Mercurial > hg > Members > tobaru > cbc > CbC_llvm
view lib/Passes/PassBuilder.cpp @ 124:4fa72497ed5d
fix
author | mir3636 |
---|---|
date | Thu, 30 Nov 2017 20:04:56 +0900 |
parents | 803732b1fca8 |
children |
line wrap: on
line source
//===- Parsing, selection, and construction of pass pipelines -------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// \file /// /// This file provides the implementation of the PassBuilder based on our /// static pass registry as well as related functionality. It also provides /// helpers to aid in analyzing, debugging, and testing passes and pass /// pipelines. /// //===----------------------------------------------------------------------===// #include "llvm/Passes/PassBuilder.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/AliasAnalysisEvaluator.h" #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/BasicAliasAnalysis.h" #include "llvm/Analysis/BlockFrequencyInfo.h" #include "llvm/Analysis/BlockFrequencyInfoImpl.h" #include "llvm/Analysis/BranchProbabilityInfo.h" #include "llvm/Analysis/CFGPrinter.h" #include "llvm/Analysis/CFLAndersAliasAnalysis.h" #include "llvm/Analysis/CFLSteensAliasAnalysis.h" #include "llvm/Analysis/CGSCCPassManager.h" #include "llvm/Analysis/CallGraph.h" #include "llvm/Analysis/DemandedBits.h" #include "llvm/Analysis/DependenceAnalysis.h" #include "llvm/Analysis/DominanceFrontier.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/IVUsers.h" #include "llvm/Analysis/LazyCallGraph.h" #include "llvm/Analysis/LazyValueInfo.h" #include "llvm/Analysis/LoopAccessAnalysis.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/MemoryDependenceAnalysis.h" #include "llvm/Analysis/MemorySSA.h" #include "llvm/Analysis/ModuleSummaryAnalysis.h" #include "llvm/Analysis/OptimizationRemarkEmitter.h" #include "llvm/Analysis/PostDominators.h" #include "llvm/Analysis/ProfileSummaryInfo.h" #include "llvm/Analysis/RegionInfo.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" #include "llvm/Analysis/ScopedNoAliasAA.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Analysis/TypeBasedAliasAnalysis.h" #include "llvm/CodeGen/PreISelIntrinsicLowering.h" #include "llvm/CodeGen/UnreachableBlockElim.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/IRPrintingPasses.h" #include "llvm/IR/PassManager.h" #include "llvm/IR/Verifier.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Regex.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Transforms/GCOVProfiler.h" #include "llvm/Transforms/IPO/AlwaysInliner.h" #include "llvm/Transforms/IPO/ArgumentPromotion.h" #include "llvm/Transforms/IPO/CalledValuePropagation.h" #include "llvm/Transforms/IPO/ConstantMerge.h" #include "llvm/Transforms/IPO/CrossDSOCFI.h" #include "llvm/Transforms/IPO/DeadArgumentElimination.h" #include "llvm/Transforms/IPO/ElimAvailExtern.h" #include "llvm/Transforms/IPO/ForceFunctionAttrs.h" #include "llvm/Transforms/IPO/FunctionAttrs.h" #include "llvm/Transforms/IPO/FunctionImport.h" #include "llvm/Transforms/IPO/GlobalDCE.h" #include "llvm/Transforms/IPO/GlobalOpt.h" #include "llvm/Transforms/IPO/GlobalSplit.h" #include "llvm/Transforms/IPO/InferFunctionAttrs.h" #include "llvm/Transforms/IPO/Inliner.h" #include "llvm/Transforms/IPO/Internalize.h" #include "llvm/Transforms/IPO/LowerTypeTests.h" #include "llvm/Transforms/IPO/PartialInlining.h" #include "llvm/Transforms/IPO/SCCP.h" #include "llvm/Transforms/IPO/StripDeadPrototypes.h" #include "llvm/Transforms/IPO/WholeProgramDevirt.h" #include "llvm/Transforms/InstCombine/InstCombine.h" #include "llvm/Transforms/InstrProfiling.h" #include "llvm/Transforms/PGOInstrumentation.h" #include "llvm/Transforms/SampleProfile.h" #include "llvm/Transforms/Scalar/ADCE.h" #include "llvm/Transforms/Scalar/AlignmentFromAssumptions.h" #include "llvm/Transforms/Scalar/BDCE.h" #include "llvm/Transforms/Scalar/ConstantHoisting.h" #include "llvm/Transforms/Scalar/CorrelatedValuePropagation.h" #include "llvm/Transforms/Scalar/DCE.h" #include "llvm/Transforms/Scalar/DeadStoreElimination.h" #include "llvm/Transforms/Scalar/DivRemPairs.h" #include "llvm/Transforms/Scalar/EarlyCSE.h" #include "llvm/Transforms/Scalar/Float2Int.h" #include "llvm/Transforms/Scalar/GVN.h" #include "llvm/Transforms/Scalar/GuardWidening.h" #include "llvm/Transforms/Scalar/IVUsersPrinter.h" #include "llvm/Transforms/Scalar/IndVarSimplify.h" #include "llvm/Transforms/Scalar/JumpThreading.h" #include "llvm/Transforms/Scalar/LICM.h" #include "llvm/Transforms/Scalar/LoopAccessAnalysisPrinter.h" #include "llvm/Transforms/Scalar/LoopDataPrefetch.h" #include "llvm/Transforms/Scalar/LoopDeletion.h" #include "llvm/Transforms/Scalar/LoopDistribute.h" #include "llvm/Transforms/Scalar/LoopIdiomRecognize.h" #include "llvm/Transforms/Scalar/LoopInstSimplify.h" #include "llvm/Transforms/Scalar/LoopLoadElimination.h" #include "llvm/Transforms/Scalar/LoopPassManager.h" #include "llvm/Transforms/Scalar/LoopPredication.h" #include "llvm/Transforms/Scalar/LoopRotation.h" #include "llvm/Transforms/Scalar/LoopSimplifyCFG.h" #include "llvm/Transforms/Scalar/LoopSink.h" #include "llvm/Transforms/Scalar/LoopStrengthReduce.h" #include "llvm/Transforms/Scalar/LoopUnrollPass.h" #include "llvm/Transforms/Scalar/LowerAtomic.h" #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h" #include "llvm/Transforms/Scalar/LowerGuardIntrinsic.h" #include "llvm/Transforms/Scalar/MemCpyOptimizer.h" #include "llvm/Transforms/Scalar/MergedLoadStoreMotion.h" #include "llvm/Transforms/Scalar/NaryReassociate.h" #include "llvm/Transforms/Scalar/NewGVN.h" #include "llvm/Transforms/Scalar/PartiallyInlineLibCalls.h" #include "llvm/Transforms/Scalar/Reassociate.h" #include "llvm/Transforms/Scalar/SCCP.h" #include "llvm/Transforms/Scalar/SROA.h" #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" #include "llvm/Transforms/Scalar/SimplifyCFG.h" #include "llvm/Transforms/Scalar/Sink.h" #include "llvm/Transforms/Scalar/SpeculativeExecution.h" #include "llvm/Transforms/Scalar/TailRecursionElimination.h" #include "llvm/Transforms/Utils/AddDiscriminators.h" #include "llvm/Transforms/Utils/BreakCriticalEdges.h" #include "llvm/Transforms/Utils/LCSSA.h" #include "llvm/Transforms/Utils/LibCallsShrinkWrap.h" #include "llvm/Transforms/Utils/LoopSimplify.h" #include "llvm/Transforms/Utils/LowerInvoke.h" #include "llvm/Transforms/Utils/Mem2Reg.h" #include "llvm/Transforms/Utils/NameAnonGlobals.h" #include "llvm/Transforms/Utils/PredicateInfo.h" #include "llvm/Transforms/Utils/SimplifyInstructions.h" #include "llvm/Transforms/Utils/SymbolRewriter.h" #include "llvm/Transforms/Vectorize/LoopVectorize.h" #include "llvm/Transforms/Vectorize/SLPVectorizer.h" #include <type_traits> using namespace llvm; static cl::opt<unsigned> MaxDevirtIterations("pm-max-devirt-iterations", cl::ReallyHidden, cl::init(4)); static cl::opt<bool> RunPartialInlining("enable-npm-partial-inlining", cl::init(false), cl::Hidden, cl::ZeroOrMore, cl::desc("Run Partial inlinining pass")); static cl::opt<bool> RunNewGVN("enable-npm-newgvn", cl::init(false), cl::Hidden, cl::ZeroOrMore, cl::desc("Run NewGVN instead of GVN")); static cl::opt<bool> EnableEarlyCSEMemSSA( "enable-npm-earlycse-memssa", cl::init(true), cl::Hidden, cl::desc("Enable the EarlyCSE w/ MemorySSA pass for the new PM (default = on)")); static cl::opt<bool> EnableGVNHoist( "enable-npm-gvn-hoist", cl::init(false), cl::Hidden, cl::desc("Enable the GVN hoisting pass for the new PM (default = off)")); static cl::opt<bool> EnableGVNSink( "enable-npm-gvn-sink", cl::init(false), cl::Hidden, cl::desc("Enable the GVN hoisting pass for the new PM (default = off)")); static Regex