Mercurial > hg > Members > tobaru > cbc > CbC_llvm
view lib/Target/SystemZ/SystemZInstrInfo.cpp @ 124:4fa72497ed5d
fix
author | mir3636 |
---|---|
date | Thu, 30 Nov 2017 20:04:56 +0900 |
parents | 803732b1fca8 |
children |
line wrap: on
line source
//===-- SystemZInstrInfo.cpp - SystemZ instruction information ------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the SystemZ implementation of the TargetInstrInfo class. // //===----------------------------------------------------------------------===// #include "SystemZInstrInfo.h" #include "MCTargetDesc/SystemZMCTargetDesc.h" #include "SystemZ.h" #include "SystemZInstrBuilder.h" #include "SystemZSubtarget.h" #include "llvm/CodeGen/LiveInterval.h" #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "llvm/CodeGen/LiveVariables.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/SlotIndexes.h" #include "llvm/MC/MCInstrDesc.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/Support/BranchProbability.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetSubtargetInfo.h" #include <cassert> #include <cstdint> #include <iterator> using namespace llvm; #define GET_INSTRINFO_CTOR_DTOR #define GET_INSTRMAP_INFO #include "SystemZGenInstrInfo.inc" // Return a mask with Count low bits set. static uint64_t allOnes(unsigned int Count) { return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1; } // Reg should be a 32-bit GPR. Return true if it is a high register rather // than a low register. static bool isHighReg(unsigned int Reg) { if (SystemZ::GRH32BitRegClass.contains(Reg)) return true; assert(SystemZ::GR32BitRegClass.contains(Reg) && "Invalid GRX32"); return false; } // Pin the vtable to this file. void SystemZInstrInfo::anchor() {} SystemZInstrInfo::SystemZInstrInfo(SystemZSubtarget &sti) : SystemZGenInstrInfo(SystemZ::ADJCALLSTACKDOWN, SystemZ::ADJCALLSTACKUP), RI(), STI(sti) { } // MI is a 128-bit load or store. Split it into two 64-bit loads or stores, // each having the opcode given by NewOpcode. void SystemZInstrInfo::splitMove(MachineBasicBlock::iterator MI, unsigned NewOpcode) const { MachineBasicBlock *MBB = MI->getParent(); MachineFunction &MF = *MBB->getParent(); // Get two load or store instructions. Use the original instruction for one // of them (arbitrarily the second here) and create a clone for the other. MachineInstr *EarlierMI = MF.CloneMachineInstr(&*MI); MBB->insert(MI, EarlierMI); // Set up the two 64-bit registers and remember super reg and its flags. MachineOperand &HighRegOp = EarlierMI->getOperand(0); MachineOperand &LowRegOp = MI->getOperand(0); unsigned Reg128 = LowRegOp.getReg(); unsigned Reg128Killed = getKillRegState(LowRegOp.isKill()); unsigned Reg128Undef = getUndefRegState(LowRegOp.isUndef()); HighRegOp.setReg(RI.getSubReg(HighRegOp.getReg(), SystemZ::subreg_h64)); LowRegOp.setReg(RI.getSubReg(LowRegOp.getReg(), SystemZ::subreg_l64)); if (MI->mayStore()) { // Add implicit uses of the super register in case one of the subregs is // undefined. We could track liveness and skip storing an undefined // subreg, but this is hopefully rare (discovered with llvm-stress). // If Reg128 was killed, set kill flag on MI. unsigned Reg128UndefImpl = (Reg128Undef | RegState::Implicit); MachineInstrBuilder(MF, EarlierMI).addReg(Reg128, Reg128UndefImpl); MachineInstrBuilder(MF, MI).addReg(Reg128, (Reg128UndefImpl | Reg128Killed)); } // The address in the first (high) instruction is already correct. // Adjust the offset in the second (low) instruction. MachineOperand &HighOffsetOp = EarlierMI->getOperand(2); MachineOperand &LowOffsetOp = MI->getOperand(2); LowOffsetOp.setImm(LowOffsetOp.getImm() + 8); // Clear the kill flags on the registers in the first instruction. if (EarlierMI->getOperand(0).isReg() && EarlierMI->getOperand(0).isUse()) EarlierMI->getOperand(0).setIsKill(false); EarlierMI->getOperand(1).setIsKill(false); EarlierMI->getOperand(3).setIsKill(false); // Set the opcodes. unsigned HighOpcode = getOpcodeForOffset(NewOpcode, HighOffsetOp.getImm()); unsigned LowOpcode = getOpcodeForOffset(NewOpcode, LowOffsetOp.getImm()); assert(HighOpcode && LowOpcode && "Both offsets should be in range"); EarlierMI->setDesc(get(HighOpcode)); MI->setDesc(get(LowOpcode)); } // Split ADJDYNALLOC instruction MI. void SystemZInstrInfo::splitAdjDynAlloc(MachineBasicBlock::iterator MI) const { MachineBasicBlock *MBB = MI->getParent(); MachineFunction &MF = *MBB->getParent(); MachineFrameInfo &MFFrame = MF.getFrameInfo(); MachineOperand &OffsetMO = MI->getOperand(2); uint64_t Offset = (MFFrame.getMaxCallFrameSize() + SystemZMC::CallFrameSize + OffsetMO.getImm()); unsigned NewOpcode = getOpcodeForOffset(SystemZ::LA, Offset); assert(NewOpcode && "No support for huge argument lists yet"); MI->setDesc(get(NewOpcode)); OffsetMO.setImm(Offset); } // MI is an RI-style pseudo instruction. Replace it with LowOpcode // if the first operand is a low GR32 and HighOpcode if the first operand // is a high GR32. ConvertHigh is true if LowOpcode takes a signed operand // and HighOpcode takes an unsigned 32-bit operand. In those cases, // MI has the same kind of operand as LowOpcode, so needs to be converted // if HighOpcode is used. void SystemZInstrInfo::expandRIPseudo(MachineInstr &MI, unsigned LowOpcode, unsigned HighOpcode, bool ConvertHigh) const { unsigned Reg = MI.getOperand(0).getReg(); bool IsHigh = isHighReg(Reg); MI.setDesc(get(IsHigh ? HighOpcode : LowOpcode)); if (IsHigh && ConvertHigh) MI.getOperand(1).setImm(uint32_t(MI.getOperand(1).getImm())); } // MI is a three-operand RIE-style pseudo instruction. Replace it with // LowOpcodeK if the registers are both low GR32s, otherwise use a move // followed by HighOpcode or LowOpcode, depending on whether the target // is a high or low GR32. void SystemZInstrInfo::expandRIEPseudo(MachineInstr &MI, unsigned LowOpcode, unsigned LowOpcodeK, unsigned HighOpcode) const { unsigned DestReg = MI.getOperand(0).getReg(); unsigned SrcReg = MI.getOperand(1).getReg(); bool DestIsHigh = isHighReg(DestReg); bool SrcIsHigh = isHighReg(SrcReg); if (!DestIsHigh && !SrcIsHigh) MI.setDesc(get(LowOpcodeK)); else { emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(), DestReg, SrcReg, SystemZ::LR, 32, MI.getOperand(1).isKill(), MI.getOperand(1).isUndef()); MI.setDesc(get(DestIsHigh ? HighOpcode : LowOpcode)); MI.getOperand(1).setReg(DestReg); MI.tieOperands(0, 1); } } // MI is an RXY-style pseudo instruction. Replace it with LowOpcode // if the first operand is a low GR32 and HighOpcode if the first operand // is a high GR32. void SystemZInstrInfo::expandRXYPseudo(MachineInstr &MI, unsigned LowOpcode, unsigned HighOpcode) const { unsigned Reg = MI.getOperand(0).getReg(); unsigned Opcode = getOpcodeForOffset(isHighReg(Reg) ? HighOpcode : LowOpcode, MI.getOperand(2).getImm()); MI.setDesc(get(Opcode)); } // MI is a load-on-condition pseudo instruction with a single register // (source or destination) operand. Replace it with LowOpcode if the // register is a low GR32 and HighOpcode if the register is a high GR32. void