Mercurial > hg > Members > tobaru > cbc > CbC_llvm
view include/llvm/Support/Error.h @ 125:56c5119fbcd2
fix
author | mir3636 |
---|---|
date | Sun, 03 Dec 2017 20:09:16 +0900 |
parents | 803732b1fca8 |
children |
line wrap: on
line source
//===- llvm/Support/Error.h - Recoverable error handling --------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines an API used to report recoverable errors. // //===----------------------------------------------------------------------===// #ifndef LLVM_SUPPORT_ERROR_H #define LLVM_SUPPORT_ERROR_H #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/Twine.h" #include "llvm/Config/abi-breaking.h" #include "llvm/Support/AlignOf.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/ErrorOr.h" #include "llvm/Support/raw_ostream.h" #include <algorithm> #include <cassert> #include <cstdint> #include <cstdlib> #include <functional> #include <memory> #include <new> #include <string> #include <system_error> #include <type_traits> #include <utility> #include <vector> namespace llvm { class ErrorSuccess; /// Base class for error info classes. Do not extend this directly: Extend /// the ErrorInfo template subclass instead. class ErrorInfoBase { public: virtual ~ErrorInfoBase() = default; /// Print an error message to an output stream. virtual void log(raw_ostream &OS) const = 0; /// Return the error message as a string. virtual std::string message() const { std::string Msg; raw_string_ostream OS(Msg); log(OS); return OS.str(); } /// Convert this error to a std::error_code. /// /// This is a temporary crutch to enable interaction with code still /// using std::error_code. It will be removed in the future. virtual std::error_code convertToErrorCode() const = 0; // Returns the class ID for this type. static const void *classID() { return &ID; } // Returns the class ID for the dynamic type of this ErrorInfoBase instance. virtual const void *dynamicClassID() const = 0; // Check whether this instance is a subclass of the class identified by // ClassID. virtual bool isA(const void *const ClassID) const { return ClassID == classID(); } // Check whether this instance is a subclass of ErrorInfoT. template <typename ErrorInfoT> bool isA() const { return isA(ErrorInfoT::classID()); } private: virtual void anchor(); static char ID; }; /// Lightweight error class with error context and mandatory checking. /// /// Instances of this class wrap a ErrorInfoBase pointer. Failure states /// are represented by setting the pointer to a ErrorInfoBase subclass /// instance containing information describing the failure. Success is /// represented by a null pointer value. /// /// Instances of Error also contains a 'Checked' flag, which must be set /// before the destructor is called, otherwise the destructor will trigger a /// runtime error. This enforces at runtime the requirement that all Error /// instances be checked or returned to the caller. /// /// There are two ways to set the checked flag, depending on what state the /// Error instance is in. For Error instances indicating success, it /// is sufficient to invoke the boolean conversion operator. E.g.: /// /// @code{.cpp} /// Error foo(<...>); /// /// if (auto E = foo(<...>)) /// return E; // <- Return E if it is in the error state. /// // We have verified that E was in the success state. It can now be safely /// // destroyed. /// @endcode /// /// A success value *can not* be dropped. For example, just calling 'foo(<...>)' /// without testing the return value will raise a runtime error, even if foo /// returns success. /// /// For Error instances representing failure, you must use either the /// handleErrors or handleAllErrors function with a typed handler. E.g.: /// /// @code{.cpp} /// class MyErrorInfo : public ErrorInfo<MyErrorInfo> { /// // Custom error info. /// }; /// /// Error foo(<...>) { return make_error<MyErrorInfo>(...); } /// /// auto E = foo(<...