DefaultAliasRegex( "^(default|thinlto-pre-link|thinlto|lto-pre-link|lto)<(O[0123sz])>$"); static bool isOptimizingForSize(PassBuilder::OptimizationLevel Level) { switch (Level) { case PassBuilder::O0: case PassBuilder::O1: case PassBuilder::O2: case PassBuilder::O3: return false; case PassBuilder::Os: case PassBuilder::Oz: return true; } llvm_unreachable("Invalid optimization level!"); } namespace { /// \brief No-op module pass which does nothing. struct NoOpModulePass { PreservedAnalyses run(Module &M, ModuleAnalysisManager &) { return PreservedAnalyses::all(); } static StringRef name() { return "NoOpModulePass"; } }; /// \brief No-op module analysis. class NoOpModuleAnalysis : public AnalysisInfoMixin<NoOpModuleAnalysis> { friend AnalysisInfoMixin<NoOpModuleAnalysis>; static AnalysisKey Key; public: struct Result {}; Result run(Module &, ModuleAnalysisManager &) { return Result(); } static StringRef name() { return "NoOpModuleAnalysis"; } }; /// \brief No-op CGSCC pass which does nothing. struct NoOpCGSCCPass { PreservedAnalyses run(LazyCallGraph::SCC &C, CGSCCAnalysisManager &, LazyCallGraph &, CGSCCUpdateResult &UR) { return PreservedAnalyses::all(); } static StringRef name() { return "NoOpCGSCCPass"; } }; /// \brief No-op CGSCC analysis. class NoOpCGSCCAnalysis : public AnalysisInfoMixin<NoOpCGSCCAnalysis> { friend AnalysisInfoMixin<NoOpCGSCCAnalysis>; static AnalysisKey Key; public: struct Result {}; Result run(LazyCallGraph::SCC &, CGSCCAnalysisManager &, LazyCallGraph &G) { return Result(); } static StringRef name() { return "NoOpCGSCCAnalysis"; } }; /// \brief No-op function pass which does nothing. struct NoOpFunctionPass { PreservedAnalyses run(Function &F, FunctionAnalysisManager &) { return PreservedAnalyses::all(); } static StringRef name() { return "NoOpFunctionPass"; } }; /// \brief No-op function analysis. class NoOpFunctionAnalysis : public AnalysisInfoMixin<NoOpFunctionAnalysis> { friend AnalysisInfoMixin<NoOpFunctionAnalysis>; static AnalysisKey Key; public: struct Result {}; Result run(Function &, FunctionAnalysisManager &) { return Result(); } static StringRef name() { return "NoOpFunctionAnalysis"; } }; /// \brief No-op loop pass which does nothing. struct NoOpLoopPass { PreservedAnalyses run(Loop &L, LoopAnalysisManager &, LoopStandardAnalysisResults &, LPMUpdater &) { return PreservedAnalyses::all(); } static StringRef name() { return "NoOpLoopPass"; } }; /// \brief No-op loop analysis. class NoOpLoopAnalysis : public AnalysisInfoMixin<NoOpLoopAnalysis> { friend AnalysisInfoMixin<NoOpLoopAnalysis>; static AnalysisKey Key; public: struct Result {}; Result run(Loop &, LoopAnalysisManager &, LoopStandardAnalysisResults &) { return Result(); } static StringRef name() { return "NoOpLoopAnalysis"; } }; AnalysisKey NoOpModuleAnalysis::Key; AnalysisKey NoOpCGSCCAnalysis::Key; AnalysisKey NoOpFunctionAnalysis::Key; AnalysisKey NoOpLoopAnalysis::Key; } // End anonymous namespace. void PassBuilder::invokePeepholeEPCallbacks( FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { for (auto &C : PeepholeEPCallbacks) C(FPM, Level); } void PassBuilder::registerModuleAnalyses(ModuleAnalysisManager &MAM) { #define MODULE_ANALYSIS(NAME, CREATE_PASS) \ MAM.registerPass([&] { return CREATE_PASS; }); #include "PassRegistry.def" for (auto &C : ModuleAnalysisRegistrationCallbacks) C(MAM); } void PassBuilder::registerCGSCCAnalyses(CGSCCAnalysisManager &CGAM) { #define CGSCC_ANALYSIS(NAME, CREATE_PASS) \ CGAM.registerPass([&] { return CREATE_PASS; }); #include "PassRegistry.def" for (auto &C : CGSCCAnalysisRegistrationCallbacks) C(CGAM); } void PassBuilder::registerFunctionAnalyses(FunctionAnalysisManager &FAM) { #define FUNCTION_ANALYSIS(NAME, CREATE_PASS) \ FAM.registerPass([&] { return CREATE_PASS; }); #include "PassRegistry.def" for (auto &C : FunctionAnalysisRegistrationCallbacks) C(FAM); } void PassBuilder::registerLoopAnalyses(LoopAnalysisManager &LAM) { #define LOOP_ANALYSIS(NAME, CREATE_PASS) \ LAM.registerPass([&] { return CREATE_PASS; }); #include "PassRegistry.def" for (auto &C : LoopAnalysisRegistrationCallbacks) C(LAM); } FunctionPassManager PassBuilder::buildFunctionSimplificationPipeline(OptimizationLevel Level, ThinLTOPhase Phase, bool DebugLogging) { assert(Level != O0 && "Must request optimizations!"); FunctionPassManager FPM(DebugLogging); // Form SSA out of local memory accesses after breaking apart aggregates into // scalars. FPM.addPass(SROA()); // Catch trivial redundancies FPM.addPass(EarlyCSEPass(EnableEarlyCSEMemSSA)); // Hoisting of scalars and load expressions. if (EnableGVNHoist) FPM.addPass(GVNHoistPass()); // Global value numbering based sinking. if (EnableGVNSink) { FPM.addPass(GVNSinkPass()); FPM.addPass(SimplifyCFGPass()); } // Speculative execution if the target has divergent branches; otherwise nop. FPM.addPass(SpeculativeExecutionPass()); // Optimize based on known information about branches, and cleanup afterward. FPM.addPass(JumpThreadingPass()); FPM.addPass(CorrelatedValuePropagationPass()); FPM.addPass(SimplifyCFGPass()); FPM.addPass(InstCombinePass()); if (!isOptimizingForSize(Level)) FPM.addPass(LibCallsShrinkWrapPass()); invokePeepholeEPCallbacks(FPM, Level); // For PGO use pipeline, try to optimize memory intrinsics such as memcpy // using the size value profile. Don't perform this when optimizing for size. if (PGOOpt && !PGOOpt->ProfileUseFile.empty() && !isOptimizingForSize(Level)) FPM.addPass(PGOMemOPSizeOpt()); FPM.addPass(TailCallElimPass()); FPM.addPass(SimplifyCFGPass()); // Form canonically associated expression trees, and simplify the trees using // basic mathematical properties. For example, this will form (nearly) // minimal multiplication trees. FPM.addPass(ReassociatePass()); // Add the primary loop simplification pipeline. // FIXME: Currently this is split into two loop pass pipelines because we run // some function passes in between them. These can and should be replaced by // loop pass equivalenst but those aren't ready yet. Specifically, // `SimplifyCFGPass` and `InstCombinePass` are used. We have // `LoopSimplifyCFGPass` which isn't yet powerful enough, and the closest to // the other we have is `LoopInstSimplify`. LoopPassManager LPM1(DebugLogging), LPM2(DebugLogging); // Rotate Loop - disable header duplication at -Oz LPM1.addPass(LoopRotatePass(Level != Oz)); LPM1.addPass(LICMPass()); LPM1.addPass(SimpleLoopUnswitchPass()); LPM2.addPass(IndVarSimplifyPass()); LPM2.addPass(LoopIdiomRecognizePass()); for (auto &C : LateLoopOptimizationsEPCallbacks) C(LPM2, Level); LPM2.addPass(LoopDeletionPass()); // Do not enable unrolling in PreLinkThinLTO phase during sample PGO // because it changes IR to makes profile annotation in back compile // inaccurate. if (Phase != ThinLTOPhase::PreLink || !PGOOpt || PGOOpt->SampleProfileFile.empty()) LPM2.addPass(LoopFullUnrollPass(Level)); for (auto &C : LoopOptimizerEndEPCallbacks) C(LPM2, Level); // We provide the opt remark emitter pass for LICM to use. We only need to do // this once as it is immutable. FPM.addPass(RequireAnalysisPass<OptimizationRemarkEmitterAnalysis, Function>()); FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM1))); FPM.addPass(SimplifyCFGPass()); FPM.addPass(InstCombinePass()); FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM2))); // Eliminate redundancies. if (Level != O1) { // These passes add substantial compile time so skip them at O1. FPM.addPass(MergedLoadStoreMotionPass()); if (RunNewGVN) FPM.addPass(NewGVNPass()); else FPM.addPass(GVN()); } // Specially optimize memory movement as it doesn't look like dataflow in SSA. FPM.addPass(MemCpyOptPass()); // Sparse conditional constant