SystemZInstrInfo::expandLOCPseudo(MachineInstr &MI, unsigned LowOpcode, unsigned HighOpcode) const { unsigned Reg = MI.getOperand(0).getReg(); unsigned Opcode = isHighReg(Reg) ? HighOpcode : LowOpcode; MI.setDesc(get(Opcode)); } // MI is a load-register-on-condition pseudo instruction. Replace it with // LowOpcode if source and destination are both low GR32s and HighOpcode if // source and destination are both high GR32s. void SystemZInstrInfo::expandLOCRPseudo(MachineInstr &MI, unsigned LowOpcode, unsigned HighOpcode) const { unsigned DestReg = MI.getOperand(0).getReg(); unsigned SrcReg = MI.getOperand(2).getReg(); bool DestIsHigh = isHighReg(DestReg); bool SrcIsHigh = isHighReg(SrcReg); if (!DestIsHigh && !SrcIsHigh) MI.setDesc(get(LowOpcode)); else if (DestIsHigh && SrcIsHigh) MI.setDesc(get(HighOpcode)); // If we were unable to implement the pseudo with a single instruction, we // need to convert it back into a branch sequence. This cannot be done here // since the caller of expandPostRAPseudo does not handle changes to the CFG // correctly. This change is defered to the SystemZExpandPseudo pass. } // MI is an RR-style pseudo instruction that zero-extends the low Size bits // of one GRX32 into another. Replace it with LowOpcode if both operands // are low registers, otherwise use RISB[LH]G. void SystemZInstrInfo::expandZExtPseudo(MachineInstr &MI, unsigned LowOpcode, unsigned Size) const { MachineInstrBuilder MIB = emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(), MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), LowOpcode, Size, MI.getOperand(1).isKill(), MI.getOperand(1).isUndef()); // Keep the remaining operands as-is. for (unsigned I = 2; I < MI.getNumOperands(); ++I) MIB.add(MI.getOperand(I)); MI.eraseFromParent(); } void SystemZInstrInfo::expandLoadStackGuard(MachineInstr *MI) const { MachineBasicBlock *MBB = MI->getParent(); MachineFunction &MF = *MBB->getParent(); const unsigned Reg64 = MI->getOperand(0).getReg(); const unsigned Reg32 = RI.getSubReg(Reg64, SystemZ::subreg_l32); // EAR can only load the low subregister so us a shift for %a0 to produce // the GR containing %a0 and %a1. // ear <reg>, %a0 BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::EAR), Reg32) .addReg(SystemZ::A0) .addReg(Reg64, RegState::ImplicitDefine); // sllg <reg>, <reg>, 32 BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::SLLG), Reg64) .addReg(Reg64) .addReg(0) .addImm(32); // ear <reg>, %a1 BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::EAR), Reg32) .addReg(SystemZ::A1); // lg <reg>, 40(<reg>) MI->setDesc(get(SystemZ::LG)); MachineInstrBuilder(MF, MI).addReg(Reg64).addImm(40).addReg(0); } // Emit a zero-extending move from 32-bit GPR SrcReg to 32-bit GPR // DestReg before MBBI in MBB. Use LowLowOpcode when both DestReg and SrcReg // are low registers, otherwise use RISB[LH]G. Size is the number of bits // taken from the low end of SrcReg (8 for LLCR, 16 for LLHR and 32 for LR). // KillSrc is true if this move is the last use of SrcReg. MachineInstrBuilder SystemZInstrInfo::emitGRX32Move(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, const DebugLoc &DL, unsigned DestReg, unsigned SrcReg, unsigned LowLowOpcode, unsigned Size, bool KillSrc, bool UndefSrc) const { unsigned Opcode; bool DestIsHigh = isHighReg(DestReg); bool SrcIsHigh = isHighReg(SrcReg); if (DestIsHigh && SrcIsHigh) Opcode = SystemZ::RISBHH; else if (DestIsHigh && !SrcIsHigh) Opcode = SystemZ::RISBHL; else if (!DestIsHigh && SrcIsHigh) Opcode = SystemZ::RISBLH; else { return BuildMI(MBB, MBBI, DL, get(LowLowOpcode), DestReg) .addReg(SrcReg, getKillRegState(KillSrc) | getUndefRegState(UndefSrc)); } unsigned Rotate = (DestIsHigh != SrcIsHigh ? 32 : 0); return BuildMI(MBB, MBBI, DL, get(Opcode), DestReg) .addReg(DestReg, RegState::Undef) .addReg(SrcReg, getKillRegState(KillSrc) | getUndefRegState(UndefSrc)) .addImm(32 - Size).addImm(128 + 31).addImm(Rotate); } MachineInstr *SystemZInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, unsigned OpIdx1, unsigned OpIdx2) const { auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & { if (NewMI) return *MI.getParent()->getParent()->CloneMachineInstr(&MI); return MI; }; switch (MI.getOpcode()) { case SystemZ::LOCRMux: case SystemZ::LOCFHR: case SystemZ::LOCR: case SystemZ::LOCGR: { auto &WorkingMI = cloneIfNew(MI); // Invert condition. unsigned CCValid = WorkingMI.getOperand(3).getImm(); unsigned CCMask = WorkingMI.getOperand(4).getImm(); WorkingMI.getOperand(4).setImm(CCMask ^ CCValid); return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, OpIdx1, OpIdx2); } default: return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); } } // If MI is a simple load or store for a frame object, return the register // it loads or stores and set FrameIndex to the index of the frame object. // Return 0 otherwise. // // Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores. static int isSimpleMove(const MachineInstr &MI, int &FrameIndex, unsigned Flag) { const MCInstrDesc &MCID = MI.getDesc(); if ((MCID.TSFlags & Flag) && MI.getOperand(1).isFI() && MI.getOperand(2).getImm() == 0 && MI.getOperand(3).getReg() == 0) { FrameIndex = MI.getOperand(1).getIndex(); return MI.getOperand(0).getReg(); } return 0; } unsigned SystemZInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, int &FrameIndex) const { return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXLoad); } unsigned SystemZInstrInfo::isStoreToStackSlot(const MachineInstr &MI, int &FrameIndex) const { return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXStore); } bool SystemZInstrInfo::isStackSlotCopy(const MachineInstr &MI, int &DestFrameIndex, int &SrcFrameIndex) const { // Check for MVC 0(Length,FI1),0(FI2) const MachineFrameInfo &MFI = MI.getParent()->getParent()->getFrameInfo(); if (MI.getOpcode() != SystemZ::MVC || !MI.getOperand(0).isFI() || MI.getOperand(1).getImm() != 0 || !MI.getOperand(3).isFI() || MI.getOperand(4).getImm() != 0) return false; // Check that Length covers the full slots. int64_t Length = MI.getOperand(2).getImm(); unsigned FI1 = MI.getOperand(0).getIndex(); unsigned FI2 = MI.getOperand(3).getIndex(); if (MFI.getObjectSize(FI1) != Length || MFI.getObjectSize(FI2) != Length) return false; DestFrameIndex = FI1; SrcFrameIndex = FI2; return true; } bool SystemZInstrInfo::analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl<MachineOperand> &Cond, bool AllowModify) const { // Most of the code and comments here are boilerplate. // Start from the bottom of the block and work up, examining the // terminator instructions. MachineBasicBlock::iterator I = MBB.end(); while (I != MBB.begin()) { --I; if (I->isDebugValue()) continue; // Working from the bottom, when we see a non-terminator instruction, we're // done. if (!isUnpredicatedTerminator(*I)) break; // A terminator that isn't a branch can't easily be handled by this // analysis. if (!I->isBranch()) return true; // Can't handle indirect branches. SystemZII::Branch Branch(getBranchInfo(*I)); if (!Branch.Target->isMBB()) return true; // Punt on compound branches. if (Branch.Type != SystemZII::BranchNormal) return true; if (Branch.CCMask == SystemZ::CCMASK_ANY) { // Handle unconditional branches. if (!AllowModify) { TBB = Branch.Target->getMBB(); continue; } // If the block has any instructions after a JMP, delete them. while (std::next(I) != MBB.end()) std::next(I)->eraseFromParent(); Cond.clear(); FBB = nullptr; // Delete the JMP if it's equivalent to a fall-through. if (MBB.isLayoutSuccessor(Branch.Target->getMBB())) { TBB = nullptr; I->eraseFromParent(); I = MBB.end(); continue; } // TBB is used to indicate the unconditinal destination. TBB = Branch.Target->getMBB(); continue; } // Working from the bottom, handle the first conditional branch. if (Cond.empty()) { // FIXME: add X86-style branch swap FBB = TBB; TBB = Branch.Target->getMBB(); Cond.push_back(MachineOperand::CreateImm(Branch.CCValid)); Cond.push_back(MachineOperand::CreateImm(Branch.CCMask)); continue; } // Handle subsequent conditional branches. assert(Cond.size() == 2 && TBB && "Should have seen a conditional branch"); // Only handle the case where all conditional branches branch to the same // destination. if (TBB != Branch.Target->getMBB()) return true; // If the conditions are the same, we can leave them alone. unsigned OldCCValid = Cond[0].getImm(); unsigned OldCCMask = Cond[1].getImm(); if (OldCCValid == Branch.CCValid && OldCCMask == Branch.CCMask) continue; // FIXME: Try combining conditions like X86 does. Should be easy on Z! return false; } return false; } unsigned SystemZInstrInfo::removeBranch(MachineBasicBlock &MBB, int *BytesRemoved) const { assert(!BytesRemoved && "code size not handled"); // Most of the code and comments here are boilerplate. MachineBasicBlock::iterator I = MBB.end(); unsigned Count = 0; while (I != MBB.begin()) { --I; if (I->isDebugValue()) continue; if (!I->isBranch()) break; if (!getBranchInfo(*I).Target->isMBB()) break; // Remove the branch. I->eraseFromParent(); I = MBB.end(); ++Count; } return Count; } bool SystemZInstrInfo:: reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { assert(Cond.size() == 2 && "Invalid condition"); Cond[1].setImm(Cond[1].getImm() ^ Cond[0].getImm()); return false; } unsigned SystemZInstrInfo::insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond, const DebugLoc &DL, int *BytesAdded) const { // In this function we output 32-bit branches, which should always // have enough range. They can be shortened and relaxed by later code // in the pipeline, if desired. // Shouldn't be a fall through. assert(TBB && "insertBranch must not be told to insert a fallthrough"); assert((Cond.size() == 2 || Cond.size() == 0) && "SystemZ branch conditions have one component!"); assert(!BytesAdded && "code size not handled"); if (Cond.empty()) { // Unconditional branch? assert(!FBB && "Unconditional branch with multiple successors!"); BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(TBB); return 1; } // Conditional branch. unsigned Count = 0; unsigned CCValid = Cond[0].getImm(); unsigned CCMask = Cond[1].getImm(); BuildMI(&MBB, DL, get(SystemZ::BRC)) .addImm(CCValid).addImm(CCMask).addMBB(TBB); ++Count; if (FBB) { // Two-way Conditional branch. Insert the second branch. BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(FBB); ++Count; } return Count; } bool SystemZInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg, unsigned &SrcReg2, int &Mask, int &Value) const { assert(MI.isCompare() && "Caller should have checked for a comparison"); if (MI.getNumExplicitOperands() == 2 && MI.getOperand(0).isReg() && MI.getOperand(1).isImm()) { SrcReg = MI.getOperand(0).getReg(); SrcReg2 = 0; Value = MI.getOperand(1).getImm(); Mask = ~0; return true; } return false; } // If Reg is a virtual register, return its definition, otherwise return null. static MachineInstr *getDef(unsigned Reg, const MachineRegisterInfo *MRI) { if (TargetRegisterInfo::isPhysicalRegister(Reg)) return nullptr; return MRI->getUniqueVRegDef(Reg); } // Return true if MI is a shift of type Opcode by Imm bits. static bool isShift(MachineInstr *MI, unsigned Opcode, int64_t Imm) { return (MI->getOpcode() == Opcode && !MI->getOperand(2).getReg() && MI->getOperand(3).getImm() == Imm); } // If the destination of MI has no uses, delete it as dead. static void eraseIfDead(MachineInstr *MI, const MachineRegisterInfo *MRI) { if (MRI->use_nodbg_empty(MI->getOperand(0).getReg())) MI->eraseFromParent(); } // Compare compares SrcReg against zero. Check whether SrcReg contains // the result of an IPM sequence whose input CC survives until Compare, // and whether Compare is therefore redundant. Delete it and return // true if so. static bool removeIPMBasedCompare(MachineInstr &Compare, unsigned SrcReg, const MachineRegisterInfo *MRI, const TargetRegisterInfo *TRI) { MachineInstr *LGFR = nullptr; MachineInstr *RLL = getDef(SrcReg, MRI); if (RLL && RLL->getOpcode() == SystemZ::LGFR) { LGFR = RLL; RLL = getDef(LGFR->getOperand(1).getReg(), MRI); } if (!RLL || !isShift(RLL, SystemZ::RLL, 31)) return false; MachineInstr *SRL = getDef(RLL->getOperand(1).getReg(), MRI); if (!SRL || !isShift(SRL, SystemZ::SRL, SystemZ::IPM_CC)) return false; MachineInstr *IPM = getDef(SRL->getOperand(1).getReg(), MRI); if (!IPM || IPM->getOpcode() != SystemZ::IPM) return false; // Check that there are no assignments to CC between the IPM and Compare, if (IPM->getParent() != Compare.getParent()) return false; MachineBasicBlock::iterator MBBI = IPM, MBBE = Compare.getIterator(); for (++MBBI; MBBI != MBBE; ++MBBI) { MachineInstr &MI = *MBBI; if (MI.modifiesRegister(SystemZ::CC, TRI)) return false; } Compare.eraseFromParent(); if (LGFR) eraseIfDead(LGFR, MRI); eraseIfDead(RLL, MRI); eraseIfDead(SRL, MRI); eraseIfDead(IPM, MRI); return true; } bool SystemZInstrInfo::optimizeCompareInstr( MachineInstr &Compare, unsigned SrcReg, unsigned SrcReg2, int Mask, int Value, const MachineRegisterInfo *MRI) const { assert(!SrcReg2 && "Only optimizing constant comparisons so far"); bool IsLogical = (Compare.getDesc().TSFlags & SystemZII::IsLogical) != 0; return Value == 0 && !IsLogical && removeIPMBasedCompare(Compare, SrcReg, MRI, &RI); } bool SystemZInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, ArrayRef<MachineOperand> Pred, unsigned TrueReg, unsigned FalseReg, int &CondCycles, int &TrueCycles, int &FalseCycles) const { // Not all subtargets have LOCR instructions. if (!STI.hasLoadStoreOnCond()) return false; if (Pred.size() != 2) return false; // Check register classes. const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); const TargetRegisterClass *RC = RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); if (!RC) return false; // We have LOCR instructions for 32 and 64 bit general purpose registers. if ((STI.hasLoadStoreOnCond2() && SystemZ::GRX32BitRegClass.hasSubClassEq(RC)) || SystemZ::GR32BitRegClass.hasSubClassEq(RC) || SystemZ::GR64BitRegClass.hasSubClassEq(RC)) { CondCycles = 2; TrueCycles = 2; FalseCycles = 2; return true; } // Can't do