Mercurial > hg > Members > tobaru > cbc > CbC_llvm
view lib/IR/LLVMContextImpl.h @ 122:36195a0db682
merging ( incomplete )
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 17 Nov 2017 20:32:31 +0900 |
parents | 57be027de0f4 803732b1fca8 |
children |
line wrap: on
line source
//===- LLVMContextImpl.h - The LLVMContextImpl opaque class -----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file declares LLVMContextImpl, the opaque implementation // of LLVMContext. // //===----------------------------------------------------------------------===// #ifndef LLVM_LIB_IR_LLVMCONTEXTIMPL_H #define LLVM_LIB_IR_LLVMCONTEXTIMPL_H #include "AttributeImpl.h" #include "ConstantsContext.h" #include "llvm/ADT/APFloat.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseMapInfo.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/FoldingSet.h" #include "llvm/ADT/Hashing.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/StringSet.h" #include "llvm/BinaryFormat/Dwarf.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/TrackingMDRef.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/Casting.h" #include "llvm/Support/YAMLTraits.h" #include <algorithm> #include <cassert> #include <cstddef> #include <cstdint> #include <memory> #include <string> #include <utility> #include <vector> namespace llvm { class ConstantFP; class ConstantInt; class Type; class Value; class ValueHandleBase; struct DenseMapAPIntKeyInfo { static inline APInt getEmptyKey() { APInt V(nullptr, 0); V.U.VAL = 0; return V; } static inline APInt getTombstoneKey() { APInt V(nullptr, 0); V.U.VAL = 1; return V; } static unsigned getHashValue(const APInt &Key) { return static_cast<unsigned>(hash_value(Key)); } static bool isEqual(const APInt &LHS, const APInt &RHS) { return LHS.getBitWidth() == RHS.getBitWidth() && LHS == RHS; } }; struct DenseMapAPFloatKeyInfo { static inline APFloat getEmptyKey() { return APFloat(APFloat::Bogus(), 1); } static inline APFloat getTombstoneKey() { return APFloat(APFloat::Bogus(), 2); } static unsigned getHashValue(const APFloat &Key) { return static_cast<unsigned>(hash_value(Key)); } static bool isEqual(const APFloat &LHS, const APFloat &RHS) { return LHS.bitwiseIsEqual(RHS); } }; struct AnonStructTypeKeyInfo { struct KeyTy { ArrayRef<Type*> ETypes; bool isPacked; KeyTy(const ArrayRef<Type*>& E, bool P) : ETypes(E), isPacked(P) {} KeyTy(const StructType *ST) : ETypes(ST->elements()), isPacked(ST->isPacked()) {} bool operator==(const KeyTy& that) const { if (isPacked != that.isPacked) return false; if (ETypes != that.ETypes) return false; return true; } bool operator!=(const KeyTy& that) const { return !this->operator==(that); } }; static inline StructType* getEmptyKey() { return DenseMapInfo<StructType*>::getEmptyKey(); } static inline StructType* getTombstoneKey() { return DenseMapInfo<StructType*>::getTombstoneKey(); } static unsigned getHashValue(const KeyTy& Key) { return hash_combine(hash_combine_range(Key.ETypes.begin(), Key.ETypes.end()), Key.isPacked); } static unsigned getHashValue(const StructType *ST) { return getHashValue(KeyTy(ST)); } static bool isEqual(const KeyTy& LHS, const StructType *RHS) { if (RHS == getEmptyKey() || RHS == getTombstoneKey()) return false; return LHS == KeyTy(RHS); } static bool isEqual(const StructType *LHS, const StructType *RHS) { return LHS == RHS; } }; struct FunctionTypeKeyInfo { struct KeyTy { const Type *ReturnType; ArrayRef<Type*> Params; bool isVarArg; KeyTy(const Type* R, const ArrayRef<Type*>& P, bool V) : ReturnType(R), Params(P), isVarArg(V) {} KeyTy(const FunctionType *FT) : ReturnType(FT->getReturnType()), Params(FT->params()), isVarArg(FT->isVarArg()) {} bool operator==(const KeyTy& that) const { if (ReturnType != that.ReturnType) return false; if (isVarArg != that.isVarArg) return false; if (Params != that.Params) return false; return true; } bool operator!=(const KeyTy& that) const { return !this->operator==(that); } }; static inline FunctionType* getEmptyKey() { return DenseMapInfo<FunctionType*>::getEmptyKey(); } static inline FunctionType* getTombstoneKey() { return DenseMapInfo<FunctionType*>::getTombstoneKey(); } static unsigned getHashValue(const KeyTy& Key) { return hash_combine(Key.ReturnType, hash_combine_range(Key.Params.begin(), Key.Params.end()), Key.isVarArg); } static unsigned getHashValue(const FunctionType *FT) { return getHashValue(KeyTy(FT)); } static bool isEqual(const KeyTy& LHS, const FunctionType *RHS) { if (RHS == getEmptyKey() || RHS == getTombstoneKey()) return false; return LHS == KeyTy(RHS); } static bool isEqual(const FunctionType *LHS, const FunctionType *RHS) { return LHS == RHS; } }; /// \brief Structure for hashing arbitrary MDNode operands. class MDNodeOpsKey { ArrayRef<Metadata *> RawOps; ArrayRef<MDOperand> Ops; unsigned Hash; protected: MDNodeOpsKey(ArrayRef<Metadata *> Ops) : RawOps(Ops), Hash(calculateHash(Ops)) {} template <class NodeTy> MDNodeOpsKey(const NodeTy *N, unsigned Offset = 0) : Ops(N->op_begin() + Offset, N->op_end()), Hash(N->getHash()) {} template <class NodeTy> bool compareOps(const NodeTy *RHS, unsigned Offset = 0) const { if (getHash() != RHS->getHash()) return false; assert((RawOps.empty() || Ops.empty()) && "Two sets of operands?"); return RawOps.empty() ? compareOps(Ops, RHS, Offset) : compareOps(RawOps, RHS, Offset); } static unsigned calculateHash(MDNode *N, unsigned Offset = 0); private: template <class T> static bool compareOps(ArrayRef<T> Ops, const MDNode *RHS, unsigned Offset) { if (Ops.size() != RHS->getNumOperands() - Offset) return false; return std::equal(Ops.begin(), Ops.end(), RHS->op_begin() + Offset); } static unsigned calculateHash(ArrayRef<Metadata *> Ops); public: unsigned getHash() const { return Hash; } }; template <class NodeTy> struct MDNodeKeyImpl; /// Configuration point for MDNodeInfo::isEqual(). template <class NodeTy> struct MDNodeSubsetEqualImpl { using KeyTy = MDNodeKeyImpl<NodeTy>; static bool isSubsetEqual(const KeyTy &LHS, const NodeTy *RHS) { return false; } static bool isSubsetEqual(const NodeTy *LHS, const NodeTy *RHS) { return false; } }; /// \brief DenseMapInfo for MDTuple. /// /// Note that we don't need the is-function-local bit, since that's implicit in /// the operands. template <> struct MDNodeKeyImpl<MDTuple> : MDNodeOpsKey { MDNodeKeyImpl(ArrayRef<Metadata *> Ops) : MDNodeOpsKey(Ops) {} MDNodeKeyImpl(const MDTuple *N) : MDNodeOpsKey(N) {} bool isKeyOf(const MDTuple *RHS) const { return compareOps(RHS); } unsigned getHashValue() const { return getHash(); } static unsigned calculateHash(MDTuple *N) { return MDNodeOpsKey::calculateHash(N); } }; /// \brief DenseMapInfo for DILocation. template <> struct MDNodeKeyImpl<DILocation> { unsigned Line; unsigned Column; Metadata *Scope; Metadata *InlinedAt; MDNodeKeyImpl(unsigned Line, unsigned Column, Metadata *Scope, Metadata *InlinedAt) : Line(Line), Column(Column), Scope(Scope), InlinedAt(InlinedAt) {} MDNodeKeyImpl(const DILocation *L) : Line(L->getLine()), Column(L->getColumn()), Scope(L->getRawScope()), InlinedAt(L->getRawInlinedAt()) {} bool isKeyOf(const DILocation *RHS) const { return Line == RHS->getLine() && Column == RHS->getColumn() && Scope == RHS->getRawScope() && InlinedAt == RHS->getRawInlinedAt(); } unsigned getHashValue() const { return hash_combine(Line, Column, Scope, InlinedAt); } }; /// \brief DenseMapInfo for GenericDINode. template <> struct MDNodeKeyImpl<GenericDINode> : MDNodeOpsKey { unsigned Tag; MDString *Header; MDNodeKeyImpl(unsigned Tag, MDString *Header, ArrayRef<Metadata *> DwarfOps) : MDNodeOpsKey(DwarfOps), Tag(Tag), Header(Header) {} MDNodeKeyImpl(const GenericDINode *N) : MDNodeOpsKey(N, 1), Tag(N->getTag()), Header(N->getRawHeader()) {} bool isKeyOf(const GenericDINode *RHS) const { return Tag == RHS->getTag() && Header == RHS->getRawHeader() && compareOps(RHS, 1); } unsigned getHashValue() const { return hash_combine(getHash(), Tag, Header); } static unsigned calculateHash(GenericDINode *N) { return MDNodeOpsKey::calculateHash(N, 1); } }; template <> struct MDNodeKeyImpl<DISubrange> { int64_t Count; int64_t LowerBound; MDNodeKeyImpl(int64_t Count, int64_t LowerBound) : Count(Count), LowerBound(LowerBound) {} MDNodeKeyImpl(const DISubrange *N) : Count(N->getCount()), LowerBound(N->getLowerBound()) {} bool isKeyOf(const DISubrange *RHS) const { return Count == RHS->getCount() && LowerBound == RHS->getLowerBound(); } unsigned getHashValue() const { return hash_combine(Count, LowerBound); } }; template <> struct MDNodeKeyImpl<DIEnumerator> { int64_t Value; MDString *Name; MDNodeKeyImpl(int64_t Value, MDString *Name) : Value(Value), Name(Name) {} MDNodeKeyImpl(const DIEnumerator *N) : Value(N->getValue()), Name(N->getRawName()) {} bool isKeyOf(const DIEnumerator *RHS) const { return Value == RHS->getValue() && Name == RHS->getRawName(); } unsigned getHashValue() const { return hash_combine(Value, Name); } }; template <> struct MDNodeKeyImpl<DIBasicType> { unsigned Tag; MDString *Name; uint64_t SizeInBits; uint32_t AlignInBits; unsigned Encoding; MDNodeKeyImpl(unsigned Tag, MDString *Name, uint64_t SizeInBits, uint32_t AlignInBits, unsigned Encoding) : Tag(Tag), Name(Name), SizeInBits(SizeInBits), AlignInBits(AlignInBits), Encoding(Encoding) {} MDNodeKeyImpl(const DIBasicType *N) : Tag(N->getTag()), Name(N->getRawName()), SizeInBits(N->getSizeInBits()), AlignInBits(N->getAlignInBits()), Encoding(N->getEncoding()) {} bool isKeyOf(const DIBasicType *RHS) const { return Tag == RHS->getTag() && Name == RHS->getRawName() && SizeInBits == RHS->getSizeInBits() && AlignInBits == RHS->getAlignInBits() && Encoding == RHS->getEncoding(); } unsigned getHashValue() const { return hash_combine(Tag, Name, SizeInBits, AlignInBits, Encoding); } }; template <> struct MDNodeKeyImpl<DIDerivedType> { unsigned Tag; MDString *Name; Metadata *File; unsigned Line; Metadata *Scope; Metadata *BaseType; uint64_t SizeInBits; uint64_t OffsetInBits; uint32_t AlignInBits; Optional<unsigned> DWARFAddressSpace; unsigned Flags; Metadata *ExtraData; MDNodeKeyImpl(unsigned Tag, MDString *Name, Metadata *File, unsigned Line, Metadata *Scope, Metadata *BaseType, uint64_t SizeInBits, uint32_t AlignInBits, uint64_t OffsetInBits, Optional<unsigned> DWARFAddressSpace, unsigned Flags, Metadata *ExtraData) : Tag(Tag), Name(Name), File(File), Line(Line), Scope(Scope), BaseType(BaseType), SizeInBits(SizeInBits), OffsetInBits(OffsetInBits), AlignInBits(AlignInBits), DWARFAddressSpace(DWARFAddressSpace), Flags(Flags), ExtraData(ExtraData) {} MDNodeKeyImpl(const DIDerivedType *N) : Tag(N->getTag()), Name(N->getRawName()), File(N->getRawFile()), Line(N->getLine()), Scope(N->getRawScope()), BaseType(N->getRawBaseType()), SizeInBits(N->getSizeInBits()), OffsetInBits(N->getOffsetInBits()), AlignInBits(N->getAlignInBits()), DWARFAddressSpace(N->getDWARFAddressSpace()), Flags(N->getFlags()), ExtraData(N->getRawExtraData()) {} bool