>); // <- foo returns failure with MyErrorInfo. /// auto NewE = /// handleErrors(E, /// [](const MyErrorInfo &M) { /// // Deal with the error. /// }, /// [](std::unique_ptr<OtherError> M) -> Error { /// if (canHandle(*M)) { /// // handle error. /// return Error::success(); /// } /// // Couldn't handle this error instance. Pass it up the stack. /// return Error(std::move(M)); /// ); /// // Note - we must check or return NewE in case any of the handlers /// // returned a new error. /// @endcode /// /// The handleAllErrors function is identical to handleErrors, except /// that it has a void return type, and requires all errors to be handled and /// no new errors be returned. It prevents errors (assuming they can all be /// handled) from having to be bubbled all the way to the top-level. /// /// *All* Error instances must be checked before destruction, even if /// they're moved-assigned or constructed from Success values that have already /// been checked. This enforces checking through all levels of the call stack. class LLVM_NODISCARD Error { // ErrorList needs to be able to yank ErrorInfoBase pointers out of this // class to add to the error list. friend class ErrorList; // handleErrors needs to be able to set the Checked flag. template <typename... HandlerTs> friend Error handleErrors(Error E, HandlerTs &&... Handlers); // Expected<T> needs to be able to steal the payload when constructed from an // error. template <typename T> friend class Expected; protected: /// Create a success value. Prefer using 'Error::success()' for readability Error() { setPtr(nullptr); setChecked(false); } public: /// Create a success value. static ErrorSuccess success(); // Errors are not copy-constructable. Error(const Error &Other) = delete; /// Move-construct an error value. The newly constructed error is considered /// unchecked, even if the source error had been checked. The original error /// becomes a checked Success value, regardless of its original state. Error(Error &&Other) { setChecked(true); *this = std::move(Other); } /// Create an error value. Prefer using the 'make_error' function, but /// this constructor can be useful when "re-throwing" errors from handlers. Error(std::unique_ptr<ErrorInfoBase> Payload) { setPtr(Payload.release()); setChecked(false); } // Errors are not copy-assignable. Error &operator=(const Error &Other) = delete; /// Move-assign an error value. The current error must represent success, you /// you cannot overwrite an unhandled error. The current error is then /// considered unchecked. The source error becomes a checked success value, /// regardless of its original state. Error &operator=(Error &&Other) { // Don't allow overwriting of unchecked values. assertIsChecked(); setPtr(Other.getPtr()); // This Error is unchecked, even if the source error was checked. setChecked(false); // Null out Other's payload and set its checked bit. Other.setPtr(nullptr); Other.setChecked(true); return *this; } /// Destroy a Error. Fails with a call to abort() if the error is /// unchecked. ~Error() { assertIsChecked(); delete getPtr(); } /// Bool conversion. Returns true if this Error is in a failure state, /// and false if it is in an accept state. If the error is in a Success state /// it will be considered checked. explicit operator bool() { setChecked(getPtr() == nullptr); return getPtr() != nullptr; } /// Check whether one error is a subclass of another. template <typename ErrT> bool isA() const { return getPtr() && getPtr()->isA(ErrT::classID()); } /// Returns the dynamic class id of this error, or null if this is a success /// value. const void* dynamicClassID() const { if (!getPtr()) return nullptr; return getPtr()->dynamicClassID(); } private: void assertIsChecked() { #if LLVM_ENABLE_ABI_BREAKING_CHECKS if (!getChecked() || getPtr()) { dbgs() << "Program aborted due to an unhandled Error:\n"; if (getPtr()) getPtr()->log(dbgs()); else dbgs() << "Error value was Success. (Note: Success values must still be " "checked prior to being destroyed).\n"; abort(); } #endif } ErrorInfoBase *getPtr() const { return reinterpret_cast<ErrorInfoBase*>( reinterpret_cast<uintptr_t>(Payload) & ~static_cast<uintptr_t>(0x1)); } void setPtr(ErrorInfoBase *EI) { #if LLVM_ENABLE_ABI_BREAKING_CHECKS Payload = reinterpret_cast<ErrorInfoBase*>( (reinterpret_cast<uintptr_t>(EI) & ~static_cast<uintptr_t>(0x1)) | (reinterpret_cast<uintptr_t>(Payload) & 0x1)); #else Payload = EI; #endif } bool getChecked() const { #if LLVM_ENABLE_ABI_BREAKING_CHECKS return (reinterpret_cast<uintptr_t>(Payload) & 0x1) == 0; #else return true; #endif } void setChecked(bool V) { Payload = reinterpret_cast<ErrorInfoBase*>( (reinterpret_cast<uintptr_t>(Payload) & ~static_cast<uintptr_t>(0x1)) | (V ? 