anything else. return false; } void SystemZInstrInfo::insertSelect(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, const DebugLoc &DL, unsigned DstReg, ArrayRef<MachineOperand> Pred, unsigned TrueReg, unsigned FalseReg) const { MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); const TargetRegisterClass *RC = MRI.getRegClass(DstReg); assert(Pred.size() == 2 && "Invalid condition"); unsigned CCValid = Pred[0].getImm(); unsigned CCMask = Pred[1].getImm(); unsigned Opc; if (SystemZ::GRX32BitRegClass.hasSubClassEq(RC)) { if (STI.hasLoadStoreOnCond2()) Opc = SystemZ::LOCRMux; else { Opc = SystemZ::LOCR; MRI.constrainRegClass(DstReg, &SystemZ::GR32BitRegClass); unsigned TReg = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass); unsigned FReg = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass); BuildMI(MBB, I, DL, get(TargetOpcode::COPY), TReg).addReg(TrueReg); BuildMI(MBB, I, DL, get(TargetOpcode::COPY), FReg).addReg(FalseReg); TrueReg = TReg; FalseReg = FReg; } } else if (SystemZ::GR64BitRegClass.hasSubClassEq(RC)) Opc = SystemZ::LOCGR; else llvm_unreachable("Invalid register class"); BuildMI(MBB, I, DL, get(Opc), DstReg) .addReg(FalseReg).addReg(TrueReg) .addImm(CCValid).addImm(CCMask); } bool SystemZInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, unsigned Reg, MachineRegisterInfo *MRI) const { unsigned DefOpc = DefMI.getOpcode(); if (DefOpc != SystemZ::LHIMux && DefOpc != SystemZ::LHI && DefOpc != SystemZ::LGHI) return false; if (DefMI.getOperand(0).getReg() != Reg) return false; int32_t ImmVal = (int32_t)DefMI.getOperand(1).getImm(); unsigned UseOpc = UseMI.getOpcode(); unsigned NewUseOpc; unsigned UseIdx; int CommuteIdx = -1; switch (UseOpc) { case SystemZ::LOCRMux: if (!STI.hasLoadStoreOnCond2()) return false; NewUseOpc = SystemZ::LOCHIMux; if (UseMI.getOperand(2).getReg() == Reg) UseIdx = 2; else if (UseMI.getOperand(1).getReg() == Reg) UseIdx = 2, CommuteIdx = 1; else return false; break; case SystemZ::LOCGR: if (!STI.hasLoadStoreOnCond2()) return false; NewUseOpc = SystemZ::LOCGHI; if (UseMI.getOperand(2).getReg() == Reg) UseIdx = 2; else if (UseMI.getOperand(1).getReg() == Reg) UseIdx = 2, CommuteIdx = 1; else return false; break; default: return false; } if (CommuteIdx != -1) if (!commuteInstruction(UseMI, false, CommuteIdx, UseIdx)) return false; bool DeleteDef = MRI->hasOneNonDBGUse(Reg); UseMI.setDesc(get(NewUseOpc)); UseMI.getOperand(UseIdx).ChangeToImmediate(ImmVal); if (DeleteDef) DefMI.eraseFromParent(); return true; } bool SystemZInstrInfo::isPredicable(const MachineInstr &MI) const { unsigned Opcode = MI.getOpcode(); if (Opcode == SystemZ::Return || Opcode == SystemZ::Trap || Opcode == SystemZ::CallJG || Opcode == SystemZ::CallBR) return true; return false; } bool SystemZInstrInfo:: isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, unsigned ExtraPredCycles, BranchProbability Probability) const { // Avoid using conditional returns at the end of a loop (since then // we'd need to emit an unconditional branch to the beginning anyway, // making the loop body longer). This doesn't apply for low-probability // loops (eg. compare-and-swap retry), so just decide based on branch // probability instead of looping structure. // However, since Compare and Trap instructions cost the same as a regular // Compare instruction, we should allow the if conversion to convert this // into a Conditional Compare regardless of the branch probability. if (MBB.getLastNonDebugInstr()->getOpcode() != SystemZ::Trap && MBB.succ_empty() && Probability < BranchProbability(1, 8)) return false; // For now only convert single instructions. return NumCycles == 1; } bool SystemZInstrInfo:: isProfitableToIfCvt(MachineBasicBlock &TMBB, unsigned NumCyclesT, unsigned ExtraPredCyclesT, MachineBasicBlock &FMBB, unsigned NumCyclesF, unsigned ExtraPredCyclesF, BranchProbability Probability) const { // For now avoid converting mutually-exclusive cases. return false; } bool SystemZInstrInfo:: isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, BranchProbability Probability) const { // For now only duplicate single instructions. return NumCycles == 1; } bool SystemZInstrInfo::PredicateInstruction( MachineInstr &MI, ArrayRef<MachineOperand> Pred) const { assert(Pred.size() == 2 && "Invalid condition"); unsigned CCValid = Pred[0].getImm(); unsigned CCMask = Pred[1].getImm(); assert(CCMask > 0 && CCMask < 15 && "Invalid predicate"); unsigned Opcode = MI.getOpcode(); if (Opcode == SystemZ::Trap) { MI.setDesc(get(SystemZ::CondTrap)); MachineInstrBuilder(*MI.getParent()->getParent(), MI) .addImm(CCValid).addImm(CCMask) .addReg(SystemZ::CC, RegState::Implicit); return true; } if (Opcode == SystemZ::Return) { MI.setDesc(get(SystemZ::CondReturn)); MachineInstrBuilder(*MI.getParent()->getParent(), MI) .addImm(CCValid).addImm(CCMask) .addReg(SystemZ::CC, RegState::Implicit); return true; } if (Opcode == SystemZ::CallJG) { MachineOperand FirstOp = MI.getOperand(0); const uint32_t *RegMask = MI.getOperand(1).getRegMask(); MI.RemoveOperand(1); MI.RemoveOperand(0); MI.setDesc(get(SystemZ::CallBRCL)); MachineInstrBuilder(*MI.getParent()->getParent(), MI) .addImm(CCValid) .addImm(CCMask) .add(FirstOp) .addRegMask(RegMask) .addReg(SystemZ::CC, RegState::Implicit); return true; } if (Opcode == SystemZ::CallBR) { const uint32_t *RegMask = MI.getOperand(0).getRegMask(); MI.RemoveOperand(0); MI.setDesc(get(SystemZ::CallBCR)); MachineInstrBuilder(*MI.getParent()->getParent(), MI) .addImm(CCValid).addImm(CCMask) .addRegMask(RegMask) .addReg(SystemZ::CC, RegState::Implicit); return true; } return false; } void SystemZInstrInfo::copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, const DebugLoc &DL, unsigned DestReg, unsigned SrcReg, bool KillSrc) const { // Split 128-bit GPR moves into two 64-bit moves. Add implicit uses of the // super register in case one of the subregs is undefined. // This handles ADDR128 too. if (SystemZ::GR128BitRegClass.contains(DestReg, SrcReg)) { copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_h64), RI.getSubReg(SrcReg, SystemZ::subreg_h64), KillSrc); MachineInstrBuilder(*MBB.getParent(), std::prev(MBBI)) .addReg(SrcReg, RegState::Implicit); copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_l64), RI.getSubReg(SrcReg, SystemZ::subreg_l64), KillSrc); MachineInstrBuilder(*MBB.getParent(), std::prev(MBBI)) .addReg(SrcReg, (getKillRegState(KillSrc) | RegState::Implicit)); return; } if (SystemZ::GRX32BitRegClass.contains(DestReg, SrcReg)) { emitGRX32Move(MBB, MBBI, DL, DestReg, SrcReg, SystemZ::LR, 32, KillSrc, false); return; } // Move 128-bit floating-point values between VR128 and FP128. if (SystemZ::VR128BitRegClass.contains(DestReg) && SystemZ::FP128BitRegClass.contains(SrcReg)) { unsigned SrcRegHi = RI.getMatchingSuperReg(RI.getSubReg(SrcReg, SystemZ::subreg_h64), SystemZ::subreg_r64, &SystemZ::VR128BitRegClass); unsigned SrcRegLo = RI.getMatchingSuperReg(RI.getSubReg(SrcReg, SystemZ::subreg_l64), SystemZ::subreg_r64, &SystemZ::VR128BitRegClass); BuildMI(MBB, MBBI, DL, get(SystemZ::VMRHG), DestReg) .addReg(SrcRegHi, getKillRegState(KillSrc)) .addReg(SrcRegLo, getKillRegState(KillSrc)); return; } if (SystemZ::FP128BitRegClass.contains(DestReg) && SystemZ::VR128BitRegClass.contains(SrcReg)) { unsigned DestRegHi = RI.getMatchingSuperReg(RI.getSubReg(DestReg, SystemZ::subreg_h64), SystemZ::subreg_r64, &SystemZ::VR128BitRegClass); unsigned DestRegLo = RI.getMatchingSuperReg(RI.getSubReg(DestReg, SystemZ::subreg_l64), SystemZ::subreg_r64, &SystemZ::VR128BitRegClass); if (DestRegHi != SrcReg) copyPhysReg(MBB, MBBI, DL, DestRegHi, SrcReg, false); BuildMI(MBB, MBBI, DL, get(SystemZ::VREPG), DestRegLo) .addReg(SrcReg, getKillRegState(KillSrc)).addImm(1); return; } // Everything else needs only one instruction. unsigned Opcode; if (SystemZ::GR64BitRegClass.contains(DestReg, SrcReg)) Opcode = SystemZ::LGR; else if (SystemZ::FP32BitRegClass.contains(DestReg, SrcReg)) // For z13 we prefer LDR over LER to avoid partial register dependencies. Opcode = STI.hasVector() ? SystemZ::LDR32 : SystemZ::LER; else if (SystemZ::FP64BitRegClass.contains(DestReg, SrcReg)) Opcode = SystemZ::LDR; else if (SystemZ::FP128BitRegClass.contains(DestReg, SrcReg)) Opcode = SystemZ::LXR; else if (SystemZ::VR32BitRegClass.contains(DestReg, SrcReg)) Opcode = SystemZ::VLR32; else if (SystemZ::VR64BitRegClass.contains(DestReg, SrcReg)) Opcode = SystemZ::VLR64; else if (SystemZ::VR128BitRegClass.contains(DestReg, SrcReg)) Opcode = SystemZ::VLR; else if (SystemZ::AR32BitRegClass.contains(DestReg, SrcReg)) Opcode = SystemZ::CPYA; else if (SystemZ::AR32BitRegClass.contains(DestReg) && SystemZ::GR32BitRegClass.contains(SrcReg)) Opcode = SystemZ::SAR; else if (SystemZ::GR32BitRegClass.contains(DestReg) && SystemZ::AR32BitRegClass.contains(SrcReg)) Opcode = SystemZ::EAR; else llvm_unreachable("Impossible reg-to-reg copy"); BuildMI(MBB, MBBI, DL, get(Opcode), DestReg) .addReg(SrcReg, getKillRegState(KillSrc)); } void SystemZInstrInfo::storeRegToStackSlot( MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned SrcReg, bool isKill, int FrameIdx, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const { DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); // Callers may expect a single instruction, so keep 128-bit moves // together for now and lower them after register allocation. unsigned LoadOpcode, StoreOpcode; getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode); addFrameReference(BuildMI(MBB, MBBI, DL, get(StoreOpcode)) .addReg(SrcReg, getKillRegState(isKill)), FrameIdx); } void SystemZInstrInfo::loadRegFromStackSlot( MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned DestReg, int FrameIdx, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const { DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); // Callers may expect a single instruction, so keep 128-bit moves // together for now and lower them after register allocation. unsigned LoadOpcode, StoreOpcode; getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode); addFrameReference(BuildMI(MBB, MBBI, DL, get(LoadOpcode), DestReg), FrameIdx); } // Return true if MI is a simple load or store with a 12-bit displacement // and no index. Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores. static bool isSimpleBD12Move(const MachineInstr *MI, unsigned Flag) { const MCInstrDesc &MCID = MI->getDesc(); return ((MCID.TSFlags & Flag) && isUInt<12>(MI->getOperand(2).getImm()) && MI->getOperand(3).getReg() == 0); } namespace { struct LogicOp { LogicOp() = default; LogicOp(unsigned regSize, unsigned immLSB, unsigned immSize) : RegSize(regSize), ImmLSB(immLSB), ImmSize(immSize) {} explicit operator bool() const { return RegSize; } unsigned RegSize = 0; unsigned ImmLSB = 0; unsigned ImmSize = 0; }; } // end anonymous namespace static LogicOp interpretAndImmediate(unsigned Opcode) { switch (Opcode) { case SystemZ::NILMux: return LogicOp(32, 0, 16); case SystemZ::NIHMux: return LogicOp(32, 16, 16); case SystemZ::NILL64: return LogicOp(64, 0, 16); case SystemZ::NILH64: return LogicOp(64, 16, 16); case SystemZ::NIHL64: return LogicOp(64, 32, 16); case SystemZ::NIHH64: return LogicOp(64, 48, 16); case SystemZ::NIFMux: return LogicOp(32, 0, 32); case SystemZ::NILF64: return LogicOp(64, 0, 32); case SystemZ::NIHF64: return LogicOp(64, 32, 32); default: return LogicOp(); } } static void transferDeadCC(MachineInstr *OldMI, MachineInstr *NewMI) { if (OldMI->registerDefIsDead(SystemZ::CC)) { MachineOperand *CCDef = NewMI->findRegisterDefOperand(SystemZ::CC); if (CCDef != nullptr) CCDef->setIsDead(true); } } // Used to return from convertToThreeAddress after replacing two-address // instruction OldMI with three-address instruction NewMI. static MachineInstr *finishConvertToThreeAddress(MachineInstr *OldMI, MachineInstr *NewMI, LiveVariables *LV) { if (LV) { unsigned NumOps = OldMI->getNumOperands(); for (unsigned I = 1; I < NumOps; ++I) { MachineOperand &Op = OldMI->getOperand(I); if (Op.isReg() && Op.isKill()) LV->replaceKillInstruction(Op.getReg(), *OldMI, *NewMI); } } transferDeadCC(OldMI, NewMI); return NewMI; } MachineInstr *SystemZInstrInfo::convertToThreeAddress( MachineFunction::iterator &MFI, MachineInstr &MI, LiveVariables *LV) const { MachineBasicBlock *MBB = MI.getParent(); MachineFunction *MF = MBB->getParent(); MachineRegisterInfo &MRI = MF->getRegInfo(); unsigned Opcode = MI.getOpcode(); unsigned NumOps = MI.getNumOperands(); // Try to convert something like SLL into SLLK, if supported. // We prefer to keep the two-operand form where possible both // because it tends to be shorter and because some instructions // have memory forms that can be used during spilling. if (STI.hasDistinctOps()) { MachineOperand &Dest = MI.getOperand(0); MachineOperand &Src = MI.getOperand(1); unsigned DestReg = Dest.getReg(); unsigned SrcReg = Src.getReg(); // AHIMux is only really a three-operand instruction when both operands // are low registers. Try to constrain both operands to be low if // possible. if (Opcode == SystemZ::AHIMux && TargetRegisterInfo::isVirtualRegister(DestReg) && TargetRegisterInfo::isVirtualRegister(SrcReg) && MRI.getRegClass(DestReg)->contains(SystemZ::R1L) && MRI.getRegClass(SrcReg)->contains(SystemZ::R1L)) { MRI.constrainRegClass(DestReg, &SystemZ::GR32BitRegClass); MRI.constrainRegClass(SrcReg, &SystemZ::GR32BitRegClass); } int ThreeOperandOpcode = SystemZ::getThreeOperandOpcode(Opcode); if (ThreeOperandOpcode >= 0) { // Create three address instruction without adding the implicit // operands. Those will instead be copied over from the original // instruction by the loop below. MachineInstrBuilder MIB( *MF, MF->CreateMachineInstr(get(ThreeOperandOpcode), MI.getDebugLoc(), /*NoImplicit=*/true)); MIB.add(Dest); // Keep the kill state, but drop the tied flag. MIB.addReg(Src.getReg(), getKillRegState(Src.isKill()), Src.getSubReg()); // Keep the remaining operands as-is. for (unsigned I = 2; I < NumOps; ++I) MIB.add(MI.getOperand(I)); MBB->insert(MI, MIB); return finishConvertToThreeAddress(&MI, MIB, LV); } } // Try