isKeyOf(const DIDerivedType *RHS) const { return Tag == RHS->getTag() && Name == RHS->getRawName() && File == RHS->getRawFile() && Line == RHS->getLine() && Scope == RHS->getRawScope() && BaseType == RHS->getRawBaseType() && SizeInBits == RHS->getSizeInBits() && AlignInBits == RHS->getAlignInBits() && OffsetInBits == RHS->getOffsetInBits() && DWARFAddressSpace == RHS->getDWARFAddressSpace() && Flags == RHS->getFlags() && ExtraData == RHS->getRawExtraData(); } unsigned getHashValue() const { // If this is a member inside an ODR type, only hash the type and the name. // Otherwise the hash will be stronger than // MDNodeSubsetEqualImpl::isODRMember(). if (Tag == dwarf::DW_TAG_member && Name) if (auto *CT = dyn_cast_or_null<DICompositeType>(Scope)) if (CT->getRawIdentifier()) return hash_combine(Name, Scope); // Intentionally computes the hash on a subset of the operands for // performance reason. The subset has to be significant enough to avoid // collision "most of the time". There is no correctness issue in case of // collision because of the full check above. return hash_combine(Tag, Name, File, Line, Scope, BaseType, Flags); } }; template <> struct MDNodeSubsetEqualImpl<DIDerivedType> { using KeyTy = MDNodeKeyImpl<DIDerivedType>; static bool isSubsetEqual(const KeyTy &LHS, const DIDerivedType *RHS) { return isODRMember(LHS.Tag, LHS.Scope, LHS.Name, RHS); } static bool isSubsetEqual(const DIDerivedType *LHS, const DIDerivedType *RHS) { return isODRMember(LHS->getTag(), LHS->getRawScope(), LHS->getRawName(), RHS); } /// Subprograms compare equal if they declare the same function in an ODR /// type. static bool isODRMember(unsigned Tag, const Metadata *Scope, const MDString *Name, const DIDerivedType *RHS) { // Check whether the LHS is eligible. if (Tag != dwarf::DW_TAG_member || !Name) return false; auto *CT = dyn_cast_or_null<DICompositeType>(Scope); if (!CT || !CT->getRawIdentifier()) return false; // Compare to the RHS. return Tag == RHS->getTag() && Name == RHS->getRawName() && Scope == RHS->getRawScope(); } }; template <> struct MDNodeKeyImpl<DICompositeType> { unsigned Tag; MDString *Name; Metadata *File; unsigned Line; Metadata *Scope; Metadata *BaseType; uint64_t SizeInBits; uint64_t OffsetInBits; uint32_t AlignInBits; unsigned Flags; Metadata *Elements; unsigned RuntimeLang; Metadata *VTableHolder; Metadata *TemplateParams; MDString *Identifier; MDNodeKeyImpl(unsigned Tag, MDString *Name, Metadata *File, unsigned Line, Metadata *Scope, Metadata *BaseType, uint64_t SizeInBits, uint32_t AlignInBits, uint64_t OffsetInBits, unsigned Flags, Metadata *Elements, unsigned RuntimeLang, Metadata *VTableHolder, Metadata *TemplateParams, MDString *Identifier) : Tag(Tag), Name(Name), File(File), Line(Line), Scope(Scope), BaseType(BaseType), SizeInBits(SizeInBits), OffsetInBits(OffsetInBits), AlignInBits(AlignInBits), Flags(Flags), Elements(Elements), RuntimeLang(RuntimeLang), VTableHolder(VTableHolder), TemplateParams(TemplateParams), Identifier(Identifier) {} MDNodeKeyImpl(const DICompositeType *N) : Tag(N->getTag()), Name(N->getRawName()), File(N->getRawFile()), Line(N->getLine()), Scope(N->getRawScope()), BaseType(N->getRawBaseType()), SizeInBits(N->getSizeInBits()), OffsetInBits(N->getOffsetInBits()), AlignInBits(N->getAlignInBits()), Flags(N->getFlags()), Elements(N->getRawElements()), RuntimeLang(N->getRuntimeLang()), VTableHolder(N->getRawVTableHolder()), TemplateParams(N->getRawTemplateParams()), Identifier(N->getRawIdentifier()) {} bool isKeyOf(const DICompositeType *RHS) const { return Tag == RHS->getTag() && Name == RHS->getRawName() && File == RHS->getRawFile() && Line == RHS->getLine() && Scope == RHS->getRawScope() && BaseType == RHS->getRawBaseType() && SizeInBits == RHS->getSizeInBits() && AlignInBits == RHS->getAlignInBits() && OffsetInBits == RHS->getOffsetInBits() && Flags == RHS->getFlags() && Elements == RHS->getRawElements() && RuntimeLang == RHS->getRuntimeLang() && VTableHolder == RHS->getRawVTableHolder() && TemplateParams == RHS->getRawTemplateParams() && Identifier == RHS->getRawIdentifier(); } unsigned getHashValue() const { // Intentionally computes the hash on a subset of the operands for // performance reason. The subset has to be significant enough to avoid // collision "most of the time". There is no correctness issue in case of // collision because of the full check above. return hash_combine(Name, File, Line, BaseType, Scope, Elements, TemplateParams); } }; template <> struct MDNodeKeyImpl<DISubroutineType> { unsigned Flags; uint8_t CC; Metadata *TypeArray; MDNodeKeyImpl(unsigned Flags, uint8_t CC, Metadata *TypeArray) : Flags(Flags), CC(CC), TypeArray(TypeArray) {} MDNodeKeyImpl(const DISubroutineType *N) : Flags(N->getFlags()), CC(N->getCC()), TypeArray(N->getRawTypeArray()) {} bool isKeyOf(const DISubroutineType *RHS) const { return Flags == RHS->getFlags() && CC == RHS->getCC() && TypeArray == RHS->getRawTypeArray(); } unsigned getHashValue() const { return hash_combine(Flags, CC, TypeArray); } }; template <> struct MDNodeKeyImpl<DIFile> { MDString *Filename; MDString *Directory; DIFile::ChecksumKind CSKind; MDString *Checksum; MDNodeKeyImpl(MDString *Filename, MDString *Directory, DIFile::ChecksumKind CSKind, MDString *Checksum) : Filename(Filename), Directory(Directory), CSKind(CSKind), Checksum(Checksum) {} MDNodeKeyImpl(const DIFile *N) : Filename(N->getRawFilename()), Directory(N->getRawDirectory()), CSKind(N->getChecksumKind()), Checksum(N->getRawChecksum()) {} bool isKeyOf(const DIFile *RHS) const { return Filename == RHS->getRawFilename() && Directory == RHS->getRawDirectory() && CSKind == RHS->getChecksumKind() && Checksum == RHS->getRawChecksum(); } unsigned getHashValue() const { return hash_combine(Filename, Directory, CSKind, Checksum); } }; template <> struct MDNodeKeyImpl<DISubprogram> { Metadata *Scope; MDString *Name; MDString *LinkageName; Metadata *File; unsigned Line; Metadata *Type; bool IsLocalToUnit; bool IsDefinition; unsigned ScopeLine; Metadata *ContainingType; unsigned Virtuality; unsigned VirtualIndex; int ThisAdjustment; unsigned Flags; bool IsOptimized; Metadata *Unit; Metadata *TemplateParams; Metadata *Declaration; Metadata *Variables; Metadata *ThrownTypes; MDNodeKeyImpl(Metadata *Scope, MDString *Name, MDString *LinkageName, Metadata *File, unsigned Line, Metadata *Type, bool IsLocalToUnit, bool IsDefinition, unsigned ScopeLine, Metadata *ContainingType, unsigned Virtuality, unsigned VirtualIndex, int ThisAdjustment, unsigned Flags, bool IsOptimized, Metadata *Unit, Metadata *TemplateParams, Metadata *Declaration, Metadata *Variables, Metadata *ThrownTypes) : Scope(Scope), Name(Name), LinkageName(LinkageName), File(File), Line(Line), Type(Type), IsLocalToUnit(IsLocalToUnit), IsDefinition(IsDefinition), ScopeLine(ScopeLine), ContainingType(ContainingType), Virtuality(Virtuality), VirtualIndex(VirtualIndex), ThisAdjustment(ThisAdjustment), Flags(Flags), IsOptimized(IsOptimized), Unit(Unit), TemplateParams(TemplateParams), Declaration(Declaration), Variables(Variables), ThrownTypes(ThrownTypes) {} MDNodeKeyImpl(const DISubprogram *N) : Scope(N->getRawScope()), Name(N->getRawName()), LinkageName(N->getRawLinkageName()), File(N->getRawFile()), Line(N->getLine()), Type(N->getRawType()), IsLocalToUnit(N->isLocalToUnit()), IsDefinition(N->isDefinition()), ScopeLine(N->getScopeLine()), ContainingType(N->getRawContainingType()), Virtuality(N->getVirtuality()), VirtualIndex(N->getVirtualIndex()), ThisAdjustment(N->getThisAdjustment()), Flags(N->getFlags()), IsOptimized(N->isOptimized()), Unit(N->getRawUnit()), TemplateParams(N->getRawTemplateParams()), Declaration(N->getRawDeclaration()), Variables(N->getRawVariables()), ThrownTypes(N->getRawThrownTypes()) {} bool isKeyOf(const DISubprogram *RHS) const { return Scope == RHS->getRawScope() && Name == RHS->getRawName() && LinkageName == RHS->getRawLinkageName() && File == RHS->getRawFile() && Line == RHS->getLine() && Type == RHS->getRawType() && IsLocalToUnit == RHS->isLocalToUnit() && IsDefinition == RHS->isDefinition() && ScopeLine == RHS->getScopeLine() && ContainingType == RHS->getRawContainingType() && Virtuality == RHS->getVirtuality() && VirtualIndex == RHS->getVirtualIndex() && ThisAdjustment == RHS->getThisAdjustment() && Flags == RHS->getFlags() && IsOptimized == RHS->isOptimized() && Unit == RHS->getUnit() && TemplateParams == RHS->getRawTemplateParams() && Declaration == RHS->getRawDeclaration() && Variables == RHS->getRawVariables() && ThrownTypes == RHS->getRawThrownTypes(); } unsigned getHashValue() const { // If this is a declaration inside an ODR type, only hash the type and the // name. Otherwise the hash will be stronger than // MDNodeSubsetEqualImpl::isDeclarationOfODRMember(). if (!IsDefinition && LinkageName) if (auto *CT = dyn_cast_or_null<DICompositeType>(Scope)) if (CT->getRawIdentifier()) return hash_combine(LinkageName, Scope); // Intentionally computes the hash on a subset of the operands for // performance reason. The subset has to be significant enough to avoid // collision "most of the time". There is no correctness issue in case of // collision because of the full check above. return hash_combine(Name, Scope, File, Type, Line); } }; template <> struct MDNodeSubsetEqualImpl<DISubprogram> { using KeyTy = MDNodeKeyImpl<DISubprogram>; static bool isSubsetEqual(const KeyTy &LHS, const DISubprogram *RHS) { return isDeclarationOfODRMember(LHS.IsDefinition, LHS.Scope, LHS.LinkageName, LHS.TemplateParams, RHS); } static bool isSubsetEqual(const DISubprogram *LHS, const DISubprogram *RHS) { return isDeclarationOfODRMember(LHS->isDefinition(), LHS->getRawScope(), LHS->getRawLinkageName(), LHS->getRawTemplateParams(), RHS); } /// Subprograms compare equal if they declare the same function in an ODR /// type. static bool isDeclarationOfODRMember(bool IsDefinition, const Metadata *Scope, const MDString *LinkageName, const Metadata *TemplateParams, const DISubprogram *RHS) { // Check whether the LHS is eligible. if (IsDefinition || !Scope || !LinkageName) return false; auto *CT = dyn_cast_or_null<DICompositeType>(Scope); if (!CT || !CT->getRawIdentifier()) return false; // Compare to the RHS. // FIXME: We need to compare template parameters here to avoid incorrect // collisions in mapMetadata when RF_MoveDistinctMDs and a ODR-DISubprogram // has a non-ODR template parameter (i.e., a DICompositeType that does not // have an identifier). Eventually we should decouple ODR logic from // uniquing logic. return IsDefinition == RHS->isDefinition() && Scope == RHS->getRawScope() && LinkageName == RHS->getRawLinkageName() && TemplateParams == RHS->getRawTemplateParams(); } }; template <> struct MDNodeKeyImpl<DILexicalBlock> { Metadata *Scope; Metadata *File; unsigned Line; unsigned Column; MDNodeKeyImpl(Metadata *Scope, Metadata *File, unsigned Line, unsigned Column) : Scope(Scope), File(File), Line(Line), Column(Column) {} MDNodeKeyImpl(const DILexicalBlock *N) : Scope(N->getRawScope()), File(N->getRawFile()), Line(N->getLine()), Column(N->getColumn()) {} bool isKeyOf(const DILexicalBlock *RHS) const { return Scope == RHS->getRawScope() && File == RHS->getRawFile() && Line == RHS->getLine() && Column == RHS->getColumn(); } unsigned getHashValue() const { return hash_combine(Scope, File, Line, Column); } }; template <> struct MDNodeKeyImpl<DILexicalBlockFile> { Metadata *Scope; Metadata *File; unsigned Discriminator; MDNodeKeyImpl(Metadata *Scope, Metadata *File, unsigned Discriminator) : Scope(Scope), File(File), Discriminator(Discriminator) {} MDNodeKeyImpl(const DILexicalBlockFile *N) : Scope(N->getRawScope()), File(N->getRawFile()), Discriminator(N->getDiscriminator()) {} bool isKeyOf(const DILexicalBlockFile *RHS) const { return Scope == RHS->getRawScope() && File == RHS->getRawFile() && Discriminator == RHS->getDiscriminator(); } unsigned getHashValue() const { return hash_combine(Scope, File, Discriminator); } }; template <> struct MDNodeKeyImpl<DINamespace> { Metadata *Scope; MDString *Name; bool ExportSymbols; MDNodeKeyImpl(Metadata *Scope, MDString *Name, bool ExportSymbols) : Scope(Scope), Name(Name), ExportSymbols(ExportSymbols) {} MDNodeKeyImpl(const DINamespace *N) : Scope(N->getRawScope()), Name(N->getRawName()), ExportSymbols(N->getExportSymbols()) {} bool isKeyOf(const DINamespace *RHS) const { return Scope == RHS->getRawScope() && Name == RHS->getRawName() && ExportSymbols == RHS->getExportSymbols(); } unsigned getHashValue() const { return hash_combine(Scope, Name); } }; template <> struct MDNodeKeyImpl<DIModule> { Metadata *Scope; MDString *Name; MDString *ConfigurationMacros; MDString *IncludePath; MDString *ISysRoot; MDNodeKeyImpl(Metadata *Scope, MDString *Name, MDString *ConfigurationMacros, MDString *IncludePath, MDString *ISysRoot) : Scope(Scope), Name(Name), ConfigurationMacros(ConfigurationMacros), IncludePath(IncludePath), ISysRoot(ISysRoot) {} MDNodeKeyImpl(const DIModule *N) : Scope(N->getRawScope()), Name(N->getRawName()), ConfigurationMacros(N->getRawConfigurationMacros()), IncludePath(N->getRawIncludePath()), ISysRoot(N->getRawISysRoot()) {} bool isKeyOf(const DIModule *RHS) const { return Scope == RHS->getRawScope() && Name == RHS->getRawName() && ConfigurationMacros == RHS->getRawConfigurationMacros() && IncludePath == RHS->getRawIncludePath() && ISysRoot == RHS->getRawISysRoot(); } unsigned getHashValue() const { return hash_combine(Scope, Name, ConfigurationMacros, IncludePath, ISysRoot); } }; template <> struct MDNodeKeyImpl<DITemplateTypeParameter> { MDString *Name; Metadata *Type; MDNodeKeyImpl(MDString *Name, Metadata *Type) : Name(Name), Type(Type) {} MDNodeKeyImpl(const DITemplateTypeParameter *N) : Name(N->getRawName()), Type(N->getRawType()) {} bool isKeyOf(const DITemplateTypeParameter *RHS) const { return Name == RHS->getRawName() && Type == RHS->getRawType(); } unsigned getHashValue() const { return hash_combine(Name, Type); } }; template <> struct MDNodeKeyImpl<DITemplateValueParameter> { unsigned Tag; MDString *Name; Metadata *Type; Metadata *Value; MDNodeKeyImpl(unsigned Tag, MDString *Name, Metadata *Type, Metadata *Value) : Tag(Tag), Name(Name), Type(Type), Value(Value) {} MDNodeKeyImpl(const DITemplateValueParameter *N) : Tag(N->getTag()), Name(N->getRawName()), Type(N->getRawType()), Value(N->getValue()) {} bool isKeyOf(const DITemplateValueParameter *RHS) const { return Tag == RHS->getTag() && Name == RHS->getRawName() && Type == RHS->getRawType() && Value == RHS->getValue(); } unsigned getHashValue() const { return hash_combine(Tag, Name, Type, Value); } }; template <> struct MDNodeKeyImpl<DIGlobalVariable> { Metadata *Scope; MDString *Name; MDString *LinkageName; Metadata *File; unsigned Line; Metadata *Type; bool IsLocalToUnit; bool IsDefinition; Metadata *StaticDataMemberDeclaration; uint32_t AlignInBits; MDNodeKeyImpl(Metadata *Scope, MDString *Name, MDString *LinkageName, Metadata *File, unsigned Line, Metadata *Type, bool IsLocalToUnit, bool IsDefinition, Metadata *StaticDataMemberDeclaration, uint32_t AlignInBits) : Scope(Scope), Name(Name), LinkageName(LinkageName), File(File), Line(Line), Type(Type), IsLocalToUnit(IsLocalToUnit), IsDefinition(IsDefinition), StaticDataMemberDeclaration(StaticDataMemberDeclaration), AlignInBits(AlignInBits) {} MDNodeKeyImpl(const DIGlobalVariable *N) : Scope(N->getRawScope()), Name(N->getRawName()), LinkageName(N->getRawLinkageName()), File(N->getRawFile()), Line(N->getLine()), Type(N->getRawType()), IsLocalToUnit(N->isLocalToUnit()), IsDefinition(N->isDefinition()), StaticDataMemberDeclaration(N->getRawStaticDataMemberDeclaration()), AlignInBits(N->getAlignInBits()) {} bool isKeyOf(const DIGlobalVariable *RHS) const { return Scope == RHS->getRawScope() && Name == RHS->getRawName() && LinkageName == RHS->getRawLinkageName() && File == RHS->getRawFile() && Line == RHS->getLine() && Type == RHS->getRawType() && IsLocalToUnit == RHS->isLocalToUnit() && IsDefinition == RHS->isDefinition() && StaticDataMemberDeclaration == RHS->getRawStaticDataMemberDeclaration() && AlignInBits == RHS->getAlignInBits(); } unsigned getHashValue() const { // We do not use AlignInBits in hashing function here on purpose: // in most cases this param for local variable is zero (for function param // it is always zero). This leads to lots of hash collisions and errors on // cases with lots of similar variables. // clang/test/CodeGen/debug-info-257-args.c is an example of this problem, // generated IR is random for each run and test fails with Align included. // TODO: make hashing work fine with such situations return hash_combine(Scope, Name, LinkageName, File, Line, Type, IsLocalToUnit, IsDefinition, /* AlignInBits, */ StaticDataMemberDeclaration); } }; template <> struct MDNodeKeyImpl<DILocalVariable> { Metadata *Scope; MDString *Name; Metadata *File; unsigned Line; Metadata *Type; unsigned Arg; unsigned Flags; uint32_t AlignInBits; MDNodeKeyImpl(Metadata *Scope, MDString *Name, Metadata *File, unsigned Line, Metadata *Type, unsigned Arg, unsigned Flags, uint32_t AlignInBits) : Scope(Scope), Name(Name), File(File), Line(Line), Type(Type), Arg(Arg), Flags(Flags), AlignInBits(AlignInBits) {} MDNodeKeyImpl(const DILocalVariable *N) : Scope(N->getRawScope()), Name(N->getRawName()), File(N->getRawFile()), Line(N->getLine()), Type(N->getRawType()), Arg(N->getArg()), Flags(N->getFlags()), AlignInBits(N->getAlignInBits()) {} bool isKeyOf(const DILocalVariable *RHS) const { return Scope == RHS->getRawScope() && Name == RHS->getRawName() && File == RHS->getRawFile() && Line == RHS->getLine() && Type == RHS->getRawType() && Arg == RHS->getArg() && Flags == RHS->getFlags() && AlignInBits == RHS->getAlignInBits(); } unsigned getHashValue() const { // We do not use AlignInBits in hashing function here on purpose: // in most cases this param for local variable is zero (for function param // it is always zero). This leads to lots of hash collisions and errors on // cases with lots of similar variables. // clang/test/CodeGen/debug-info-257-args.c is an example of this problem, // generated IR is random for each run and test fails with Align included. // TODO: make hashing work fine with such situations return hash_combine(Scope, Name, File, Line, Type, Arg, Flags); } }; template <> struct MDNodeKeyImpl<DIExpression> { ArrayRef<uint64_t> Elements; MDNodeKeyImpl(ArrayRef<uint64_t> Elements) : Elements(Elements) {} MDNodeKeyImpl(const DIExpression *N) : Elements(N->getElements()) {} bool isKeyOf(const DIExpression *RHS) const { return Elements == RHS->getElements(); } unsigned getHashValue() const { return hash_combine_range(Elements.begin(), Elements.end()); } }; template <> struct MDNodeKeyImpl<DIGlobalVariableExpression> { Metadata *Variable; Metadata *Expression; MDNodeKeyImpl(Metadata *Variable, Metadata *Expression) : Variable(Variable), Expression(Expression) {} MDNodeKeyImpl(const DIGlobalVariableExpression *N) : Variable(N->getRawVariable()), Expression(N->getRawExpression()) {} bool isKeyOf(const DIGlobalVariableExpression *RHS) const { return Variable == RHS->getRawVariable() && Expression == RHS->getRawExpression(); } unsigned getHashValue() const { return hash_combine(Variable, Expression); } }; template <> struct MDNodeKeyImpl<DIObjCProperty> { MDString *Name; Metadata *File; unsigned Line; MDString *GetterName; MDString *SetterName; unsigned Attributes; Metadata *Type; MDNodeKeyImpl(MDString *Name, Metadata *File, unsigned Line, MDString *GetterName, MDString *SetterName, unsigned Attributes, Metadata *Type) : Name(Name), File(File), Line(Line), GetterName(GetterName), SetterName(SetterName), Attributes(Attributes), Type(Type) {} MDNodeKeyImpl(const DIObjCProperty *N) : Name(N->getRawName()), File(N->getRawFile()), Line(N->getLine()), GetterName(N->getRawGetterName()), SetterName(N->getRawSetterName()), Attributes(N->getAttributes()), Type(N->getRawType()) {} bool isKeyOf(const DIObjCProperty *RHS) const { return Name == RHS->getRawName() && File == RHS->getRawFile() && Line == RHS->getLine() && GetterName == RHS->getRawGetterName() && SetterName == RHS->getRawSetterName() && Attributes == RHS->getAttributes() && Type == RHS->getRawType(); } unsigned getHashValue() const { return hash_combine(Name, File, Line, GetterName, SetterName, Attributes, Type); } }; template <> struct MDNodeKeyImpl<DIImportedEntity> { unsigned Tag; Metadata *Scope; Metadata *Entity; Metadata *File; unsigned Line; MDString *Name; MDNodeKeyImpl(unsigned Tag, Metadata *Scope, Metadata *Entity, Metadata *File, unsigned Line, MDString *Name) : Tag(Tag), Scope(Scope), Entity(Entity), File(File), Line(Line), Name(Name) {} MDNodeKeyImpl(const DIImportedEntity *N) : Tag(N->getTag()), Scope(N->getRawScope()), Entity(N->getRawEntity()), File(N->getRawFile()), Line(N->getLine()), Name(N->getRawName()) {} bool isKeyOf(const DIImportedEntity *RHS) const { return Tag == RHS->getTag() && Scope == RHS->getRawScope() && Entity == RHS->getRawEntity() && File == RHS->getFile() && Line == RHS->getLine() && Name == RHS->getRawName(); } unsigned getHashValue() const { return hash_combine(Tag, Scope, Entity, File, Line, Name); } }; template <> struct MDNodeKeyImpl<DIMacro> { unsigned MIType; unsigned Line; MDString *Name; MDString *Value; MDNodeKeyImpl(unsigned MIType, unsigned Line, MDString *Name, MDString *Value) : MIType(MIType), Line(Line), Name(Name), Value(Value) {} MDNodeKeyImpl(const DIMacro *N) : MIType(N->getMacinfoType()), Line(N->getLine()), Name(N->getRawName()), Value(N->getRawValue()) {} bool isKeyOf(const DIMacro *RHS) const { return MIType == RHS->getMacinfoType() && Line == RHS->getLine() && Name == RHS->getRawName() && Value == RHS->getRawValue(); } unsigned getHashValue() const { return hash_combine(MIType, Line, Name, Value); } }; template <> struct MDNodeKeyImpl<DIMacroFile> { unsigned MIType; unsigned Line; Metadata *File; Metadata *Elements; MDNodeKeyImpl(unsigned MIType, unsigned Line, Metadata *File, Metadata *Elements) : MIType(MIType), Line(Line), File(File), Elements(Elements) {} MDNodeKeyImpl(const DIMacroFile *N) : MIType(N->getMacinfoType()), Line(N->getLine()), File(N->getRawFile()), Elements(N->getRawElements()) {} bool isKeyOf(const DIMacroFile *RHS) const { return MIType == RHS->getMacinfoType() && Line == RHS->getLine() && File == RHS->getRawFile() && Elements == RHS->getRawElements(); } unsigned getHashValue() const { return hash_combine(MIType, Line, File, Elements); } }; /// \brief DenseMapInfo for MDNode subclasses. template <class NodeTy> struct MDNodeInfo { using KeyTy = MDNodeKeyImpl<NodeTy>; using SubsetEqualTy = MDNodeSubsetEqualImpl<NodeTy>; static inline NodeTy *getEmptyKey() { return DenseMapInfo<NodeTy *>::getEmptyKey(); } static inline NodeTy *getTombstoneKey() { return DenseMapInfo<NodeTy *>::getTombstoneKey(); } static unsigned getHashValue(const KeyTy &Key) { return Key.getHashValue(); } static unsigned getHashValue(const NodeTy *N) { return KeyTy(N).getHashValue(); } static bool isEqual(const KeyTy &LHS, const NodeTy *RHS) { if (RHS == getEmptyKey() || RHS == getTombstoneKey()) return false; return SubsetEqualTy::isSubsetEqual(LHS, RHS) || LHS.isKeyOf(RHS); } static bool isEqual(const NodeTy *LHS, const NodeTy *RHS) { if (LHS == RHS) return true; if (RHS == getEmptyKey() || RHS == getTombstoneKey()) return false; return SubsetEqualTy::isSubsetEqual(LHS, RHS); } }; #define HANDLE_MDNODE_LEAF(CLASS) using CLASS##Info = MDNodeInfo<CLASS>; #include "llvm/IR/Metadata.def" /// \brief Map-like storage for metadata attachments. class MDAttachmentMap { SmallVector<std::pair<unsigned, TrackingMDNodeRef>, 2> Attachments; public: bool empty() const { return Attachments.empty(); } size_t size() const { return Attachments.size(); } /// \brief Get a particular attachment (if any). MDNode *lookup(unsigned ID) const; /// \brief Set an attachment to a particular node. /// /// Set the \c ID attachment to \c MD, replacing the current attachment at \c /// ID (if anyway). void set(unsigned ID, MDNode &MD); /// \brief Remove an attachment. /// /// Remove the attachment at \c ID, if any. void erase(unsigned ID); /// \brief Copy out all the attachments. /// /// Copies all the current attachments into \c Result, sorting by attachment /// ID. This function does \em not clear \c Result. void getAll(SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const; /// \brief Erase matching attachments. /// /// Erases all attachments matching the \c shouldRemove predicate. template <class PredTy> void remove_if(PredTy shouldRemove) { Attachments.erase(llvm::remove_if(Attachments, shouldRemove), Attachments.end()); } }; /// Multimap-like storage for metadata attachments for globals. This differs /// from MDAttachmentMap in that it allows multiple attachments per metadata /// kind. class MDGlobalAttachmentMap { struct Attachment { unsigned MDKind; TrackingMDNodeRef Node; }; SmallVector<Attachment, 1> Attachments; public: bool empty() const { return Attachments.empty(); } /// Appends all attachments with the given ID to \c Result in insertion order. /// If the global has no attachments with the given ID, or if ID is invalid, /// leaves Result unchanged. void get(unsigned ID, SmallVectorImpl<MDNode *> &Result); void insert(unsigned ID, MDNode &MD); void erase(unsigned ID); /// Appends all attachments for the global to \c Result, sorting by attachment /// ID. Attachments with the same ID appear in insertion order. This function /// does \em not clear \c Result. void getAll(SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const; }; class LLVMContextImpl { public: /// OwnedModules - The set of modules instantiated in this context, and which /// will be automatically deleted if this context is deleted. SmallPtrSet<Module*, 4> OwnedModules; LLVMContext::InlineAsmDiagHandlerTy InlineAsmDiagHandler = nullptr; void *InlineAsmDiagContext = nullptr; std::unique_ptr<DiagnosticHandler> DiagHandler; bool RespectDiagnosticFilters = false; bool DiagnosticsHotnessRequested = false; uint64_t DiagnosticsHotnessThreshold = 0; std::unique_ptr<yaml::Output> DiagnosticsOutputFile; LLVMContext::YieldCallbackTy YieldCallback = nullptr; void *YieldOpaqueHandle = nullptr; using IntMapTy = DenseMap<APInt, std::unique_ptr<ConstantInt>, DenseMapAPIntKeyInfo>; IntMapTy IntConstants; using FPMapTy = DenseMap<APFloat, std::unique_ptr<ConstantFP>, DenseMapAPFloatKeyInfo>; FPMapTy FPConstants; FoldingSet<AttributeImpl> AttrsSet; FoldingSet<AttributeListImpl> AttrsLists; FoldingSet<AttributeSetNode> AttrsSetNodes; StringMap<MDString, BumpPtrAllocator> MDStringCache; DenseMap<Value *, ValueAsMetadata *> ValuesAsMetadata; DenseMap<Metadata *, MetadataAsValue *> MetadataAsValues; DenseMap<const Value*, ValueName*> ValueNames; #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ DenseSet<CLASS *, CLASS##Info> CLASS##s; #include "llvm/IR/Metadata.def" // Optional map for looking up composite types by identifier. Optional<DenseMap<const MDString *, DICompositeType *>> DITypeMap; // MDNodes may be uniqued or not uniqued. When they're not uniqued, they // aren't in the MDNodeSet, but they're still shared between objects, so no // one object can destroy them. Keep track of them here so we can delete // them on context teardown. std::vector<MDNode *> DistinctMDNodes; DenseMap<Type *, std::unique_ptr<ConstantAggregateZero>> CAZConstants; using ArrayConstantsTy = ConstantUniqueMap<ConstantArray>; ArrayConstantsTy ArrayConstants; using StructConstantsTy = ConstantUniqueMap<ConstantStruct>; StructConstantsTy StructConstants; using VectorConstantsTy = ConstantUniqueMap<ConstantVector>; VectorConstantsTy VectorConstants; DenseMap<PointerType *, std::unique_ptr<ConstantPointerNull>> CPNConstants; DenseMap<Type *, std::unique_ptr<UndefValue>> UVConstants; StringMap<ConstantDataSequential*> CDSConstants; DenseMap<std::pair<const Function *, const BasicBlock *>, BlockAddress *> BlockAddresses; ConstantUniqueMap<ConstantExpr> ExprConstants; ConstantUniqueMap<InlineAsm> InlineAsms; ConstantInt *TheTrueVal = nullptr; ConstantInt *TheFalseVal = nullptr; std::unique_ptr<ConstantTokenNone> TheNoneToken; // Basic type instances. Type VoidTy, LabelTy, HalfTy, FloatTy, DoubleTy, MetadataTy, TokenTy; Type X86_FP80Ty, FP128Ty, PPC_FP128Ty, X86_MMXTy; #ifndef noCbC Type __CodeTy; #endif IntegerType Int1Ty, Int8Ty, Int16Ty, Int32Ty, Int64Ty, Int128Ty; /// TypeAllocator - All dynamically allocated types are allocated from this. /// They live forever until the context is torn down. BumpPtrAllocator TypeAllocator; DenseMap<unsigned, IntegerType*> IntegerTypes; using FunctionTypeSet = DenseSet<FunctionType *, FunctionTypeKeyInfo>; FunctionTypeSet FunctionTypes; using StructTypeSet = DenseSet<StructType *, AnonStructTypeKeyInfo>; StructTypeSet AnonStructTypes; StringMap<StructType*> NamedStructTypes; unsigned NamedStructTypesUniqueID = 0; DenseMap<std::pair<Type *, uint64_t>, ArrayType*> ArrayTypes; DenseMap<std::pair<Type *, unsigned>, VectorType*> VectorTypes; DenseMap<Type*, PointerType*> PointerTypes; // Pointers in AddrSpace = 0 DenseMap<std::pair<Type*, unsigned>, PointerType*> ASPointerTypes; /// ValueHandles - This map keeps track of all of the value handles that are /// watching a Value*. The Value::HasValueHandle bit is used to know /// whether or not a value has an entry in this map. using ValueHandlesTy = DenseMap<Value *, ValueHandleBase *>; ValueHandlesTy ValueHandles; /// CustomMDKindNames - Map to hold the metadata string to ID mapping. StringMap<unsigned> CustomMDKindNames; /// Collection of per-instruction metadata used in this context. DenseMap<const Instruction *, MDAttachmentMap> InstructionMetadata; /// Collection of per-GlobalObject metadata used in this context. DenseMap<const GlobalObject *, MDGlobalAttachmentMap> GlobalObjectMetadata; /// Collection of per-GlobalObject sections used in this context. DenseMap<const GlobalObject *, StringRef> GlobalObjectSections; /// Stable collection of section strings. StringSet<> SectionStrings; /// DiscriminatorTable - This table maps file:line locations to an /// integer representing the next DWARF path discriminator to assign to /// instructions in different blocks at the same location. DenseMap<std::pair<const char *, unsigned>, unsigned> DiscriminatorTable; int getOrAddScopeRecordIdxEntry(MDNode *N, int ExistingIdx); int getOrAddScopeInlinedAtIdxEntry(MDNode *Scope, MDNode *IA,int ExistingIdx); /// \brief A set of interned tags for operand bundles. The StringMap maps /// bundle tags to their IDs. /// /// \see LLVMContext::getOperandBundleTagID StringMap<uint32_t> BundleTagCache; StringMapEntry<uint32_t> *getOrInsertBundleTag(StringRef Tag); void getOperandBundleTags(SmallVectorImpl<StringRef> &Tags) const; uint32_t getOperandBundleTagID(StringRef Tag) const; /// A set of interned synchronization scopes. The StringMap maps /// synchronization scope names to their respective synchronization scope IDs. StringMap<SyncScope::ID> SSC; /// getOrInsertSyncScopeID - Maps synchronization scope name to /// synchronization scope ID. Every synchronization scope registered with /// LLVMContext has unique ID except pre-defined ones. SyncScope::ID getOrInsertSyncScopeID(StringRef SSN); /// getSyncScopeNames - Populates client supplied SmallVector with /// synchronization scope names registered with LLVMContext. Synchronization /// scope names are ordered by increasing synchronization scope IDs. void getSyncScopeNames(SmallVectorImpl<StringRef> &SSNs) const; /// Maintain the GC name for each function. /// /// This saves allocating an additional word in Function for programs which /// do not use GC (i.e., most programs) at the cost of increased overhead for /// clients which do use GC. DenseMap<const Function*, std::string> GCNames; /// Flag to indicate if Value (other than GlobalValue) retains their name or /// not. bool DiscardValueNames = false; LLVMContextImpl(LLVMContext &C); ~LLVMContextImpl(); /// Destroy the ConstantArrays if they are not used. void dropTriviallyDeadConstantArrays(); /// \brief Access the object which manages optimization bisection for failure /// analysis. OptBisect &getOptBisect(); }; } // end namespace llvm #endif // LLVM_LIB_IR_LLVMCONTEXTIMPL_H