())) { + MarkLive(F); + return; + } + + DEBUG(dbgs() << "DAE - Inspecting callers for fn: " << F.getName() << "\n"); + // Keep track of the number of live retvals, so we can skip checks once all + // of them turn out to be live. + unsigned NumLiveRetVals = 0; + Type *STy = dyn_cast<StructType>(F.getReturnType()); + // Loop all uses of the function. + for (Value::const_use_iterator I = F.use_begin(), E = F.use_end(); + I != E; ++I) { + // If the function is PASSED IN as an argument, its address has been + // taken. + ImmutableCallSite CS(*I); + if (!CS || !CS.isCallee(I)) { + MarkLive(F); + return; + } + + // If this use is anything other than a call site, the function is alive. + const Instruction *TheCall = CS.getInstruction(); + if (!TheCall) { // Not a direct call site? + MarkLive(F); + return; + } + + // If we end up here, we are looking at a direct call to our function. + + // Now, check how our return value(s) is/are used in this caller. Don't + // bother checking return values if all of them are live already. + if (NumLiveRetVals != RetCount) { + if (STy) { + // Check all uses of the return value. + for (Value::const_use_iterator I = TheCall->use_begin(), + E = TheCall->use_end(); I != E; ++I) { + const ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(*I); + if (Ext && Ext->hasIndices()) { + // This use uses a part of our return value, survey the uses of + // that part and store the results for this index only. + unsigned Idx = *Ext->idx_begin(); + if (RetValLiveness[Idx] != Live) { + RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]); + if (RetValLiveness[Idx] == Live) + NumLiveRetVals++; + } + } else { + // Used by something else than extractvalue. Mark all return + // values as live. + for (unsigned i = 0; i != RetCount; ++i ) + RetValLiveness[i] = Live; + NumLiveRetVals = RetCount; + break; + } + } + } else { + // Single return value + RetValLiveness[0] = SurveyUses(TheCall, MaybeLiveRetUses[0]); + if (RetValLiveness[0] == Live) + NumLiveRetVals = RetCount; + } + } + } + + // Now we've inspected all callers, record the liveness of our return values. + for (unsigned i = 0; i != RetCount; ++i) + MarkValue(CreateRet(&F, i), RetValLiveness[i], MaybeLiveRetUses[i]); + + DEBUG(dbgs() << "DAE - Inspecting args for fn: " << F.getName() << "\n"); + + // Now, check all of our arguments. + unsigned i = 0; + UseVector MaybeLiveArgUses; + for (Function::const_arg_iterator AI = F.arg_begin(), + E = F.arg_end(); AI != E; ++AI, ++i) { + Liveness Result; + if (F.getFunctionType()->isVarArg()) { + // Variadic functions will already have a va_arg function expanded inside + // them, making them potentially very sensitive to ABI changes resulting + // from removing arguments entirely, so don't. For example AArch64 handles + // register and stack HFAs very differently, and this is reflected in the + // IR which has already been generated. + Result = Live; + } else { + // See what the effect of this use is (recording any uses that cause + // MaybeLive in MaybeLiveArgUses). + Result = SurveyUses(AI, MaybeLiveArgUses); + } + + // Mark the result. + MarkValue(CreateArg(&F, i), Result, MaybeLiveArgUses); + // Clear the vector again for the next iteration. + MaybeLiveArgUses.clear(); + } +} + +/// MarkValue - This function marks the liveness of RA depending on L. If L is +/// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses, +/// such that RA will be marked live if any use in MaybeLiveUses gets marked +/// live later on. +void DAE::MarkValue(const RetOrArg &RA, Liveness L, + const UseVector &MaybeLiveUses) { + switch (L) { + case Live: MarkLive(RA); break; + case MaybeLive: + { + // Note any uses of this value, so this return value can be + // marked live whenever one of the uses becomes live. + for (UseVector::const_iterator UI = MaybeLiveUses.begin(), + UE = MaybeLiveUses.end(); UI != UE; ++UI) + Uses.insert(std::make_pair(*UI, RA)); + break; + } + } +} + +/// MarkLive - Mark the given Function as alive, meaning that it cannot be +/// changed in any way. Additionally, +/// mark any values that are used as this function's parameters or by its return +/// values (according to Uses) live as well. +void DAE::MarkLive(const Function &F) { + DEBUG(dbgs() << "DAE - Intrinsically live fn: " << F.getName() << "\n"); + // Mark the function as live. + LiveFunctions.insert(&F); + // Mark all arguments as live. + for (unsigned i = 0, e = F.arg_size(); i != e; ++i) + PropagateLiveness(CreateArg(&F, i)); + // Mark all return values as live. + for (unsigned i = 0, e = NumRetVals(&F); i != e; ++i) + PropagateLiveness(CreateRet(&F, i)); +} + +/// MarkLive - Mark the given return value or argument as live. Additionally, +/// mark any values that are used by this value (according to Uses) live as +/// well. +void DAE::MarkLive(const RetOrArg &RA) { + if (LiveFunctions.count(RA.F)) + return; // Function was already marked Live. + + if (!LiveValues.insert(RA).second) + return; // We were already marked Live. + + DEBUG(dbgs() << "DAE - Marking " << RA.getDescription() << " live\n"); + PropagateLiveness(RA); +} + +/// PropagateLiveness - Given that RA is a live value, propagate it's liveness +/// to any other values it uses (according to Uses). +void DAE::PropagateLiveness(const RetOrArg &RA) { + // We don't use upper_bound (or equal_range) here, because our recursive call + // to ourselves is likely to cause the upper_bound (which is the first value + // not belonging to RA) to become erased and the iterator invalidated. + UseMap::iterator Begin = Uses.lower_bound(RA); + UseMap::iterator E = Uses.end(); + UseMap::iterator I; + for (I = Begin; I != E && I->first == RA; ++I) + MarkLive(I->second); + + // Erase RA from the Uses map (from the lower bound to wherever we ended up + // after the loop). + Uses.erase(Begin, I); +} + +// RemoveDeadStuffFromFunction - Remove any arguments and return values from F +// that are not in LiveValues. Transform the function and all of the callees of +// the function to not have these arguments and return values. +// +bool DAE::RemoveDeadStuffFromFunction(Function *F) { + // Don't modify fully live functions + if (LiveFunctions.count(F)) + return false; + + // Start by computing a new prototype for the function, which is the same as + // the old function, but has fewer arguments and a different return type. + FunctionType *FTy = F->getFunctionType(); + std::vector<Type*> Params; + + // Keep track of if we have a live 'returned' argument + bool HasLiveReturnedArg = false; + + // Set up to build a new list of parameter attributes. + SmallVector<AttributeSet, 8> AttributesVec; + const AttributeSet &PAL = F->getAttributes(); + + // Remember which arguments are still alive. + SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false); + // Construct the new parameter list from non-dead arguments. Also construct + // a new set of parameter attributes to correspond. Skip the first parameter + // attribute, since that belongs to the return value. + unsigned i = 0; + for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); + I != E; ++I, ++i) { + RetOrArg Arg = CreateArg(F, i); + if (LiveValues.erase(Arg)) { + Params.push_back(I->getType()); + ArgAlive[i] = true; + + // Get the original parameter attributes (skipping the first one, that is + // for the return value. + if (PAL.hasAttributes(i + 1)) { + AttrBuilder B(PAL, i + 1); + if (B.contains(Attribute::Returned)) + HasLiveReturnedArg = true; + AttributesVec. + push_back(AttributeSet::get(F->getContext(), Params.size(), B)); + } + } else { + ++NumArgumentsEliminated; + DEBUG(dbgs() << "DAE - Removing argument " << i << " (" << I->getName() + << ") from " << F->getName() << "\n"); + } + } + + // Find out the new return value. + Type *RetTy = FTy->getReturnType(); + Type *NRetTy = NULL; + unsigned RetCount = NumRetVals(F); + + // -1 means unused, other numbers are the new index + SmallVector<int, 5> NewRetIdxs(RetCount, -1); + std::vector<Type*> RetTypes; + + // If there is a function with a live 'returned' argument but a dead return + // value, then there are two possible actions: + // 1) Eliminate the return value and take off the 'returned' attribute on the + // argument. + // 2) Retain the 'returned' attribute and treat the return value (but not the + // entire function) as live so that it is not eliminated. + // + // It's not clear in the general case which option is more profitable because, + // even in the absence of explicit uses of the return value, code generation + // is free to use the 'returned' attribute to do things like eliding + // save/restores of registers across calls. Whether or not this happens is + // target and ABI-specific as well as depending on the amount of register + // pressure, so there's no good way for an IR-level pass to