to convert an AND into an RISBG-type instruction. if (LogicOp And = interpretAndImmediate(Opcode)) { uint64_t Imm = MI.getOperand(2).getImm() << And.ImmLSB; // AND IMMEDIATE leaves the other bits of the register unchanged. Imm |= allOnes(And.RegSize) & ~(allOnes(And.ImmSize) << And.ImmLSB); unsigned Start, End; if (isRxSBGMask(Imm, And.RegSize, Start, End)) { unsigned NewOpcode; if (And.RegSize == 64) { NewOpcode = SystemZ::RISBG; // Prefer RISBGN if available, since it does not clobber CC. if (STI.hasMiscellaneousExtensions()) NewOpcode = SystemZ::RISBGN; } else { NewOpcode = SystemZ::RISBMux; Start &= 31; End &= 31; } MachineOperand &Dest = MI.getOperand(0); MachineOperand &Src = MI.getOperand(1); MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI.getDebugLoc(), get(NewOpcode)) .add(Dest) .addReg(0) .addReg(Src.getReg(), getKillRegState(Src.isKill()), Src.getSubReg()) .addImm(Start) .addImm(End + 128) .addImm(0); return finishConvertToThreeAddress(&MI, MIB, LV); } } return nullptr; } MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl( MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops, MachineBasicBlock::iterator InsertPt, int FrameIndex, LiveIntervals *LIS) const { const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); const MachineFrameInfo &MFI = MF.getFrameInfo(); unsigned Size = MFI.getObjectSize(FrameIndex); unsigned Opcode = MI.getOpcode(); if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { if (LIS != nullptr && (Opcode == SystemZ::LA || Opcode == SystemZ::LAY) && isInt<8>(MI.getOperand(2).getImm()) && !MI.getOperand(3).getReg()) { // Check CC liveness, since new instruction introduces a dead // def of CC. MCRegUnitIterator CCUnit(SystemZ::CC, TRI); LiveRange &CCLiveRange = LIS->getRegUnit(*CCUnit); ++CCUnit; assert(!CCUnit.isValid() && "CC only has one reg unit."); SlotIndex MISlot = LIS->getSlotIndexes()->getInstructionIndex(MI).getRegSlot(); if (!CCLiveRange.liveAt(MISlot)) { // LA(Y) %reg, CONST(%reg) -> AGSI %mem, CONST MachineInstr *BuiltMI = BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(SystemZ::AGSI)) .addFrameIndex(FrameIndex) .addImm(0) .addImm(MI.getOperand(2).getImm()); BuiltMI->findRegisterDefOperand(SystemZ::CC)->setIsDead(true); CCLiveRange.createDeadDef(MISlot, LIS->getVNInfoAllocator()); return BuiltMI; } } return nullptr; } // All other cases require a single operand. if (Ops.size() != 1) return nullptr; unsigned OpNum = Ops[0]; assert(Size * 8 == TRI->getRegSizeInBits(*MF.getRegInfo() .getRegClass(MI.getOperand(OpNum).getReg())) && "Invalid size combination"); if ((Opcode == SystemZ::AHI || Opcode == SystemZ::AGHI) && OpNum == 0 && isInt<8>(MI.getOperand(2).getImm())) { // A(G)HI %reg, CONST -> A(G)SI %mem, CONST Opcode = (Opcode == SystemZ::AHI ? SystemZ::ASI : SystemZ::AGSI); MachineInstr *BuiltMI = BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode)) .addFrameIndex(FrameIndex) .addImm(0) .addImm(MI.getOperand(2).getImm()); transferDeadCC(&MI, BuiltMI); return BuiltMI; } if (Opcode == SystemZ::LGDR || Opcode == SystemZ::LDGR) { bool Op0IsGPR = (Opcode == SystemZ::LGDR); bool Op1IsGPR = (Opcode == SystemZ::LDGR); // If we're spilling the destination of an LDGR or LGDR, store the // source register instead. if (OpNum == 0) { unsigned StoreOpcode = Op1IsGPR ? SystemZ::STG : SystemZ::STD; return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(StoreOpcode)) .add(MI.getOperand(1)) .addFrameIndex(FrameIndex) .addImm(0) .addReg(0); } // If we're spilling the source of an LDGR or LGDR, load the // destination register instead. if (OpNum == 1) { unsigned LoadOpcode = Op0IsGPR ? SystemZ::LG : SystemZ::LD; return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(LoadOpcode)) .add(MI.getOperand(0)) .addFrameIndex(FrameIndex) .addImm(0) .addReg(0); } } // Look for cases where the source of a simple store or the destination // of a simple load is being spilled. Try to use MVC instead. // // Although MVC is in practice a fast choice in these cases, it is still // logically a bytewise copy. This means that we cannot use it if the // load or store is volatile. We also wouldn't be able to use MVC if // the two memories partially overlap, but that case cannot occur here, // because we know that one of the memories is a full frame index. // // For performance reasons, we also want to avoid using MVC if the addresses // might be equal. We don't worry about that case here, because spill slot // coloring happens later, and because we have special code to remove // MVCs that turn out to be redundant. if (OpNum == 0 && MI.hasOneMemOperand()) { MachineMemOperand *MMO = *MI.memoperands_begin(); if (MMO->getSize() == Size && !MMO->isVolatile()) { // Handle conversion of loads. if (isSimpleBD12Move(&MI, SystemZII::SimpleBDXLoad)) { return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(SystemZ::MVC)) .addFrameIndex(FrameIndex) .addImm(0) .addImm(Size) .add(MI.getOperand(1)) .addImm(MI.getOperand(2).getImm()) .addMemOperand(MMO); } // Handle conversion of stores. if (isSimpleBD12Move(&MI, SystemZII::SimpleBDXStore)) { return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(SystemZ::MVC)) .add(MI.getOperand(1)) .addImm(MI.getOperand(2).getImm()) .addImm(Size) .addFrameIndex(FrameIndex) .addImm(0) .addMemOperand(MMO); } } } // If the spilled operand is the final one, try to change <INSN>R // into <INSN>. int MemOpcode = SystemZ::getMemOpcode(Opcode); if (MemOpcode >= 0) { unsigned NumOps = MI.getNumExplicitOperands(); if (OpNum == NumOps - 1) { const MCInstrDesc &MemDesc = get(MemOpcode); uint64_t AccessBytes = SystemZII::getAccessSize(MemDesc.TSFlags); assert(AccessBytes != 0 && "Size of access should be known"); assert(AccessBytes <= Size && "Access outside the frame index"); uint64_t Offset = Size - AccessBytes; MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(MemOpcode)); for (unsigned I = 0; I < OpNum; ++I) MIB.add(MI.getOperand(I)); MIB.addFrameIndex(FrameIndex).addImm(Offset); if (MemDesc.TSFlags & SystemZII::HasIndex) MIB.addReg(0); transferDeadCC(&MI, MIB); return MIB; } } return nullptr; } MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl( MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops, MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI, LiveIntervals *LIS) const { return nullptr; } bool SystemZInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { switch (MI.getOpcode()) { case SystemZ::L128: splitMove(MI, SystemZ::LG); return true; case SystemZ::ST128: splitMove(MI, SystemZ::STG); return true; case SystemZ::LX: splitMove(MI, SystemZ::LD); return true; case SystemZ::STX: splitMove(MI, SystemZ::STD); return true; case SystemZ::LBMux: expandRXYPseudo(MI, SystemZ::LB, SystemZ::LBH); return true; case SystemZ::LHMux: expandRXYPseudo(MI, SystemZ::LH, SystemZ::LHH); return true; case SystemZ::LLCRMux: expandZExtPseudo(MI, SystemZ::LLCR, 8); return true; case SystemZ::LLHRMux: expandZExtPseudo(MI, SystemZ::LLHR, 16); return true; case SystemZ::LLCMux: expandRXYPseudo(MI, SystemZ::LLC, SystemZ::LLCH); return