propagation. // FIXME: It isn't clear why we do this *after* loop passes rather than // before... FPM.addPass(SCCPPass()); // Delete dead bit computations (instcombine runs after to fold away the dead // computations, and then ADCE will run later to exploit any new DCE // opportunities that creates). FPM.addPass(BDCEPass()); // Run instcombine after redundancy and dead bit elimination to exploit // opportunities opened up by them. FPM.addPass(InstCombinePass()); invokePeepholeEPCallbacks(FPM, Level); // Re-consider control flow based optimizations after redundancy elimination, // redo DCE, etc. FPM.addPass(JumpThreadingPass()); FPM.addPass(CorrelatedValuePropagationPass()); FPM.addPass(DSEPass()); FPM.addPass(createFunctionToLoopPassAdaptor(LICMPass())); for (auto &C : ScalarOptimizerLateEPCallbacks) C(FPM, Level); // Finally, do an expensive DCE pass to catch all the dead code exposed by // the simplifications and basic cleanup after all the simplifications. FPM.addPass(ADCEPass()); FPM.addPass(SimplifyCFGPass()); FPM.addPass(InstCombinePass()); invokePeepholeEPCallbacks(FPM, Level); return FPM; } void PassBuilder::addPGOInstrPasses(ModulePassManager &MPM, bool DebugLogging, PassBuilder::OptimizationLevel Level, bool RunProfileGen, std::string ProfileGenFile, std::string ProfileUseFile) { // Generally running simplification passes and the inliner with an high // threshold results in smaller executables, but there may be cases where // the size grows, so let's be conservative here and skip this simplification // at -Os/Oz. if (!isOptimizingForSize(Level)) { InlineParams IP; // In the old pass manager, this is a cl::opt. Should still this be one? IP.DefaultThreshold = 75; // FIXME: The hint threshold has the same value used by the regular inliner. // This should probably be lowered after performance testing. // FIXME: this comment is cargo culted from the old pass manager, revisit). IP.HintThreshold = 325; CGSCCPassManager CGPipeline(DebugLogging); CGPipeline.addPass(InlinerPass(IP)); FunctionPassManager FPM; FPM.addPass(SROA()); FPM.addPass(EarlyCSEPass()); // Catch trivial redundancies. FPM.addPass(SimplifyCFGPass()); // Merge & remove basic blocks. FPM.addPass(InstCombinePass()); // Combine silly sequences. invokePeepholeEPCallbacks(FPM, Level); CGPipeline.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM))); MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPipeline))); } // Delete anything that is now dead to make sure that we don't instrument // dead code. Instrumentation can end up keeping dead code around and // dramatically increase code size. MPM.addPass(GlobalDCEPass()); if (RunProfileGen) { MPM.addPass(PGOInstrumentationGen()); FunctionPassManager FPM; FPM.addPass(createFunctionToLoopPassAdaptor(LoopRotatePass())); MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); // Add the profile lowering pass. InstrProfOptions Options; if (!ProfileGenFile.empty()) Options.InstrProfileOutput = ProfileGenFile; Options.DoCounterPromotion = true; MPM.addPass(InstrProfiling(Options)); } if (!ProfileUseFile.empty()) MPM.addPass(PGOInstrumentationUse(ProfileUseFile)); } static InlineParams getInlineParamsFromOptLevel(PassBuilder::OptimizationLevel Level) { auto O3 = PassBuilder::O3; unsigned OptLevel = Level > O3 ? 2 : Level; unsigned SizeLevel = Level > O3 ? Level - O3 : 0; return getInlineParams(OptLevel, SizeLevel); } ModulePassManager PassBuilder::buildModuleSimplificationPipeline(OptimizationLevel Level, ThinLTOPhase Phase, bool DebugLogging) { ModulePassManager MPM(DebugLogging); // Do basic inference of function attributes from known properties of system // libraries and other oracles. MPM.addPass(InferFunctionAttrsPass()); // Create an early function pass manager to cleanup the output of the // frontend. FunctionPassManager EarlyFPM(DebugLogging); EarlyFPM.addPass(SimplifyCFGPass()); EarlyFPM.addPass(SROA()); EarlyFPM.addPass(EarlyCSEPass()); EarlyFPM.addPass(LowerExpectIntrinsicPass()); // In SamplePGO ThinLTO backend, we need instcombine before profile annotation // to convert bitcast to direct calls so that they can be inlined during the // profile annotation prepration step. // More details about SamplePGO design can be found in: // https://research.google.com/pubs/pub45290.html // FIXME: revisit how SampleProfileLoad/Inliner/ICP is structured. if (PGOOpt && !PGOOpt->SampleProfileFile.empty() && Phase == ThinLTOPhase::PostLink) EarlyFPM.addPass(InstCombinePass()); MPM.addPass(createModuleToFunctionPassAdaptor(std::move(EarlyFPM))); if (PGOOpt && !PGOOpt->SampleProfileFile.empty()) { // Annotate sample profile right after early FPM to ensure freshness of // the debug info. MPM.addPass(SampleProfileLoaderPass(PGOOpt->SampleProfileFile, Phase == ThinLTOPhase::PreLink)); // Do not invoke ICP in the ThinLTOPrelink phase as it makes it hard // for the profile annotation to be accurate in the ThinLTO backend. if (Phase != ThinLTOPhase::PreLink) // We perform early indirect call promotion here, before globalopt. // This is important for the ThinLTO backend phase because otherwise // imported available_externally functions look unreferenced and are // removed. MPM.addPass(PGOIndirectCallPromotion(Phase == ThinLTOPhase::PostLink, true)); } // Interprocedural constant propagation now that basic cleanup has occured // and prior to optimizing globals. // FIXME: This position in the pipeline hasn't been carefully considered in // years, it should be re-analyzed. MPM.addPass(IPSCCPPass()); // Attach metadata to indirect call sites indicating the set of functions // they may target at run-time. This should follow IPSCCP. MPM.addPass(CalledValuePropagationPass()); // Optimize globals to try and fold them into constants. MPM.addPass(GlobalOptPass()); // Promote any localized globals to SSA registers. // FIXME: Should this instead by a run of SROA? // FIXME: We should probably run instcombine and simplify-cfg afterward to // delete control flows that are dead once globals have been folded to // constants. MPM.addPass(createModuleToFunctionPassAdaptor(PromotePass())); // Remove any dead arguments exposed by cleanups and constand folding // globals. MPM.addPass(DeadArgumentEliminationPass()); // Create a small function pass pipeline to cleanup after all the global // optimizations. FunctionPassManager GlobalCleanupPM(DebugLogging); GlobalCleanupPM.addPass(InstCombinePass()); invokePeepholeEPCallbacks(GlobalCleanupPM, Level); GlobalCleanupPM.addPass(SimplifyCFGPass()); MPM.addPass(createModuleToFunctionPassAdaptor(std::move(GlobalCleanupPM))); // Add all the requested passes for instrumentation PGO, if requested. if (PGOOpt && Phase != ThinLTOPhase::PostLink && (!PGOOpt->ProfileGenFile.empty() || !PGOOpt->ProfileUseFile.empty())) { addPGOInstrPasses(MPM, DebugLogging, Level, PGOOpt->RunProfileGen, PGOOpt->ProfileGenFile, PGOOpt->ProfileUseFile); MPM.addPass(PGOIndirectCallPromotion(false, false)); } // Require the GlobalsAA analysis for the module so we can query it within // the CGSCC pipeline. MPM.addPass(RequireAnalysisPass<GlobalsAA, Module>()); // Require the ProfileSummaryAnalysis for the module so we can query it within // the inliner pass. MPM.addPass(RequireAnalysisPass<ProfileSummaryAnalysis, Module>()); // Now begin the main postorder CGSCC pipeline. // FIXME: The current CGSCC pipeline has its origins in the legacy pass // manager and trying to emulate its precise behavior. Much of this doesn't // make a lot of sense and we should revisit the core CGSCC structure. CGSCCPassManager MainCGPipeline(DebugLogging); // Note: historically, the PruneEH pass was run first to deduce nounwind and // generally clean up exception handling overhead. It isn't clear this is // valuable as the inliner doesn't currently care whether it is inlining an // invoke or a call. // Run the inliner first. The theory is that we are walking bottom-up and so // the callees have already been fully optimized, and we want to inline them // into the callers so that our optimizations can reflect that. // For PreLinkThinLTO pass, we disable hot-caller heuristic for sample PGO // because it makes profile annotation in the backend inaccurate. InlineParams IP = getInlineParamsFromOptLevel(Level); if (Phase == ThinLTOPhase::PreLink && PGOOpt && !PGOOpt->SampleProfileFile.empty()) IP.HotCallSiteThreshold = 0; MainCGPipeline.addPass(InlinerPass(IP)); // Now deduce any function attributes based in the current code. MainCGPipeline.addPass(PostOrderFunctionAttrsPass()); // When at O3 add argument promotion to the pass pipeline. // FIXME: It isn't at all clear why this should be limited to O3. if (Level == O3) MainCGPipeline.addPass(ArgumentPromotionPass()); // Lastly, add the core function simplification pipeline nested inside the // CGSCC walk. MainCGPipeline.addPass(createCGSCCToFunctionPassAdaptor( buildFunctionSimplificationPipeline(Level, Phase, DebugLogging))); for (auto &C : CGSCCOptimizerLateEPCallbacks) C(MainCGPipeline, Level); // We wrap the CGSCC pipeline in a devirtualization repeater. This will try // to detect when we devirtualize indirect calls and iterate the SCC passes // in that case to try and catch knock-on inlining or function attrs // opportunities. Then we add it to the module pipeline by walking the SCCs // in postorder (or bottom-up). MPM.addPass( createModuleToPostOrderCGSCCPassAdaptor(createDevirtSCCRepeatedPass( std::move(MainCGPipeline), MaxDevirtIterations))); return MPM; } ModulePassManager PassBuilder::buildModuleOptimizationPipeline(OptimizationLevel Level, bool DebugLogging) { ModulePassManager MPM(DebugLogging); // Optimize globals now that the module is fully simplified. MPM.addPass(GlobalOptPass()); MPM.addPass(GlobalDCEPass()); // Run partial inlining pass to partially inline functions that have // large bodies. if (RunPartialInlining) MPM.addPass(PartialInlinerPass()); // Remove avail extern fns and globals definitions since we aren't compiling // an object file for later LTO. For LTO we want to preserve these so they // are eligible for inlining at link-time. Note if they are unreferenced they // will be removed by GlobalDCE later, so this only impacts referenced // available externally globals. Eventually they will be suppressed during // codegen, but eliminating here enables more opportunity for GlobalDCE as it // may make globals referenced by available external functions dead and saves // running remaining passes on the eliminated functions. MPM.addPass(EliminateAvailableExternallyPass()); // Do RPO function attribute inference across the module to forward-propagate // attributes where applicable. // FIXME: Is this really an optimization rather than a canonicalization? MPM.addPass(ReversePostOrderFunctionAttrsPass()); // Re-require GloblasAA here prior to function passes. This is particularly // useful as the above will have inlined, DCE'ed, and function-attr // propagated everything. We should at this point have a reasonably minimal // and richly annotated call graph. By computing aliasing and mod/ref // information for all local globals here, the late loop passes and notably // the vectorizer will be able to use them to help recognize vectorizable // memory operations. MPM.addPass(RequireAnalysisPass<GlobalsAA, Module>()); FunctionPassManager OptimizePM(DebugLogging); OptimizePM.addPass(Float2IntPass()); // FIXME: We need to run some loop optimizations to re-rotate loops after // simplify-cfg and others undo their rotation. // Optimize the loop execution. These passes operate on entire loop nests // rather than on each loop in an inside-out manner, and so they are actually // function passes. for (auto &C : VectorizerStartEPCallbacks) C(OptimizePM, Level); // First rotate loops that may have been un-rotated by prior passes. OptimizePM.addPass(createFunctionToLoopPassAdaptor(LoopRotatePass())); // Distribute loops to allow partial vectorization. I.e. isolate dependences // into separate loop that would otherwise inhibit vectorization. This is // currently only performed for loops marked with the metadata // llvm.loop.distribute=true or when -enable-loop-distribute is specified. OptimizePM.addPass(LoopDistributePass()); // Now run the core loop vectorizer. OptimizePM.addPass(LoopVectorizePass()); // Eliminate loads by forwarding stores from the previous iteration to loads // of the current iteration. OptimizePM.addPass(LoopLoadEliminationPass()); // Cleanup after the loop optimization passes. OptimizePM.addPass(InstCombinePass()); // Now that we've formed fast to execute loop structures, we do further // optimizations. These are run afterward as they might block doing complex // analyses and transforms such as what are needed for loop vectorization. // Optimize parallel scalar instruction chains into SIMD instructions. OptimizePM.addPass(SLPVectorizerPass()); // Cleanup after all of the vectorizers. OptimizePM.addPass(SimplifyCFGPass()); OptimizePM.addPass(InstCombinePass()); // Unroll small loops to hide loop backedge latency and saturate any parallel // execution resources of an out-of-order processor. We also then need to // clean up redundancies and loop invariant code. // FIXME: It would be really good to use a loop-integrated instruction // combiner for cleanup here so that the unrolling and LICM can be pipelined // across the loop nests. OptimizePM.addPass(LoopUnrollPass(Level)); OptimizePM.addPass(InstCombinePass()); OptimizePM.addPass(RequireAnalysisPass<OptimizationRemarkEmitterAnalysis, Function>()); OptimizePM.addPass(createFunctionToLoopPassAdaptor(LICMPass())); // Now that we've vectorized and unrolled loops, we may have more refined // alignment information, try to re-derive it here. OptimizePM.addPass(AlignmentFromAssumptionsPass()); // LoopSink pass sinks instructions hoisted by LICM, which serves as a // canonicalization pass that enables other optimizations. As a result, // LoopSink pass needs to be a very late IR pass to avoid undoing LICM // result too early. OptimizePM.addPass(LoopSinkPass()); // And finally clean up LCSSA form before generating code. OptimizePM.addPass(InstSimplifierPass()); // This hoists/decomposes div/rem ops. It should run after other sink/hoist // passes to avoid re-sinking, but before SimplifyCFG because it can allow // flattening of blocks. OptimizePM.addPass(DivRemPairsPass()); // LoopSink (and other loop passes since the last simplifyCFG) might have // resulted in single-entry-single-exit or empty blocks. Clean up the CFG. OptimizePM.addPass(SimplifyCFGPass()); // Add the core optimizing pipeline. MPM.addPass(createModuleToFunctionPassAdaptor(std::move(OptimizePM))); // Now we need to do some global optimization transforms. // FIXME: It would seem like these should come first in the optimization // pipeline and maybe be the bottom of the canonicalization pipeline? Weird // ordering here. MPM.addPass(GlobalDCEPass()); MPM.addPass(ConstantMergePass()); return MPM; } ModulePassManager PassBuilder::buildPerModuleDefaultPipeline(OptimizationLevel Level, bool DebugLogging) { assert(Level != O0 && "Must request optimizations for the default pipeline!"); ModulePassManager MPM(DebugLogging); // Force any function attributes we want the rest of the pipeline to observe. MPM.addPass(ForceFunctionAttrsPass()); if (PGOOpt && PGOOpt->SamplePGOSupport) MPM.addPass(createModuleToFunctionPassAdaptor(AddDiscriminatorsPass())); // Add the core simplification pipeline. MPM.addPass(buildModuleSimplificationPipeline(Level, ThinLTOPhase::None, DebugLogging)); // Now add the optimization pipeline. MPM.addPass(buildModuleOptimizationPipeline(Level, DebugLogging)); return MPM; } ModulePassManager PassBuilder::buildThinLTOPreLinkDefaultPipeline(OptimizationLevel Level, bool DebugLogging) { assert(Level != O0 && "Must request optimizations for the default pipeline!"); ModulePassManager MPM(DebugLogging); // Force any function attributes we want the rest of the pipeline to observe. MPM.addPass(ForceFunctionAttrsPass()); if (PGOOpt && PGOOpt->SamplePGOSupport) MPM.addPass(createModuleToFunctionPassAdaptor(AddDiscriminatorsPass())); // If we are planning to perform ThinLTO later, we don't bloat the code with // unrolling/vectorization/... now. Just simplify the module as much as we // can. MPM.addPass(buildModuleSimplificationPipeline(Level, ThinLTOPhase::PreLink, DebugLogging)); // Run partial inlining pass to partially inline functions that have // large bodies. // FIXME: It isn't clear whether this is really the right place to run this // in ThinLTO. Because there is another canonicalization and simplification // phase that will run after the thin link, running this here ends up with // less information than will be available later and it may grow functions in // ways that aren't beneficial. if (RunPartialInlining) MPM.addPass(PartialInlinerPass()); // Reduce the size of the IR as much as possible. MPM.addPass(GlobalOptPass()); return MPM; } ModulePassManager PassBuilder::buildThinLTODefaultPipeline(OptimizationLevel Level, bool DebugLogging) { // FIXME: The summary index is not hooked in the new pass manager yet. // When it's going to be hooked, enable WholeProgramDevirt and LowerTypeTest // here. ModulePassManager MPM(DebugLogging); // Force any function attributes we want the rest of the pipeline to observe. MPM.addPass(ForceFunctionAttrsPass()); // During the ThinLTO backend phase we perform early indirect call promotion // here, before globalopt. Otherwise imported available_externally functions // look unreferenced and are removed. // FIXME: move this into buildModuleSimplificationPipeline to merge the logic // with SamplePGO. if (!PGOOpt || PGOOpt->SampleProfileFile.empty()) MPM.addPass(PGOIndirectCallPromotion(true /* InLTO */, false /* SamplePGO */)); // Add the core simplification pipeline. MPM.addPass(buildModuleSimplificationPipeline(Level, ThinLTOPhase::PostLink, DebugLogging)); // Now add the optimization pipeline. MPM.addPass(buildModuleOptimizationPipeline(Level, DebugLogging)); return MPM; } ModulePassManager PassBuilder::buildLTOPreLinkDefaultPipeline(OptimizationLevel Level, bool DebugLogging) { assert(Level != O0 && "Must request optimizations for the default pipeline!"); // FIXME: We should use a customized pre-link pipeline! return buildPerModuleDefaultPipeline(Level, DebugLogging); } ModulePassManager PassBuilder::buildLTODefaultPipeline(OptimizationLevel Level, bool DebugLogging) { assert(Level != O0 && "Must request optimizations for the default pipeline!"); ModulePassManager MPM(DebugLogging); // Remove unused virtual tables to improve the quality of code generated by // whole-program devirtualization and bitset lowering. MPM.addPass(GlobalDCEPass()); // Force any function attributes we want the rest of the pipeline to observe. MPM.addPass(ForceFunctionAttrsPass()); // Do basic inference of function attributes from known properties of system // libraries and other oracles. MPM.addPass(InferFunctionAttrsPass()); if (Level > 1) { // Indirect call promotion. This should promote all the targets that are // left by the earlier promotion pass that promotes intra-module targets. // This two-step promotion is to save the compile time. For LTO, it should // produce the same result as if we only do promotion here. MPM.addPass(PGOIndirectCallPromotion( true /* InLTO */, PGOOpt && !PGOOpt->SampleProfileFile.empty())); // Propagate constants at call sites into the functions they call. This // opens opportunities for globalopt (and inlining) by substituting function // pointers passed as arguments to direct uses of functions. MPM.addPass(IPSCCPPass()); // Attach metadata to indirect call sites indicating the set of functions // they may target at run-time. This should follow IPSCCP. MPM.addPass(CalledValuePropagationPass()); } // Now deduce any function attributes based in the current code. MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor( PostOrderFunctionAttrsPass())); // Do RPO function attribute inference across the module to forward-propagate // attributes where applicable. // FIXME: Is this really an optimization rather than a canonicalization? MPM.addPass(ReversePostOrderFunctionAttrsPass()); // Use inragne annotations on GEP indices to split globals where beneficial. MPM.addPass(GlobalSplitPass()); // Run whole program optimization of virtual call when the list of callees // is fixed. MPM.addPass(WholeProgramDevirtPass()); // Stop here at -O1. if (Level == 1) return MPM; // Optimize globals to try and fold them into constants. MPM.addPass(GlobalOptPass()); // Promote any localized globals to SSA registers. MPM.addPass(createModuleToFunctionPassAdaptor(PromotePass())); // Linking modules together can lead to duplicate global constant, only // keep one copy of each constant. MPM.addPass(ConstantMergePass()); // Remove unused arguments from functions. MPM.addPass(DeadArgumentEliminationPass()); // Reduce the code after globalopt and ipsccp. Both can open up significant // simplification opportunities, and both can propagate functions through // function pointers. When this happens, we often have to resolve varargs // calls, etc, so let instcombine do this. FunctionPassManager PeepholeFPM(DebugLogging); PeepholeFPM.addPass(InstCombinePass()); invokePeepholeEPCallbacks(PeepholeFPM, Level); MPM.addPass(createModuleToFunctionPassAdaptor(std::move(PeepholeFPM))); // Note: historically, the PruneEH pass was run first to deduce nounwind and // generally clean up exception handling overhead. It isn't clear this is // valuable as the inliner doesn't currently care whether it is inlining an // invoke or a call. // Run the inliner now. MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor( InlinerPass(getInlineParamsFromOptLevel(Level)))); // Optimize globals again after we ran the inliner. MPM.addPass(GlobalOptPass()); // Garbage collect dead functions. // FIXME: Add ArgumentPromotion pass after once it's ported. MPM.addPass(GlobalDCEPass()); FunctionPassManager FPM(DebugLogging); // The IPO Passes may leave cruft around. Clean up after them. FPM.addPass(InstCombinePass()); invokePeepholeEPCallbacks(FPM, Level); FPM.addPass(JumpThreadingPass()); // Break up allocas FPM.addPass(SROA()); // Run a few AA driver optimizations here and now to cleanup the code. MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor( PostOrderFunctionAttrsPass())); // FIXME: here we run IP alias analysis in the legacy PM. FunctionPassManager MainFPM; // FIXME: once we fix LoopPass Manager, add LICM here. // FIXME: once we provide support for enabling MLSM, add it here. // FIXME: once we provide support for enabling NewGVN, add it here. if (RunNewGVN) MainFPM.addPass(NewGVNPass()); else MainFPM.addPass(GVN()); // Remove dead memcpy()'s. MainFPM.addPass(MemCpyOptPass()); // Nuke dead stores. MainFPM.addPass(DSEPass()); // FIXME: at this point, we run a bunch of loop passes: // indVarSimplify, loopDeletion, loopInterchange, loopUnrool, // loopVectorize. Enable