0 : 1)); } std::unique_ptr<ErrorInfoBase> takePayload() { std::unique_ptr<ErrorInfoBase> Tmp(getPtr()); setPtr(nullptr); setChecked(true); return Tmp; } ErrorInfoBase *Payload = nullptr; }; /// Subclass of Error for the sole purpose of identifying the success path in /// the type system. This allows to catch invalid conversion to Expected<T> at /// compile time. class ErrorSuccess : public Error {}; inline ErrorSuccess Error::success() { return ErrorSuccess(); } /// Make a Error instance representing failure using the given error info /// type. template <typename ErrT, typename... ArgTs> Error make_error(ArgTs &&... Args) { return Error(llvm::make_unique<ErrT>(std::forward<ArgTs>(Args)...)); } /// Base class for user error types. Users should declare their error types /// like: /// /// class MyError : public ErrorInfo<MyError> { /// .... /// }; /// /// This class provides an implementation of the ErrorInfoBase::kind /// method, which is used by the Error RTTI system. template <typename ThisErrT, typename ParentErrT = ErrorInfoBase> class ErrorInfo : public ParentErrT { public: static const void *classID() { return &ThisErrT::ID; } const void *dynamicClassID() const override { return &ThisErrT::ID; } bool isA(const void *const ClassID) const override { return ClassID == classID() || ParentErrT::isA(ClassID); } }; /// Special ErrorInfo subclass representing a list of ErrorInfos. /// Instances of this class are constructed by joinError. class ErrorList final : public ErrorInfo<ErrorList> { // handleErrors needs to be able to iterate the payload list of an // ErrorList. template <typename... HandlerTs> friend Error handleErrors(Error E, HandlerTs &&... Handlers); // joinErrors is implemented in terms of join. friend Error joinErrors(Error, Error); public: void log(raw_ostream &OS) const override { OS << "Multiple errors:\n"; for (auto &ErrPayload : Payloads) { ErrPayload->log(OS); OS << "\n"; } } std::error_code convertToErrorCode() const override; // Used by ErrorInfo::classID. static char ID; private: ErrorList(std::unique_ptr<ErrorInfoBase> Payload1, std::unique_ptr<ErrorInfoBase> Payload2) { assert(!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() && "ErrorList constructor payloads should be singleton errors"); Payloads.push_back(std::move(Payload1)); Payloads.push_back(std::move(Payload2)); } static Error join(Error E1, Error E2) { if (!E1) return E2; if (!E2) return E1; if (E1.isA<ErrorList>()) { auto &E1List = static_cast<ErrorList &>(*E1.getPtr()); if (E2.isA<ErrorList>()) { auto E2Payload = E2.takePayload(); auto &E2List = static_cast<ErrorList &>(*E2Payload); for (auto &Payload : E2List.Payloads) E1List.Payloads.push_back(std::move(Payload)); } else E1List.Payloads.push_back(E2.takePayload()); return E1; } if (E2.isA<ErrorList>()) { auto &E2List = static_cast<ErrorList &>(*E2.getPtr()); E2List.Payloads.insert(E2List.Payloads.begin(), E1.takePayload()); return E2; } return Error(std::unique_ptr<ErrorList>( new ErrorList(E1.takePayload(), E2.takePayload()))); } std::vector<std::unique_ptr<ErrorInfoBase>> Payloads; }; /// Concatenate errors. The resulting Error is unchecked, and contains the /// ErrorInfo(s), if any, contained in E1, followed by the /// ErrorInfo(s), if any, contained in E2. inline Error joinErrors(Error E1, Error E2) { return ErrorList::join(std::move(E1), std::move(E2)); } /// Tagged union holding either a T or a Error. /// /// This class parallels ErrorOr, but replaces error_code with Error. Since /// Error cannot be copied, this class replaces getError() with /// takeError(). It also adds an bool errorIsA<ErrT>() method for testing the /// error class type. template <class T> class LLVM_NODISCARD Expected { template <class T1> friend class ExpectedAsOutParameter; template <class OtherT> friend class Expected; static const bool isRef = std::is_reference<T>::value; using wrap = ReferenceStorage<typename