Mercurial > hg > Members > tobaru > cbc > CbC_llvm
view lib/IR/LLVMContextImpl.cpp @ 122:36195a0db682
merging ( incomplete )
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 17 Nov 2017 20:32:31 +0900 |
parents | b0dd3743370f 803732b1fca8 |
children |
line wrap: on
line source
//===- LLVMContextImpl.cpp - Implement LLVMContextImpl --------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the opaque LLVMContextImpl. // //===----------------------------------------------------------------------===// #include "LLVMContextImpl.h" #include "llvm/IR/Module.h" #include "llvm/IR/OptBisect.h" #include "llvm/IR/Type.h" #include "llvm/Support/ManagedStatic.h" #include <cassert> #include <utility> using namespace llvm; LLVMContextImpl::LLVMContextImpl(LLVMContext &C) : DiagHandler(llvm::make_unique<DiagnosticHandler>()), VoidTy(C, Type::VoidTyID), LabelTy(C, Type::LabelTyID), HalfTy(C, Type::HalfTyID), FloatTy(C, Type::FloatTyID), DoubleTy(C, Type::DoubleTyID), MetadataTy(C, Type::MetadataTyID), TokenTy(C, Type::TokenTyID), X86_FP80Ty(C, Type::X86_FP80TyID), FP128Ty(C, Type::FP128TyID), PPC_FP128Ty(C, Type::PPC_FP128TyID), X86_MMXTy(C, Type::X86_MMXTyID), #ifndef noCbC __CodeTy(C, Type::__CodeTyID), #endif Int1Ty(C, 1), Int8Ty(C, 8), Int16Ty(C, 16), Int32Ty(C, 32), Int64Ty(C, 64), Int128Ty(C, 128) {} LLVMContextImpl::~LLVMContextImpl() { // NOTE: We need to delete the contents of OwnedModules, but Module's dtor // will call LLVMContextImpl::removeModule, thus invalidating iterators into // the container. Avoid iterators during this operation: while (!OwnedModules.empty()) delete *OwnedModules.begin(); // Drop references for MDNodes. Do this before Values get deleted to avoid // unnecessary RAUW when nodes are still unresolved. for (auto *I : DistinctMDNodes) I->dropAllReferences(); #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ for (auto *I : CLASS##s) \ I->dropAllReferences(); #include "llvm/IR/Metadata.def" // Also drop references that come from the Value bridges. for (auto &Pair : ValuesAsMetadata) Pair.second->dropUsers(); for (auto &Pair : MetadataAsValues) Pair.second->dropUse(); // Destroy MDNodes. for (MDNode *I : DistinctMDNodes) I->deleteAsSubclass(); #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ for (CLASS * I : CLASS##s) \ delete I; #include "llvm/IR/Metadata.def" // Free the constants. for (auto *I : ExprConstants) I->dropAllReferences(); for (auto *I : ArrayConstants) I->dropAllReferences(); for (auto *I : StructConstants) I->dropAllReferences(); for (auto *I : VectorConstants) I->dropAllReferences(); ExprConstants.freeConstants(); ArrayConstants.freeConstants(); StructConstants.freeConstants(); VectorConstants.freeConstants(); InlineAsms.freeConstants(); CAZConstants.clear(); CPNConstants.clear(); UVConstants.clear(); IntConstants.clear(); FPConstants.clear(); for (auto &CDSConstant : CDSConstants) delete CDSConstant.second; CDSConstants.clear(); // Destroy attributes. for (FoldingSetIterator<AttributeImpl> I = AttrsSet.begin(), E = AttrsSet.end(); I != E; ) { FoldingSetIterator<AttributeImpl> Elem = I++; delete &*Elem; } // Destroy attribute lists. for (FoldingSetIterator<AttributeListImpl> I = AttrsLists.begin(), E = AttrsLists.end(); I != E;) { FoldingSetIterator<AttributeListImpl> Elem = I++; delete &*Elem; } // Destroy attribute node lists. for (FoldingSetIterator<AttributeSetNode> I = AttrsSetNodes.begin(), E = AttrsSetNodes.end(); I != E; ) { FoldingSetIterator<AttributeSetNode> Elem = I++; delete &*Elem; } // Destroy MetadataAsValues. { SmallVector<MetadataAsValue *, 8> MDVs; MDVs.reserve(MetadataAsValues.size()); for (auto &Pair : MetadataAsValues) MDVs.push_back(Pair.second); MetadataAsValues.clear(); for (auto *V : MDVs) delete V; } // Destroy ValuesAsMetadata. for (auto &Pair : ValuesAsMetadata) delete Pair.second; } void LLVMContextImpl::dropTriviallyDeadConstantArrays() { bool Changed; do { Changed = false; for (auto I = ArrayConstants.begin(), E = ArrayConstants.end(); I != E;) { auto *C = *I++; if (C->use_empty()) { Changed = true; C->destroyConstant(); } } } while (Changed); } void Module::dropTriviallyDeadConstantArrays() { Context.pImpl->dropTriviallyDeadConstantArrays(); } namespace llvm { /// \brief Make MDOperand transparent for hashing. /// /// This overload of an implementation detail of the hashing library makes /// MDOperand hash to the same value as a \a Metadata pointer. /// /// Note that overloading \a hash_value() as follows: /// /// \code /// size_t hash_value(const MDOperand &X) { return hash_value(X.get()); } /// \endcode /// /// does not cause MDOperand to be transparent. In particular, a bare pointer /// doesn't get hashed before it's combined, whereas \a MDOperand would. static const Metadata *get_hashable_data(const MDOperand &X) { return X.get(); } } // end namespace llvm unsigned MDNodeOpsKey::calculateHash(MDNode *N, unsigned Offset) { unsigned Hash = hash_combine_range(N->op_begin() + Offset, N->op_end()); #ifndef NDEBUG { SmallVector<Metadata *, 8> MDs(N->op_begin() + Offset, N->op_end()); unsigned RawHash = calculateHash(MDs); assert(Hash == RawHash && "Expected hash of MDOperand to equal hash of Metadata*"); } #endif return Hash; } unsigned MDNodeOpsKey::calculateHash(ArrayRef<Metadata *> Ops) { return hash_combine_range(Ops.begin(), Ops.end()); } StringMapEntry<uint32_t> *LLVMContextImpl::getOrInsertBundleTag(StringRef Tag) { uint32_t NewIdx = BundleTagCache.size(); return &*(BundleTagCache.insert(std::make_pair(Tag, NewIdx)).first); } void LLVMContextImpl::getOperandBundleTags(SmallVectorImpl<StringRef> &Tags) const { Tags.resize(BundleTagCache.size()); for (const auto &T : BundleTagCache) Tags[T.second] = T.first(); } uint32_t LLVMContextImpl::getOperandBundleTagID(StringRef Tag) const { auto I = BundleTagCache.find(Tag); assert(I != BundleTagCache.end() && "Unknown tag!"); return I->second; } SyncScope::ID LLVMContextImpl::getOrInsertSyncScopeID(StringRef SSN) { auto NewSSID = SSC.size(); assert(NewSSID < std::numeric_limits<SyncScope::ID>::max() && "Hit the maximum number of synchronization scopes allowed!"); return SSC.insert(std::make_pair(SSN, SyncScope::ID(NewSSID))).first->second; } void LLVMContextImpl::getSyncScopeNames( SmallVectorImpl<StringRef> &SSNs) const { SSNs.resize(SSC.size()); for (const auto &SSE : SSC) SSNs[SSE.second] = SSE.first(); } /// Singleton instance of the OptBisect class. /// /// This singleton is accessed via the LLVMContext::getOptBisect() function. It /// provides a mechanism to disable passes and individual optimizations at /// compile time based on a command line option (-opt-bisect-limit) in order to /// perform a bisecting search for optimization-related problems. /// /// Even if multiple LLVMContext objects are created, they will all return the /// same instance of OptBisect in order to provide a single bisect count. Any /// code that uses the OptBisect object should be serialized when bisection is /// enabled in order to enable a consistent bisect count. static ManagedStatic<OptBisect> OptBisector; OptBisect &LLVMContextImpl::getOptBisect() { return *OptBisector; }