them once the remaining issue with LPM // are sorted out. MainFPM.addPass(InstCombinePass()); MainFPM.addPass(SimplifyCFGPass()); MainFPM.addPass(SCCPPass()); MainFPM.addPass(InstCombinePass()); MainFPM.addPass(BDCEPass()); // FIXME: We may want to run SLPVectorizer here. // After vectorization, assume intrinsics may tell us more // about pointer alignments. #if 0 MainFPM.add(AlignmentFromAssumptionsPass()); #endif // FIXME: Conditionally run LoadCombine here, after it's ported // (in case we still have this pass, given its questionable usefulness). MainFPM.addPass(InstCombinePass()); invokePeepholeEPCallbacks(MainFPM, Level); MainFPM.addPass(JumpThreadingPass()); MPM.addPass(createModuleToFunctionPassAdaptor(std::move(MainFPM))); // Create a function that performs CFI checks for cross-DSO calls with // targets in the current module. MPM.addPass(CrossDSOCFIPass()); // Lower type metadata and the type.test intrinsic. This pass supports // clang's control flow integrity mechanisms (-fsanitize=cfi*) and needs // to be run at link time if CFI is enabled. This pass does nothing if // CFI is disabled. // Enable once we add support for the summary in the new PM. #if 0 MPM.addPass(LowerTypeTestsPass(Summary ? PassSummaryAction::Export : PassSummaryAction::None, Summary)); #endif // Add late LTO optimization passes. // Delete basic blocks, which optimization passes may have killed. MPM.addPass(createModuleToFunctionPassAdaptor(SimplifyCFGPass())); // Drop bodies of available eternally objects to improve GlobalDCE. MPM.addPass(EliminateAvailableExternallyPass()); // Now that we have optimized the program, discard unreachable functions. MPM.addPass(GlobalDCEPass()); // FIXME: Enable MergeFuncs, conditionally, after ported, maybe. return MPM; } AAManager PassBuilder::buildDefaultAAPipeline() { AAManager AA; // The order in which these are registered determines their priority when // being queried. // First we register the basic alias analysis that provides the majority of // per-function local AA logic. This is a stateless, on-demand local set of // AA techniques. AA.registerFunctionAnalysis<BasicAA>(); // Next we query fast, specialized alias analyses that wrap IR-embedded // information about aliasing. AA.registerFunctionAnalysis<ScopedNoAliasAA>(); AA.registerFunctionAnalysis<TypeBasedAA>(); // Add support for querying global aliasing information when available. // Because the `AAManager` is a function analysis and `GlobalsAA` is a module // analysis, all that the `AAManager` can do is query for any *cached* // results from `GlobalsAA` through a readonly proxy. AA.registerModuleAnalysis<GlobalsAA>(); return AA; } static Optional<int> parseRepeatPassName(StringRef Name) { if (!Name.consume_front("repeat<") || !Name.consume_back(">")) return None; int Count; if (Name.getAsInteger(0, Count) || Count <= 0) return None; return Count; } static Optional<int> parseDevirtPassName(StringRef Name) { if (!Name.consume_front("devirt<") || !Name.consume_back(">")) return None; int Count; if (Name.getAsInteger(0, Count) || Count <= 0) return None; return Count; } /// Tests whether a pass name starts with a valid prefix for a default pipeline /// alias. static bool startsWithDefaultPipelineAliasPrefix(StringRef Name) { return Name.startswith("default") || Name.startswith("thinlto") || Name.startswith("lto"); } /// Tests whether registered callbacks will accept a given pass name. /// /// When parsing a pipeline text, the type of the outermost pipeline may be /// omitted, in which case the type is automatically determined from the first /// pass name in the text. This may be a name that is handled through one of the /// callbacks. We check this through the oridinary parsing callbacks by setting /// up a dummy PassManager in order to not force the client to also handle this /// type of query. template <typename PassManagerT, typename CallbacksT> static bool callbacksAcceptPassName(StringRef Name, CallbacksT &Callbacks) { if (!Callbacks.empty()) { PassManagerT DummyPM; for (auto &CB : Callbacks) if (CB(Name, DummyPM, {})) return true; } return false; } template <typename CallbacksT> static bool isModulePassName(StringRef Name, CallbacksT &Callbacks) { // Manually handle aliases for pre-configured pipeline fragments. if (startsWithDefaultPipelineAliasPrefix(Name)) return DefaultAliasRegex.match(Name); // Explicitly handle pass manager names. if (Name == "module") return true; if (Name == "cgscc") return true; if (Name == "function") return true; // Explicitly handle custom-parsed pass names. if (parseRepeatPassName(Name)) return true; #define MODULE_PASS(NAME, CREATE_PASS) \ if (Name == NAME) \ return true; #define MODULE_ANALYSIS(NAME, CREATE_PASS) \ if (Name == "require<" NAME ">" || Name == "invalidate<" NAME ">") \ return true; #include "PassRegistry.def" return callbacksAcceptPassName<ModulePassManager>(Name, Callbacks); } template <typename CallbacksT> static bool isCGSCCPassName(StringRef Name, CallbacksT &Callbacks) { // Explicitly handle pass manager names. if (Name == "cgscc") return true; if (Name == "function") return true; // Explicitly handle custom-parsed pass names. if (parseRepeatPassName(Name)) return true; if (parseDevirtPassName(Name)) return true; #define CGSCC_PASS(NAME, CREATE_PASS) \ if (Name == NAME) \ return true; #define CGSCC_ANALYSIS(NAME, CREATE_PASS) \ if (Name == "require<" NAME ">" || Name == "invalidate<" NAME ">") \ return true; #include "PassRegistry.def" return callbacksAcceptPassName<CGSCCPassManager>(Name, Callbacks); } template <typename CallbacksT> static bool isFunctionPassName(StringRef Name, CallbacksT &Callbacks) { // Explicitly handle pass manager names. if (Name == "function") return true; if (Name == "loop") return true; // Explicitly handle custom-parsed pass names. if (parseRepeatPassName(Name)) return true; #define FUNCTION_PASS(NAME, CREATE_PASS) \ if (Name == NAME) \ return true; #define FUNCTION_ANALYSIS(NAME, CREATE_PASS) \ if (Name == "require<" NAME ">" || Name == "invalidate<" NAME ">") \ return true; #include "PassRegistry.def" return callbacksAcceptPassName<FunctionPassManager>(Name, Callbacks); } template <typename CallbacksT> static bool isLoopPassName(StringRef Name, CallbacksT &Callbacks) { // Explicitly handle pass manager names. if (Name == "loop") return true; // Explicitly handle custom-parsed pass names. if (parseRepeatPassName(Name)) return true; #define LOOP_PASS(NAME, CREATE_PASS) \ if (Name == NAME) \ return true; #define LOOP_ANALYSIS(NAME, CREATE_PASS) \ if (Name == "require<" NAME ">" || Name == "invalidate<" NAME ">") \ return true; #include "PassRegistry.def" return callbacksAcceptPassName<LoopPassManager>(Name, Callbacks); } Optional<std::vector<PassBuilder::PipelineElement>> PassBuilder::parsePipelineText(StringRef Text) { std::vector<PipelineElement> ResultPipeline; SmallVector<std::vector<PipelineElement> *, 4> PipelineStack = { &ResultPipeline}; for (;;) { std::vector<PipelineElement> &Pipeline = *PipelineStack.back(); size_t Pos = Text.find_first_of(",()"); Pipeline.push_back({Text.substr(0, Pos), {}}); // If we have a single terminating name, we're done. if (Pos == Text.npos) break; char Sep = Text[Pos]; Text = Text.substr(Pos + 1); if (Sep == ',') // Just a name ending in a comma, continue. continue; if (Sep == '(') { // Push the inner pipeline onto the stack to continue processing. PipelineStack.push_back(&Pipeline.back().InnerPipeline); continue; } assert(Sep == ')' && "Bogus separator!"); // When handling the close parenthesis, we greedily consume them to avoid // empty strings in the pipeline. do { // If we try to pop the outer