true; case SystemZ::LLHMux: expandRXYPseudo(MI, SystemZ::LLH, SystemZ::LLHH); return true; case SystemZ::LMux: expandRXYPseudo(MI, SystemZ::L, SystemZ::LFH); return true; case SystemZ::LOCMux: expandLOCPseudo(MI, SystemZ::LOC, SystemZ::LOCFH); return true; case SystemZ::LOCHIMux: expandLOCPseudo(MI, SystemZ::LOCHI, SystemZ::LOCHHI); return true; case SystemZ::LOCRMux: expandLOCRPseudo(MI, SystemZ::LOCR, SystemZ::LOCFHR); return true; case SystemZ::STCMux: expandRXYPseudo(MI, SystemZ::STC, SystemZ::STCH); return true; case SystemZ::STHMux: expandRXYPseudo(MI, SystemZ::STH, SystemZ::STHH); return true; case SystemZ::STMux: expandRXYPseudo(MI, SystemZ::ST, SystemZ::STFH); return true; case SystemZ::STOCMux: expandLOCPseudo(MI, SystemZ::STOC, SystemZ::STOCFH); return true; case SystemZ::LHIMux: expandRIPseudo(MI, SystemZ::LHI, SystemZ::IIHF, true); return true; case SystemZ::IIFMux: expandRIPseudo(MI, SystemZ::IILF, SystemZ::IIHF, false); return true; case SystemZ::IILMux: expandRIPseudo(MI, SystemZ::IILL, SystemZ::IIHL, false); return true; case SystemZ::IIHMux: expandRIPseudo(MI, SystemZ::IILH, SystemZ::IIHH, false); return true; case SystemZ::NIFMux: expandRIPseudo(MI, SystemZ::NILF, SystemZ::NIHF, false); return true; case SystemZ::NILMux: expandRIPseudo(MI, SystemZ::NILL, SystemZ::NIHL, false); return true; case SystemZ::NIHMux: expandRIPseudo(MI, SystemZ::NILH, SystemZ::NIHH, false); return true; case SystemZ::OIFMux: expandRIPseudo(MI, SystemZ::OILF, SystemZ::OIHF, false); return true; case SystemZ::OILMux: expandRIPseudo(MI, SystemZ::OILL, SystemZ::OIHL, false); return true; case SystemZ::OIHMux: expandRIPseudo(MI, SystemZ::OILH, SystemZ::OIHH, false); return true; case SystemZ::XIFMux: expandRIPseudo(MI, SystemZ::XILF, SystemZ::XIHF, false); return true; case SystemZ::TMLMux: expandRIPseudo(MI, SystemZ::TMLL, SystemZ::TMHL, false); return true; case SystemZ::TMHMux: expandRIPseudo(MI, SystemZ::TMLH, SystemZ::TMHH, false); return true; case SystemZ::AHIMux: expandRIPseudo(MI, SystemZ::AHI, SystemZ::AIH, false); return true; case SystemZ::AHIMuxK: expandRIEPseudo(MI, SystemZ::AHI, SystemZ::AHIK, SystemZ::AIH); return true; case SystemZ::AFIMux: expandRIPseudo(MI, SystemZ::AFI, SystemZ::AIH, false); return true; case SystemZ::CHIMux: expandRIPseudo(MI, SystemZ::CHI, SystemZ::CIH, false); return true; case SystemZ::CFIMux: expandRIPseudo(MI, SystemZ::CFI, SystemZ::CIH, false); return true; case SystemZ::CLFIMux: expandRIPseudo(MI, SystemZ::CLFI, SystemZ::CLIH, false); return true; case SystemZ::CMux: expandRXYPseudo(MI, SystemZ::C, SystemZ::CHF); return true; case SystemZ::CLMux: expandRXYPseudo(MI, SystemZ::CL, SystemZ::CLHF); return true; case SystemZ::RISBMux: { bool DestIsHigh = isHighReg(MI.getOperand(0).getReg()); bool SrcIsHigh = isHighReg(MI.getOperand(2).getReg()); if (SrcIsHigh == DestIsHigh) MI.setDesc(get(DestIsHigh ? SystemZ::RISBHH : SystemZ::RISBLL)); else { MI.setDesc(get(DestIsHigh ? SystemZ::RISBHL : SystemZ::RISBLH)); MI.getOperand(5).setImm(MI.getOperand(5).getImm() ^ 32); } return true; } case SystemZ::ADJDYNALLOC: splitAdjDynAlloc(MI); return true; case TargetOpcode::LOAD_STACK_GUARD: expandLoadStackGuard(&MI); return true; default: return false; } } unsigned SystemZInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { if (MI.getOpcode() == TargetOpcode::INLINEASM) { const MachineFunction *MF = MI.getParent()->getParent(); const char *AsmStr = MI.getOperand(0).getSymbolName(); return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); } return MI.getDesc().getSize(); } SystemZII::Branch SystemZInstrInfo::getBranchInfo(const MachineInstr &MI) const { switch (MI.getOpcode()) { case SystemZ::BR: case SystemZ::BI: case SystemZ::J: case SystemZ::JG: return SystemZII::Branch(SystemZII::BranchNormal, SystemZ::CCMASK_ANY, SystemZ::CCMASK_ANY, &MI.getOperand(0)); case SystemZ::BRC: case SystemZ::BRCL: return SystemZII::Branch(SystemZII::BranchNormal, MI.getOperand(0).getImm(), MI.getOperand(1).getImm(), &MI.getOperand(2)); case SystemZ::BRCT: case SystemZ::BRCTH: return SystemZII::Branch(SystemZII::BranchCT, SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_NE, &MI.getOperand(2)); case SystemZ::BRCTG: return SystemZII::Branch(SystemZII::BranchCTG, SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_NE, &MI.getOperand(2)); case SystemZ::CIJ: case SystemZ::CRJ: return SystemZII::Branch(SystemZII::BranchC, SystemZ::CCMASK_ICMP, MI.getOperand(2).getImm(), &MI.getOperand(3)); case SystemZ::CLIJ: case SystemZ::CLRJ: return SystemZII::Branch(SystemZII::BranchCL, SystemZ::CCMASK_ICMP, MI.getOperand(2).getImm(), &MI.getOperand(3)); case SystemZ::CGIJ: case SystemZ::CGRJ: return SystemZII::Branch(SystemZII::BranchCG, SystemZ::CCMASK_ICMP, MI.getOperand(2).getImm(), &MI.getOperand(3)); case SystemZ::CLGIJ: case SystemZ::CLGRJ: return SystemZII::Branch(SystemZII::BranchCLG, SystemZ::CCMASK_ICMP, MI.getOperand(2).getImm(), &MI.getOperand(3)); default: llvm_unreachable("Unrecognized branch opcode"); } } void SystemZInstrInfo::getLoadStoreOpcodes(const TargetRegisterClass *RC, unsigned &LoadOpcode, unsigned &StoreOpcode) const { if (RC == &SystemZ::GR32BitRegClass || RC == &SystemZ::ADDR32BitRegClass) { LoadOpcode = SystemZ::L; StoreOpcode = SystemZ::ST; } else if (RC == &SystemZ::GRH32BitRegClass) { LoadOpcode = SystemZ::LFH; StoreOpcode = SystemZ::STFH; } else if (RC == &SystemZ::GRX32BitRegClass) { LoadOpcode = SystemZ::LMux; StoreOpcode = SystemZ::STMux; } else if (RC == &SystemZ::GR64BitRegClass || RC == &SystemZ::ADDR64BitRegClass) { LoadOpcode = SystemZ::LG; StoreOpcode = SystemZ::STG; } else if (RC == &SystemZ::GR128BitRegClass || RC == &SystemZ::ADDR128BitRegClass) { LoadOpcode = SystemZ::L128; StoreOpcode = SystemZ::ST128; } else if (RC == &SystemZ::FP32BitRegClass) { LoadOpcode = SystemZ::LE; StoreOpcode = SystemZ::STE; } else if (RC == &SystemZ::FP64BitRegClass) { LoadOpcode = SystemZ::LD; StoreOpcode = SystemZ::STD; } else if (RC == &SystemZ::FP128BitRegClass) { LoadOpcode = SystemZ::LX; StoreOpcode = SystemZ::STX; } else if (RC == &SystemZ::VR32BitRegClass) { LoadOpcode = SystemZ::VL32; StoreOpcode = SystemZ::VST32; } else if (RC == &SystemZ::VR64BitRegClass) { LoadOpcode = SystemZ::VL64; StoreOpcode = SystemZ::VST64; } else if (RC == &SystemZ::VF128BitRegClass || RC == &SystemZ::VR128BitRegClass) { LoadOpcode = SystemZ::VL; StoreOpcode = SystemZ::VST; } else llvm_unreachable("Unsupported regclass to load or store"); } unsigned SystemZInstrInfo::getOpcodeForOffset(unsigned Opcode, int64_t Offset) const { const MCInstrDesc &MCID = get(Opcode); int64_t Offset2 = (MCID.TSFlags & SystemZII::Is128Bit ? Offset + 8 : Offset); if (isUInt<12>(Offset) && isUInt<12>(Offset2)) { // Get the instruction to use for unsigned 12-bit displacements. int Disp12Opcode = SystemZ::getDisp12Opcode(Opcode); if (Disp12Opcode >= 0) return Disp12Opcode; // All address-related instructions can use unsigned 12-bit // displacements. return Opcode; } if (isInt<20>(Offset) && isInt<20>(Offset2)) { // Get