figure this out. + // + // Fortunately, the only places where 'returned' is currently generated by + // the FE are places where 'returned' is basically free and almost always a + // performance win, so the second option can just be used always for now. + // + // This should be revisited if 'returned' is ever applied more liberally. + if (RetTy->isVoidTy() || HasLiveReturnedArg) { + NRetTy = RetTy; + } else { + StructType *STy = dyn_cast<StructType>(RetTy); + if (STy) + // Look at each of the original return values individually. + for (unsigned i = 0; i != RetCount; ++i) { + RetOrArg Ret = CreateRet(F, i); + if (LiveValues.erase(Ret)) { + RetTypes.push_back(STy->getElementType(i)); + NewRetIdxs[i] = RetTypes.size() - 1; + } else { + ++NumRetValsEliminated; + DEBUG(dbgs() << "DAE - Removing return value " << i << " from " + << F->getName() << "\n"); + } + } + else + // We used to return a single value. + if (LiveValues.erase(CreateRet(F, 0))) { + RetTypes.push_back(RetTy); + NewRetIdxs[0] = 0; + } else { + DEBUG(dbgs() << "DAE - Removing return value from " << F->getName() + << "\n"); + ++NumRetValsEliminated; + } + if (RetTypes.size() > 1) + // More than one return type? Return a struct with them. Also, if we used + // to return a struct and didn't change the number of return values, + // return a struct again. This prevents changing {something} into + // something and {} into void. + // Make the new struct packed if we used to return a packed struct + // already. + NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked()); + else if (RetTypes.size() == 1) + // One return type? Just a simple value then, but only if we didn't use to + // return a struct with that simple value before. + NRetTy = RetTypes.front(); + else if (RetTypes.size() == 0) + // No return types? Make it void, but only if we didn't use to return {}. + NRetTy = Type::getVoidTy(F->getContext()); + } + + assert(NRetTy && "No new return type found?"); + + // The existing function return attributes. + AttributeSet RAttrs = PAL.getRetAttributes(); + + // Remove any incompatible attributes, but only if we removed all return + // values. Otherwise, ensure that we don't have any conflicting attributes + // here. Currently, this should not be possible, but special handling might be + // required when new return value attributes are added. + if (NRetTy->isVoidTy()) + RAttrs = + AttributeSet::get(NRetTy->getContext(), AttributeSet::ReturnIndex, + AttrBuilder(RAttrs, AttributeSet::ReturnIndex). + removeAttributes(AttributeFuncs:: + typeIncompatible(NRetTy, AttributeSet::ReturnIndex), + AttributeSet::ReturnIndex)); + else + assert(!AttrBuilder(RAttrs, AttributeSet::ReturnIndex). + hasAttributes(AttributeFuncs:: + typeIncompatible(NRetTy, AttributeSet::ReturnIndex), + AttributeSet::ReturnIndex) && + "Return attributes no longer compatible?"); + + if (RAttrs.hasAttributes(AttributeSet::ReturnIndex)) + AttributesVec.push_back(AttributeSet::get(NRetTy->getContext(), RAttrs)); + + if (PAL.hasAttributes(AttributeSet::FunctionIndex)) + AttributesVec.push_back(AttributeSet::get(F->getContext(), + PAL.getFnAttributes())); + + // Reconstruct the AttributesList based on the vector we constructed. + AttributeSet NewPAL = AttributeSet::get(F->getContext(), AttributesVec); + + // Create the new function type based on the recomputed parameters. + FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg()); + + // No change? + if (NFTy == FTy) + return false; + + // Create the new function body and insert it into the module... + Function *NF = Function::Create(NFTy, F->getLinkage()); + NF->copyAttributesFrom(F); + NF->setAttributes(NewPAL); + // Insert the new function before the old function, so we won't be processing + // it again. + F->getParent()->getFunctionList().insert(F, NF); + NF->takeName(F); + + // Loop over all of the callers of the function, transforming the call sites + // to pass in a smaller number of arguments into the new function. + // + std::vector<Value*> Args; + while (!F->use_empty()) { + CallSite CS(F->use_back()); + Instruction *Call = CS.getInstruction(); + + AttributesVec.clear(); + const AttributeSet &CallPAL = CS.getAttributes(); + + // The call return attributes. + AttributeSet RAttrs = CallPAL.getRetAttributes(); + + // Adjust in case the function was changed to return void. + RAttrs = + AttributeSet::get(NF->getContext(), AttributeSet::ReturnIndex, + AttrBuilder(RAttrs, AttributeSet::ReturnIndex). + removeAttributes(AttributeFuncs:: + typeIncompatible(NF->getReturnType(), + AttributeSet::ReturnIndex), + AttributeSet::ReturnIndex)); + if (RAttrs.hasAttributes(AttributeSet::ReturnIndex)) + AttributesVec.push_back(AttributeSet::get(NF->getContext(), RAttrs)); + + // Declare these outside of the loops, so we can reuse them for the second + // loop, which loops the varargs. + CallSite::arg_iterator I = CS.arg_begin(); + unsigned i = 0; + // Loop over those operands, corresponding to the normal arguments to the + // original function, and add those that are still alive. + for (unsigned e = FTy->getNumParams(); i != e; ++I, ++i) + if (ArgAlive[i]) { + Args.push_back(*I); + // Get original parameter attributes, but skip return attributes. + if (CallPAL.hasAttributes(i + 1)) { + AttrBuilder B(CallPAL, i + 1); + // If the return type has changed, then get rid of 'returned' on the + // call site. The alternative is to make all 'returned' attributes on + // call sites keep the return value alive just like 'returned' + // attributes on function declaration but it's less clearly a win + // and this is not an expected case anyway + if (NRetTy != RetTy && B.contains(Attribute::Returned)) + B.removeAttribute(Attribute::Returned); + AttributesVec. + push_back(AttributeSet::get(F->getContext(), Args.size(), B)); + } + } + + // Push any varargs arguments on the list. Don't forget their attributes. + for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) { + Args.push_back(*I); + if (CallPAL.hasAttributes(i + 1)) { + AttrBuilder B(CallPAL, i + 1); + AttributesVec. + push_back(AttributeSet::get(F->getContext(), Args.size(), B)); + } + } + + if (CallPAL.hasAttributes(AttributeSet::FunctionIndex)) + AttributesVec.push_back(AttributeSet::get(Call->getContext(), + CallPAL.getFnAttributes())); + + // Reconstruct the AttributesList based on the vector we constructed. + AttributeSet NewCallPAL = AttributeSet::get(F->getContext(), AttributesVec); + + Instruction *New; + if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) { + New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(), + Args, "", Call); + cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv()); + cast<InvokeInst>(New)->setAttributes(NewCallPAL); + } else { + New = CallInst::Create(NF, Args, "", Call); + cast<CallInst>(New)->setCallingConv(CS.getCallingConv()); + cast<CallInst>(New)->setAttributes(NewCallPAL); + if (cast<CallInst>(Call)->isTailCall()) + cast<CallInst>(New)->setTailCall(); + } + New->setDebugLoc(Call->getDebugLoc()); + + Args.clear(); + + if (!Call->use_empty()) { + if (New->getType() == Call->getType()) { + // Return type not changed? Just replace users then. + Call->replaceAllUsesWith(New); + New->takeName(Call); + } else if (New->getType()->isVoidTy()) { + // Our return value has uses, but they will get removed later on. + // Replace by null for now. + if (!Call->getType()->isX86_MMXTy()) + Call->replaceAllUsesWith(Constant::getNullValue(Call->getType())); + } else { + assert(RetTy->isStructTy() && + "Return type changed, but not into a void. The old return type" + " must have been a struct!"); + Instruction *InsertPt = Call; + if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) { + BasicBlock::iterator IP = II->getNormalDest()->begin(); + while (isa<PHINode>(IP)) ++IP; + InsertPt = IP; + } + + // We used to return a struct. Instead of doing smart stuff with all the + // uses of this struct, we will just rebuild it using + // extract/insertvalue chaining and let instcombine clean that up. + // + // Start out building up our return value from undef + Value *RetVal = UndefValue::get(RetTy); + for (unsigned i = 0; i != RetCount; ++i) + if (NewRetIdxs[i] != -1) { + Value *V; + if (RetTypes.size() > 1) + // We are still returning a struct, so extract the value from our + // return value + V = ExtractValueInst::Create(New, NewRetIdxs[i], "newret", + InsertPt); + else + // We are now returning a single element, so just insert that + V = New; + // Insert the value at the old position + RetVal = InsertValueInst::Create(RetVal, V, i, "oldret", InsertPt); + } + // Now, replace all uses of the old call instruction with the return + // struct we built + Call->replaceAllUsesWith(RetVal); + New->takeName(Call); + } + } + + // Finally, remove the old call from the program, reducing