pipeline we have unbalanced parentheses. if (PipelineStack.size() == 1) return None; PipelineStack.pop_back(); } while (Text.consume_front(")")); // Check if we've finished parsing. if (Text.empty()) break; // Otherwise, the end of an inner pipeline always has to be followed by // a comma, and then we can continue. if (!Text.consume_front(",")) return None; } if (PipelineStack.size() > 1) // Unbalanced paretheses. return None; assert(PipelineStack.back() == &ResultPipeline && "Wrong pipeline at the bottom of the stack!"); return {std::move(ResultPipeline)}; } bool PassBuilder::parseModulePass(ModulePassManager &MPM, const PipelineElement &E, bool VerifyEachPass, bool DebugLogging) { auto &Name = E.Name; auto &InnerPipeline = E.InnerPipeline; // First handle complex passes like the pass managers which carry pipelines. if (!InnerPipeline.empty()) { if (Name == "module") { ModulePassManager NestedMPM(DebugLogging); if (!parseModulePassPipeline(NestedMPM, InnerPipeline, VerifyEachPass, DebugLogging)) return false; MPM.addPass(std::move(NestedMPM)); return true; } if (Name == "cgscc") { CGSCCPassManager CGPM(DebugLogging); if (!parseCGSCCPassPipeline(CGPM, InnerPipeline, VerifyEachPass, DebugLogging)) return false; MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM))); return true; } if (Name == "function") { FunctionPassManager FPM(DebugLogging); if (!parseFunctionPassPipeline(FPM, InnerPipeline, VerifyEachPass, DebugLogging)) return false; MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); return true; } if (auto Count = parseRepeatPassName(Name)) { ModulePassManager NestedMPM(DebugLogging); if (!parseModulePassPipeline(NestedMPM, InnerPipeline, VerifyEachPass, DebugLogging)) return false; MPM.addPass(createRepeatedPass(*Count, std::move(NestedMPM))); return true; } for (auto &C : ModulePipelineParsingCallbacks) if (C(Name, MPM, InnerPipeline)) return true; // Normal passes can't have pipelines. return false; } // Manually handle aliases for pre-configured pipeline fragments. if (startsWithDefaultPipelineAliasPrefix(Name)) { SmallVector<StringRef, 3> Matches; if (!DefaultAliasRegex.match(Name, &Matches)) return false; assert(Matches.size() == 3 && "Must capture two matched strings!"); OptimizationLevel L = StringSwitch<OptimizationLevel>(Matches[2]) .Case("O0", O0) .Case("O1", O1) .Case("O2", O2) .Case("O3", O3) .Case("Os", Os) .Case("Oz", Oz); if (L == O0) // At O0 we do nothing at all! return true; if (Matches[1] == "default") { MPM.addPass(buildPerModuleDefaultPipeline(L, DebugLogging)); } else if (Matches[1] == "thinlto-pre-link") { MPM.addPass(buildThinLTOPreLinkDefaultPipeline(L, DebugLogging)); } else if (Matches[1] == "thinlto") { MPM.addPass(buildThinLTODefaultPipeline(L, DebugLogging)); } else if (Matches[1] == "lto-pre-link") { MPM.addPass(buildLTOPreLinkDefaultPipeline(L, DebugLogging)); } else { assert(Matches[1] == "lto" && "Not one of the matched options!"); MPM.addPass(buildLTODefaultPipeline(L, DebugLogging)); } return true; } // Finally expand the basic registered passes from the .inc file. #define MODULE_PASS(NAME, CREATE_PASS) \ if (Name == NAME) { \ MPM.addPass(CREATE_PASS); \ return true; \ } #define MODULE_ANALYSIS(NAME, CREATE_PASS) \ if (Name == "require<" NAME ">") { \ MPM.addPass( \ RequireAnalysisPass< \ std::remove_reference<decltype(CREATE_PASS)>::type, Module>()); \ return true; \ } \ if (Name == "invalidate<" NAME ">") { \ MPM.addPass(InvalidateAnalysisPass< \ std::remove_reference<decltype(CREATE_PASS)>::type>()); \ return true; \ } #include "PassRegistry.def" for (auto &C : ModulePipelineParsingCallbacks) if (C(Name, MPM, InnerPipeline)) return true; return false; } bool PassBuilder::parseCGSCCPass(CGSCCPassManager &CGPM, const PipelineElement &E, bool VerifyEachPass, bool DebugLogging) { auto &Name = E.Name; auto &InnerPipeline = E.InnerPipeline; // First handle complex passes like the pass managers which carry pipelines. if (!InnerPipeline.empty()) { if (Name == "cgscc") { CGSCCPassManager NestedCGPM(DebugLogging); if (!parseCGSCCPassPipeline(NestedCGPM, InnerPipeline, VerifyEachPass, DebugLogging)) return false; // Add the nested pass manager with the appropriate adaptor. CGPM.addPass(std::move(NestedCGPM)); return true; } if (Name == "function") { FunctionPassManager FPM(DebugLogging); if (!parseFunctionPassPipeline(FPM, InnerPipeline, VerifyEachPass, DebugLogging)) return false; // Add the nested pass manager with the appropriate adaptor. CGPM.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM))); return true; } if (auto Count = parseRepeatPassName(Name)) { CGSCCPassManager NestedCGPM(DebugLogging); if (!parseCGSCCPassPipeline(NestedCGPM, InnerPipeline, VerifyEachPass, DebugLogging)) return false; CGPM.addPass(createRepeatedPass(*Count, std::move(NestedCGPM))); return true; } if (auto MaxRepetitions = parseDevirtPassName(Name)) { CGSCCPassManager NestedCGPM(DebugLogging); if (!parseCGSCCPassPipeline(NestedCGPM, InnerPipeline, VerifyEachPass, DebugLogging)) return false; CGPM.addPass( createDevirtSCCRepeatedPass(std::move(NestedCGPM), *MaxRepetitions)); return true; } for (auto &C : CGSCCPipelineParsingCallbacks) if (C(Name, CGPM, InnerPipeline)) return true; // Normal passes can't have pipelines. return false; } // Now expand the basic registered passes from the .inc file. #define CGSCC_PASS(NAME, CREATE_PASS) \ if (Name == NAME) { \ CGPM.addPass(CREATE_PASS); \ return true; \ } #define CGSCC_ANALYSIS(NAME, CREATE_PASS) \ if (Name == "require<" NAME ">") { \ CGPM.addPass(RequireAnalysisPass< \ std::remove_reference<decltype(CREATE_PASS)>::type, \ LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &, \ CGSCCUpdateResult &>()); \ return true; \ } \ if (Name == "invalidate<" NAME ">") { \ CGPM.addPass(InvalidateAnalysisPass< \ std::remove_reference<decltype(CREATE_PASS)>::type>()); \ return true; \ } #include "PassRegistry.def" for (auto &C : CGSCCPipelineParsingCallbacks) if (C(Name, CGPM, InnerPipeline)) return true; return false; } bool PassBuilder::parseFunctionPass(FunctionPassManager &FPM, const PipelineElement &E, bool VerifyEachPass, bool DebugLogging) { auto &Name = E.Name; auto &InnerPipeline = E.InnerPipeline; // First handle complex passes like the pass managers which carry pipelines. if (!InnerPipeline.empty()) { if (Name == "function") { FunctionPassManager NestedFPM(DebugLogging); if (!parseFunctionPassPipeline(NestedFPM, InnerPipeline, VerifyEachPass, DebugLogging)) return false; // Add the nested pass manager with the appropriate adaptor. FPM.addPass(std::move(NestedFPM)); return true; } if (Name == "loop") { LoopPassManager LPM(DebugLogging); if (!parseLoopPassPipeline(LPM, InnerPipeline, VerifyEachPass, DebugLogging)) return false; // Add the nested pass manager with the appropriate adaptor. FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM))); return true; } if (auto Count = parseRepeatPassName(Name)) { FunctionPassManager NestedFPM(DebugLogging); if (!parseFunctionPassPipeline(NestedFPM, InnerPipeline, VerifyEachPass, DebugLogging)) return false; FPM.addPass(createRepeatedPass(*Count, std::move(NestedFPM))); return true; } for (auto &C : FunctionPipelineParsingCallbacks) if (C(Name, FPM, InnerPipeline)) return true; // Normal passes can't have pipelines. return false; } // Now expand the basic registered passes from the .inc file. #define FUNCTION_PASS(NAME, CREATE_PASS) \ if (Name == NAME) { \ FPM.addPass(CREATE_PASS); \ return true; \ } #define FUNCTION_ANALYSIS(NAME, CREATE_PASS) \ if (Name == "require<" NAME ">") { \ FPM.addPass( \ RequireAnalysisPass< \ std::remove_reference<decltype(CREATE_PASS)>::type, Function>()); \ return true; \ } \ if (Name == "invalidate<" NAME ">") { \ FPM.addPass(InvalidateAnalysisPass< \ std::remove_reference<decltype(CREATE_PASS)>::type>()); \ return true; \ } #include "PassRegistry.def" for (auto &C : FunctionPipelineParsingCallbacks) if (C(Name, FPM, InnerPipeline)) return true; return false; } bool PassBuilder::parseLoopPass(LoopPassManager &LPM, const PipelineElement &E, bool VerifyEachPass, bool DebugLogging) { StringRef Name = E.Name; auto &InnerPipeline = E.InnerPipeline; // First handle complex passes like the pass managers which carry pipelines. if (!InnerPipeline.empty()) { if (Name == "loop") { LoopPassManager NestedLPM(DebugLogging); if (!parseLoopPassPipeline(NestedLPM, InnerPipeline, VerifyEachPass, DebugLogging)) return false; // Add the nested pass manager with the appropriate adaptor. LPM.addPass(std::move(NestedLPM)); return true; } if (auto Count = parseRepeatPassName(Name)) { LoopPassManager NestedLPM(DebugLogging); if (!parseLoopPassPipeline(NestedLPM, InnerPipeline, VerifyEachPass, DebugLogging)) return false; LPM.addPass(createRepeatedPass(*Count, std::move(NestedLPM))); return true; } for (auto &C : LoopPipelineParsingCallbacks) if (C(Name, LPM, InnerPipeline)) return true; // Normal passes can't have pipelines. return false; } // Now expand the basic registered passes from the .inc file. #define LOOP_PASS(NAME, CREATE_PASS) \ if (Name == NAME) { \ LPM.addPass(CREATE_PASS); \ return true; \ } #define LOOP_ANALYSIS(NAME, CREATE_PASS) \ if (Name == "require<" NAME ">") { \ LPM.addPass(RequireAnalysisPass< \ std::remove_reference<decltype(CREATE_PASS)>::type, Loop, \ LoopAnalysisManager, LoopStandardAnalysisResults &, \ LPMUpdater &>()); \ return true; \ } \ if (Name == "invalidate<" NAME ">") { \ LPM.addPass(InvalidateAnalysisPass< \ std::remove_reference<decltype(CREATE_PASS)>::type>()); \ return true; \ } #include "PassRegistry.def" for (auto &C : LoopPipelineParsingCallbacks) if (C(Name, LPM, InnerPipeline)) return true; return false; } bool PassBuilder::parseAAPassName(AAManager &AA, StringRef Name) { #define MODULE_ALIAS_ANALYSIS(NAME, CREATE_PASS) \ if (Name == NAME) { \ AA.registerModuleAnalysis< \ std::remove_reference<decltype(CREATE_PASS)>::type>(); \ return true; \ } #define FUNCTION_ALIAS_ANALYSIS(NAME, CREATE_PASS) \ if (Name == NAME) { \ AA.registerFunctionAnalysis< \ std::remove_reference<decltype(CREATE_PASS)>::type>(); \ return true; \ } #include "PassRegistry.def" for (auto &C : AAParsingCallbacks) if (C(Name, AA)) return true; return false; } bool PassBuilder::parseLoopPassPipeline(LoopPassManager &LPM, ArrayRef<PipelineElement> Pipeline, bool VerifyEachPass, bool DebugLogging) { for (const auto &Element : Pipeline) { if (!parseLoopPass(LPM, Element, VerifyEachPass, DebugLogging)) return false; // FIXME: No verifier support for Loop passes! } return true; } bool PassBuilder::parseFunctionPassPipeline(FunctionPassManager &FPM, ArrayRef<PipelineElement> Pipeline, bool VerifyEachPass, bool DebugLogging) { for (const auto &Element : Pipeline) { if (!parseFunctionPass(FPM, Element, VerifyEachPass, DebugLogging)) return false; if (VerifyEachPass) FPM.addPass(VerifierPass()); } return true; } bool PassBuilder::parseCGSCCPassPipeline(CGSCCPassManager &CGPM, ArrayRef<PipelineElement> Pipeline, bool VerifyEachPass, bool DebugLogging) { for (const auto &Element : Pipeline) { if (!parseCGSCCPass(CGPM, Element, VerifyEachPass, DebugLogging)) return false; // FIXME: No verifier support for CGSCC passes! } return true; } void PassBuilder::crossRegisterProxies(LoopAnalysisManager &LAM, FunctionAnalysisManager &FAM, CGSCCAnalysisManager &CGAM, ModuleAnalysisManager &MAM) { MAM.registerPass([&] { return FunctionAnalysisManagerModuleProxy(FAM); }); MAM.registerPass([&] { return CGSCCAnalysisManagerModuleProxy(CGAM); }); CGAM.registerPass([&] { return ModuleAnalysisManagerCGSCCProxy(MAM); }); FAM.registerPass([&] { return CGSCCAnalysisManagerFunctionProxy(CGAM); }); FAM.registerPass([&] { return ModuleAnalysisManagerFunctionProxy(MAM); }); FAM.registerPass([&] { return LoopAnalysisManagerFunctionProxy(LAM); }); LAM.registerPass([&] { return FunctionAnalysisManagerLoopProxy(FAM); }); } bool PassBuilder::parseModulePassPipeline(ModulePassManager &MPM, ArrayRef<PipelineElement> Pipeline, bool VerifyEachPass, bool DebugLogging) { for (const auto &Element : Pipeline) { if (!parseModulePass(MPM, Element, VerifyEachPass, DebugLogging)) return false; if (VerifyEachPass) MPM.addPass(VerifierPass()); } return true; } // Primary pass pipeline description parsing routine for a \c ModulePassManager // FIXME: Should this routine accept a TargetMachine or require the caller to // pre-populate the analysis managers with target-specific stuff? bool PassBuilder::parsePassPipeline(ModulePassManager &MPM, StringRef PipelineText, bool VerifyEachPass, bool DebugLogging) { auto Pipeline = parsePipelineText(PipelineText); if (!Pipeline || Pipeline->empty()) return false; // If the first name isn't at the module layer, wrap the pipeline up // automatically. StringRef FirstName = Pipeline->front().Name; if (!isModulePassName(FirstName, ModulePipelineParsingCallbacks)) { if (isCGSCCPassName(FirstName, CGSCCPipelineParsingCallbacks)) { Pipeline = {{"cgscc", std::move(*Pipeline)}}; } else if (isFunctionPassName(FirstName, FunctionPipelineParsingCallbacks)) { Pipeline = {{"function", std::move(*Pipeline)}}; } else if (isLoopPassName(FirstName, LoopPipelineParsingCallbacks)) { Pipeline = {{"function", {{"loop", std::move(*Pipeline)}}}}; } else { for (auto &C : TopLevelPipelineParsingCallbacks) if (C(MPM, *Pipeline, VerifyEachPass, DebugLogging)) return true; // Unknown pass name! return false; } } return parseModulePassPipeline(MPM, *Pipeline, VerifyEachPass, DebugLogging); } // Primary pass pipeline description parsing routine for a \c CGSCCPassManager bool PassBuilder::parsePassPipeline(CGSCCPassManager &CGPM, StringRef PipelineText, bool VerifyEachPass, bool DebugLogging) { auto Pipeline = parsePipelineText(PipelineText); if (!Pipeline || Pipeline->empty()) return false; StringRef FirstName = Pipeline->front().Name; if (!isCGSCCPassName(FirstName, CGSCCPipelineParsingCallbacks)) return false; return parseCGSCCPassPipeline(CGPM, *Pipeline, VerifyEachPass, DebugLogging); } // Primary pass pipeline description parsing routine for a \c // FunctionPassManager bool PassBuilder::parsePassPipeline(FunctionPassManager &FPM, StringRef PipelineText, bool VerifyEachPass, bool DebugLogging) { auto Pipeline = parsePipelineText(PipelineText); if (!Pipeline || Pipeline->empty()) return false; StringRef FirstName = Pipeline->front().Name; if (!isFunctionPassName(FirstName, FunctionPipelineParsingCallbacks)) return false; return parseFunctionPassPipeline(FPM, *Pipeline, VerifyEachPass, DebugLogging); } // Primary pass pipeline description parsing routine for a \c LoopPassManager bool PassBuilder::parsePassPipeline(LoopPassManager &CGPM, StringRef PipelineText, bool VerifyEachPass, bool DebugLogging) { auto Pipeline = parsePipelineText(PipelineText); if (!Pipeline || Pipeline->empty()) return false; return parseLoopPassPipeline(CGPM, *Pipeline, VerifyEachPass, DebugLogging); } bool PassBuilder::parseAAPipeline(AAManager &AA, StringRef PipelineText) { // If the pipeline just consists of the word 'default' just replace the AA // manager with our default one. if (PipelineText == "default") { AA = buildDefaultAAPipeline(); return true; } while (!PipelineText.empty()) { StringRef Name; std::tie(Name, PipelineText) = PipelineText.split(','); if (!parseAAPassName(AA, Name)) return false; } return true; }