the instruction to use for signed 20-bit displacements. int Disp20Opcode = SystemZ::getDisp20Opcode(Opcode); if (Disp20Opcode >= 0) return Disp20Opcode; // Check whether Opcode allows signed 20-bit displacements. if (MCID.TSFlags & SystemZII::Has20BitOffset) return Opcode; } return 0; } unsigned SystemZInstrInfo::getLoadAndTest(unsigned Opcode) const { switch (Opcode) { case SystemZ::L: return SystemZ::LT; case SystemZ::LY: return SystemZ::LT; case SystemZ::LG: return SystemZ::LTG; case SystemZ::LGF: return SystemZ::LTGF; case SystemZ::LR: return SystemZ::LTR; case SystemZ::LGFR: return SystemZ::LTGFR; case SystemZ::LGR: return SystemZ::LTGR; case SystemZ::LER: return SystemZ::LTEBR; case SystemZ::LDR: return SystemZ::LTDBR; case SystemZ::LXR: return SystemZ::LTXBR; case SystemZ::LCDFR: return SystemZ::LCDBR; case SystemZ::LPDFR: return SystemZ::LPDBR; case SystemZ::LNDFR: return SystemZ::LNDBR; case SystemZ::LCDFR_32: return SystemZ::LCEBR; case SystemZ::LPDFR_32: return SystemZ::LPEBR; case SystemZ::LNDFR_32: return SystemZ::LNEBR; // On zEC12 we prefer to use RISBGN. But if there is a chance to // actually use the condition code, we may turn it back into RISGB. // Note that RISBG is not really a "load-and-test" instruction, // but sets the same condition code values, so is OK to use here. case SystemZ::RISBGN: return SystemZ::RISBG; default: return 0; } } // Return true if Mask matches the regexp 0*1+0*, given that zero masks // have already been filtered out. Store the first set bit in LSB and // the number of set bits in Length if so. static bool isStringOfOnes(uint64_t Mask, unsigned &LSB, unsigned &Length) { unsigned First = findFirstSet(Mask); uint64_t Top = (Mask >> First) + 1; if ((Top & -Top) == Top) { LSB = First; Length = findFirstSet(Top); return true; } return false; } bool SystemZInstrInfo::isRxSBGMask(uint64_t Mask, unsigned BitSize, unsigned &Start, unsigned &End) const { // Reject trivial all-zero masks. Mask &= allOnes(BitSize); if (Mask == 0) return false; // Handle the 1+0+ or 0+1+0* cases. Start then specifies the index of // the msb and End specifies the index of the lsb. unsigned LSB, Length; if (isStringOfOnes(Mask, LSB, Length)) { Start = 63 - (LSB + Length - 1); End = 63 - LSB; return true; } // Handle the wrap-around 1+0+1+ cases. Start then specifies the msb // of the low 1s and End specifies the lsb of the high 1s. if (isStringOfOnes(Mask ^ allOnes(BitSize), LSB, Length)) { assert(LSB > 0 && "Bottom bit must be set"); assert(LSB + Length < BitSize && "Top bit must be set"); Start = 63 - (LSB - 1); End = 63 - (LSB + Length); return true; } return false; } unsigned SystemZInstrInfo::getFusedCompare(unsigned Opcode, SystemZII::FusedCompareType Type, const MachineInstr *MI) const { switch (Opcode) { case SystemZ::CHI: case SystemZ::CGHI: if (!(MI && isInt<8>(MI->getOperand(1).getImm()))) return 0; break; case SystemZ::CLFI: case SystemZ::CLGFI: if (!(MI && isUInt<8>(MI->getOperand(1).getImm()))) return 0; break; case SystemZ::CL: case SystemZ::CLG: if (!STI.hasMiscellaneousExtensions()) return 0; if (!(MI && MI->getOperand(3).getReg() == 0)) return 0; break; } switch (Type) { case SystemZII::CompareAndBranch: switch (Opcode) { case SystemZ::CR: return SystemZ::CRJ; case SystemZ::CGR: return SystemZ::CGRJ; case SystemZ::CHI: return SystemZ::CIJ; case SystemZ::CGHI: return SystemZ::CGIJ; case SystemZ::CLR: return SystemZ::CLRJ; case SystemZ::CLGR: return SystemZ::CLGRJ; case SystemZ::CLFI: return SystemZ::CLIJ; case SystemZ::CLGFI: return SystemZ::CLGIJ; default: return 0; } case SystemZII::CompareAndReturn: switch (Opcode) { case SystemZ::CR: return SystemZ::CRBReturn; case SystemZ::CGR: return SystemZ::CGRBReturn; case SystemZ::CHI: return SystemZ::CIBReturn; case SystemZ::CGHI: return SystemZ::CGIBReturn; case SystemZ::CLR: return SystemZ::CLRBReturn; case SystemZ::CLGR: return SystemZ::CLGRBReturn; case SystemZ::CLFI: return SystemZ::CLIBReturn; case SystemZ::CLGFI: return SystemZ::CLGIBReturn; default: return 0; } case SystemZII::CompareAndSibcall: switch (Opcode) { case SystemZ::CR: return SystemZ::CRBCall; case SystemZ::CGR: return SystemZ::CGRBCall; case SystemZ::CHI: return SystemZ::CIBCall; case SystemZ::CGHI: return SystemZ::CGIBCall; case SystemZ::CLR: return SystemZ::CLRBCall; case SystemZ::CLGR: return SystemZ::CLGRBCall; case SystemZ::CLFI: return SystemZ::CLIBCall; case SystemZ::CLGFI: return SystemZ::CLGIBCall; default: return 0; } case SystemZII::CompareAndTrap: switch (Opcode) { case SystemZ::CR: return SystemZ::CRT; case SystemZ::CGR: return SystemZ::CGRT; case SystemZ::CHI: return SystemZ::CIT; case SystemZ::CGHI: return SystemZ::CGIT; case SystemZ::CLR: return SystemZ::CLRT; case SystemZ::CLGR: return SystemZ::CLGRT; case SystemZ::CLFI: return SystemZ::CLFIT; case SystemZ::CLGFI: return SystemZ::CLGIT; case SystemZ::CL: return SystemZ::CLT; case SystemZ::CLG: return SystemZ::CLGT; default: return 0; } } return 0; } unsigned SystemZInstrInfo::getLoadAndTrap(unsigned Opcode) const { if (!STI.hasLoadAndTrap()) return 0; switch (Opcode) { case SystemZ::L: case SystemZ::LY: return SystemZ::LAT; case SystemZ::LG: return SystemZ::LGAT; case SystemZ::LFH: return SystemZ::LFHAT; case SystemZ::LLGF: return SystemZ::LLGFAT; case SystemZ::LLGT: return SystemZ::LLGTAT; } return 0; } void SystemZInstrInfo::loadImmediate(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned Reg, uint64_t Value) const { DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); unsigned Opcode; if (isInt<16>(Value)) Opcode = SystemZ::LGHI; else if (SystemZ::isImmLL(Value)) Opcode = SystemZ::LLILL; else if (SystemZ::isImmLH(Value)) { Opcode = SystemZ::LLILH; Value >>= 16; } else { assert(isInt<32>(Value) && "Huge values not handled yet"); Opcode = SystemZ::LGFI; } BuildMI(MBB, MBBI, DL, get(Opcode), Reg).addImm(Value); } bool SystemZInstrInfo:: areMemAccessesTriviallyDisjoint(MachineInstr &MIa, MachineInstr &MIb, AliasAnalysis *AA) const { if (!MIa.hasOneMemOperand() || !MIb.hasOneMemOperand()) return false; // If mem-operands show that the same address Value is used by both // instructions, check for non-overlapping offsets and widths. Not // sure if a register based analysis would be an improvement... MachineMemOperand *MMOa = *MIa.memoperands_begin(); MachineMemOperand *MMOb = *MIb.memoperands_begin(); const Value *VALa = MMOa->getValue(); const Value *VALb = MMOb->getValue(); bool SameVal = (VALa && VALb && (VALa == VALb)); if (!SameVal) { const PseudoSourceValue *PSVa = MMOa->getPseudoValue(); const PseudoSourceValue *PSVb = MMOb->getPseudoValue(); if (PSVa && PSVb && (PSVa == PSVb)) SameVal = true; } if (SameVal) { int OffsetA = MMOa->getOffset(), OffsetB = MMOb->getOffset(); int WidthA = MMOa->getSize(), WidthB = MMOb->getSize(); int LowOffset = OffsetA < OffsetB ? OffsetA : OffsetB; int HighOffset = OffsetA < OffsetB ? OffsetB : OffsetA; int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB; if (LowOffset + LowWidth <= HighOffset) return true; } return false; }