std::remove_reference<T>::type>; using error_type = std::unique_ptr<ErrorInfoBase>; public: using storage_type = typename std::conditional<isRef, wrap, T>::type; using value_type = T; private: using reference = typename std::remove_reference<T>::type &; using const_reference = const typename std::remove_reference<T>::type &; using pointer = typename std::remove_reference<T>::type *; using const_pointer = const typename std::remove_reference<T>::type *; public: /// Create an Expected<T> error value from the given Error. Expected(Error Err) : HasError(true) #if LLVM_ENABLE_ABI_BREAKING_CHECKS // Expected is unchecked upon construction in Debug builds. , Unchecked(true) #endif { assert(Err && "Cannot create Expected<T> from Error success value."); new (getErrorStorage()) error_type(Err.takePayload()); } /// Forbid to convert from Error::success() implicitly, this avoids having /// Expected<T> foo() { return Error::success(); } which compiles otherwise /// but triggers the assertion above. Expected(ErrorSuccess) = delete; /// Create an Expected<T> success value from the given OtherT value, which /// must be convertible to T. template <typename OtherT> Expected(OtherT &&Val, typename std::enable_if<std::is_convertible<OtherT, T>::value>::type * = nullptr) : HasError(false) #if LLVM_ENABLE_ABI_BREAKING_CHECKS // Expected is unchecked upon construction in Debug builds. , Unchecked(true) #endif { new (getStorage()) storage_type(std::forward<OtherT>(Val)); } /// Move construct an Expected<T> value. Expected(Expected &&Other) { moveConstruct(std::move(Other)); } /// Move construct an Expected<T> value from an Expected<OtherT>, where OtherT /// must be convertible to T. template <class OtherT> Expected(Expected<OtherT> &&Other, typename std::enable_if<std::is_convertible<OtherT, T>::value>::type * = nullptr) { moveConstruct(std::move(Other)); } /// Move construct an Expected<T> value from an Expected<OtherT>, where OtherT /// isn't convertible to T. template <class OtherT> explicit Expected( Expected<OtherT> &&Other, typename std::enable_if<!std::is_convertible<OtherT, T>::value>::type * = nullptr) { moveConstruct(std::move(Other)); } /// Move-assign from another Expected<T>. Expected &operator=(Expected &&Other) { moveAssign(std::move(Other)); return *this; } /// Destroy an Expected<T>. ~Expected() { assertIsChecked(); if (!HasError) getStorage()->~storage_type(); else getErrorStorage()->~error_type(); } /// \brief Return false if there is an error. explicit operator bool() { #if LLVM_ENABLE_ABI_BREAKING_CHECKS Unchecked = HasError; #endif return !HasError; } /// \brief Returns a reference to the stored T value. reference get() { assertIsChecked(); return *getStorage(); } /// \brief Returns a const reference to the stored T value. const_reference get() const { assertIsChecked(); return const_cast<Expected<T> *>(this)->get(); } /// \brief Check that this Expected<T> is an error of type ErrT. template <typename ErrT> bool errorIsA() const { return HasError && (*getErrorStorage())->template isA<ErrT>(); } /// \brief Take ownership of the stored error. /// After calling this the Expected<T> is in an indeterminate state that can /// only be safely destructed. No further calls (beside the destructor) should /// be made on the Expected<T> vaule. Error takeError() { #if LLVM_ENABLE_ABI_BREAKING_CHECKS Unchecked = false; #endif return HasError ? Error(std::move(*getErrorStorage())) : Error::success(); } /// \brief Returns a pointer to the stored T value. pointer operator->() { assertIsChecked(); return toPointer(getStorage()); } /// \brief Returns a const pointer to the stored T value. const_pointer operator->() const { assertIsChecked(); return toPointer(getStorage()); } /// \brief Returns a reference to the stored T value. reference operator*() { assertIsChecked(); return *getStorage(); } /// \brief Returns a const reference to the stored T value. const_reference operator*() const { assertIsChecked(); return *getStorage(); } private: template <class T1> static bool compareThisIfSameType(const T1 &a, const T1 &b) { return &a == &b; } template <class T1, class T2> static bool compareThisIfSameType(const T1 &a, const T2 &b) { return