the use-count of + // F. + Call->eraseFromParent(); + } + + // Since we have now created the new function, splice the body of the old + // function right into the new function, leaving the old rotting hulk of the + // function empty. + NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList()); + + // Loop over the argument list, transferring uses of the old arguments over to + // the new arguments, also transferring over the names as well. + i = 0; + for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(), + I2 = NF->arg_begin(); I != E; ++I, ++i) + if (ArgAlive[i]) { + // If this is a live argument, move the name and users over to the new + // version. + I->replaceAllUsesWith(I2); + I2->takeName(I); + ++I2; + } else { + // If this argument is dead, replace any uses of it with null constants + // (these are guaranteed to become unused later on). + if (!I->getType()->isX86_MMXTy()) + I->replaceAllUsesWith(Constant::getNullValue(I->getType())); + } + + // If we change the return value of the function we must rewrite any return + // instructions. Check this now. + if (F->getReturnType() != NF->getReturnType()) + for (Function::iterator BB = NF->begin(), E = NF->end(); BB != E; ++BB) + if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { + Value *RetVal; + + if (NFTy->getReturnType()->isVoidTy()) { + RetVal = 0; + } else { + assert (RetTy->isStructTy()); + // The original return value was a struct, insert + // extractvalue/insertvalue chains to extract only the values we need + // to return and insert them into our new result. + // This does generate messy code, but we'll let it to instcombine to + // clean that up. + Value *OldRet = RI->getOperand(0); + // Start out building up our return value from undef + RetVal = UndefValue::get(NRetTy); + for (unsigned i = 0; i != RetCount; ++i) + if (NewRetIdxs[i] != -1) { + ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i, + "oldret", RI); + if (RetTypes.size() > 1) { + // We're still returning a struct, so reinsert the value into + // our new return value at the new index + + RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[i], + "newret", RI); + } else { + // We are now only returning a simple value, so just return the + // extracted value. + RetVal = EV; + } + } + } + // Replace the return instruction with one returning the new return + // value (possibly 0 if we became void). + ReturnInst::Create(F->getContext(), RetVal, RI); + BB->getInstList().erase(RI); + } + + // Patch the pointer to LLVM function in debug info descriptor. + FunctionDIMap::iterator DI = FunctionDIs.find(F); + if (DI != FunctionDIs.end()) + DI->second.replaceFunction(NF); + + // Now that the old function is dead, delete it. + F->eraseFromParent(); + + return true; +} + +bool DAE::runOnModule(Module &M) { + bool Changed = false; + + // Collect debug info descriptors for functions. + CollectFunctionDIs(M); + + // First pass: Do a simple check to see if any functions can have their "..." + // removed. We can do this if they never call va_start. This loop cannot be + // fused with the next loop, because deleting a function invalidates + // information computed while surveying other functions. + DEBUG(dbgs() << "DAE - Deleting dead varargs\n"); + for (Module::iterator I = M.begin(), E = M.end(); I != E; ) { + Function &F = *I++; + if (F.getFunctionType()->isVarArg()) + Changed |= DeleteDeadVarargs(F); + } + + // Second phase:loop through the module, determining which arguments are live. + // We assume all arguments are dead unless proven otherwise (allowing us to + // determine that dead arguments passed into recursive functions are dead). + // + DEBUG(dbgs() << "DAE - Determining liveness\n"); + for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) + SurveyFunction(*I); + + // Now, remove all dead arguments and return values from each function in + // turn. + for (Module::iterator I = M.begin(), E = M.end(); I != E; ) { + // Increment now, because the function will probably get removed (ie. + // replaced by a new one). + Function *F = I++; + Changed |= RemoveDeadStuffFromFunction(F); + } + + // Finally, look for any unused parameters in functions with non-local + // linkage and replace the passed in parameters with undef. + for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) { + Function& F = *I; + + Changed |= RemoveDeadArgumentsFromCallers(F); + } + + return Changed; +}