false; } template <class OtherT> void moveConstruct(Expected<OtherT> &&Other) { HasError = Other.HasError; #if LLVM_ENABLE_ABI_BREAKING_CHECKS Unchecked = true; Other.Unchecked = false; #endif if (!HasError) new (getStorage()) storage_type(std::move(*Other.getStorage())); else new (getErrorStorage()) error_type(std::move(*Other.getErrorStorage())); } template <class OtherT> void moveAssign(Expected<OtherT> &&Other) { assertIsChecked(); if (compareThisIfSameType(*this, Other)) return; this->~Expected(); new (this) Expected(std::move(Other)); } pointer toPointer(pointer Val) { return Val; } const_pointer toPointer(const_pointer Val) const { return Val; } pointer toPointer(wrap *Val) { return &Val->get(); } const_pointer toPointer(const wrap *Val) const { return &Val->get(); } storage_type *getStorage() { assert(!HasError && "Cannot get value when an error exists!"); return reinterpret_cast<storage_type *>(TStorage.buffer); } const storage_type *getStorage() const { assert(!HasError && "Cannot get value when an error exists!"); return reinterpret_cast<const storage_type *>(TStorage.buffer); } error_type *getErrorStorage() { assert(HasError && "Cannot get error when a value exists!"); return reinterpret_cast<error_type *>(ErrorStorage.buffer); } const error_type *getErrorStorage() const { assert(HasError && "Cannot get error when a value exists!"); return reinterpret_cast<const error_type *>(ErrorStorage.buffer); } // Used by ExpectedAsOutParameter to reset the checked flag. void setUnchecked() { #if LLVM_ENABLE_ABI_BREAKING_CHECKS Unchecked = true; #endif } void assertIsChecked() { #if LLVM_ENABLE_ABI_BREAKING_CHECKS if (Unchecked) { dbgs() << "Expected<T> must be checked before access or destruction.\n"; if (HasError) { dbgs() << "Unchecked Expected<T> contained error:\n"; (*getErrorStorage())->log(dbgs()); } else dbgs() << "Expected<T> value was in success state. (Note: Expected<T> " "values in success mode must still be checked prior to being " "destroyed).\n"; abort(); } #endif } union { AlignedCharArrayUnion<storage_type> TStorage; AlignedCharArrayUnion<error_type> ErrorStorage; }; bool HasError : 1; #if LLVM_ENABLE_ABI_BREAKING_CHECKS bool Unchecked : 1; #endif }; /// Report a serious error, calling any installed error handler. See /// ErrorHandling.h. LLVM_ATTRIBUTE_NORETURN void report_fatal_error(Error Err, bool gen_crash_diag = true); /// Report a fatal error if Err is a failure value. /// /// This function can be used to wrap calls to fallible functions ONLY when it /// is known that the Error will always be a success value. E.g. /// /// @code{.cpp} /// // foo only attempts the fallible operation if DoFallibleOperation is /// // true. If DoFallibleOperation is false then foo always returns /// // Error::success(). /// Error foo(bool DoFallibleOperation); /// /// cantFail(foo(false)); /// @endcode inline void cantFail(Error Err, const char *Msg = nullptr) { if (Err) { if (!Msg) Msg = "Failure value returned from cantFail wrapped call"; llvm_unreachable(Msg); } } /// Report a fatal error if ValOrErr is a failure value, otherwise unwraps and /// returns the contained value. /// /// This function can be used to wrap calls to fallible functions ONLY when it /// is known that the Error will always be a success value. E.g. /// /// @code{.cpp} /// // foo only attempts the fallible operation if DoFallibleOperation is /// // true. If DoFallibleOperation is false then foo always returns an int. /// Expected<int> foo(bool DoFallibleOperation); /// /// int X = cantFail(foo(false)); /// @endcode template <typename T> T cantFail(Expected<T> ValOrErr, const char *Msg = nullptr) { if (ValOrErr) return std::move(*ValOrErr); else { if (!Msg) Msg = "Failure value returned from cantFail wrapped call"; llvm_unreachable(Msg); } } /// Report a fatal error if ValOrErr is a failure value, otherwise unwraps and /// returns the contained reference. /// /// This function can be used to wrap calls to fallible functions ONLY when it /// is known that the Error will always be a success value. E.g. /// /// @code{.cpp} /// // foo only attempts the fallible operation if DoFallibleOperation is /// // true. If DoFallibleOperation is false then foo always returns a Bar&. /// Expected<Bar&> foo(bool DoFallibleOperation); /// /// Bar &X = cantFail(foo(false)); /// @endcode template <typename T> T& cantFail(Expected<T&> ValOrErr, const char *Msg = nullptr) { if (ValOrErr) return *ValOrErr; else { if (!Msg) Msg = "Failure value returned from cantFail wrapped call"; llvm_unreachable(Msg); } } /// Helper for testing applicability of, and applying, handlers for /// ErrorInfo types. template <typename HandlerT> class ErrorHandlerTraits : public ErrorHandlerTraits<decltype( &std::remove_reference<HandlerT>::type::operator())> {}; // Specialization functions of the form 'Error (const ErrT&)'. template <typename ErrT> class ErrorHandlerTraits<Error (&)(ErrT &)> { public: static bool appliesTo(const ErrorInfoBase &E) { return E.template isA<ErrT>(); } template <typename HandlerT> static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) { assert(appliesTo(*E) && "Applying incorrect handler"); return H(static_cast<ErrT &>(*E)); } }; // Specialization functions of the form 'void (const ErrT&)'. template <typename ErrT> class ErrorHandlerTraits<void (&)(ErrT &)> { public: static bool appliesTo(const ErrorInfoBase &E) { return E.template isA<ErrT>(); } template <typename HandlerT> static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) { assert(appliesTo(*E) && "Applying incorrect handler"); H(static_cast<ErrT &>(*E)); return Error::success(); } }; /// Specialization for functions of the form 'Error (std::unique_ptr<ErrT>)'. template <typename ErrT> class ErrorHandlerTraits<Error (&)(std::unique_ptr<ErrT>)> { public: static bool appliesTo(const ErrorInfoBase &E) { return E.template isA<ErrT>(); } template <typename HandlerT> static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) { assert(appliesTo(*E) && "Applying incorrect handler"); std::unique_ptr<ErrT> SubE(static_cast<ErrT *>(E.release())); return H(std::move(SubE)); } }; /// Specialization for functions of the form 'void (std::unique_ptr<ErrT>)'. template <typename ErrT> class ErrorHandlerTraits<void (&)(std::unique_ptr<ErrT>)> { public: static bool appliesTo(const ErrorInfoBase &E) { return E.template isA<ErrT>(); } template <typename HandlerT> static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) { assert(appliesTo(*E) && "Applying incorrect handler"); std::unique_ptr<ErrT> SubE(static_cast<ErrT *>(E.release())); H(std::move(SubE)); return Error::success(); } }; // Specialization for member functions of the form 'RetT (const ErrT&)'. template <typename C, typename RetT, typename ErrT> class ErrorHandlerTraits<RetT (C::*)(ErrT &)> : public ErrorHandlerTraits<RetT (&)(ErrT &)> {}; // Specialization for member functions of the form 'RetT (const ErrT&) const'. template <typename C, typename RetT, typename ErrT> class ErrorHandlerTraits<RetT (C::*)(ErrT &) const> : public ErrorHandlerTraits<RetT (&)(ErrT &)> {}; // Specialization for member functions of the form 'RetT (const ErrT&)'. template <typename C, typename RetT, typename ErrT> class ErrorHandlerTraits<RetT (C::*)(const ErrT &)> : public ErrorHandlerTraits<RetT (&)(ErrT &)> {}; // Specialization for member functions of the form 'RetT (const ErrT&) const'. template <typename C, typename RetT, typename ErrT> class ErrorHandlerTraits<RetT (C::*)(const ErrT &) const> : public ErrorHandlerTraits<RetT (&)(ErrT &)> {}; /// Specialization for member functions of the form /// 'RetT (std::unique_ptr<ErrT>)'. template <typename C, typename RetT, typename ErrT> class ErrorHandlerTraits<RetT (C::*)(std::unique_ptr<ErrT>)> : public ErrorHandlerTraits<RetT (&)(std::unique_ptr<ErrT>)> {}; /// Specialization for member functions of the form /// 'RetT (std::unique_ptr<ErrT>) const'. template <typename C, typename RetT, typename ErrT> class ErrorHandlerTraits<RetT (C::*)(std::unique_ptr<ErrT>) const> : public ErrorHandlerTraits<RetT (&)(std::unique_ptr<ErrT>)> {}; inline Error handleErrorImpl(std::unique_ptr<ErrorInfoBase> Payload) { return Error(std::move(Payload)); } template <typename HandlerT, typename... HandlerTs> Error handleErrorImpl(std::unique_ptr<ErrorInfoBase> Payload, HandlerT &&Handler, HandlerTs &&... Handlers) { if (ErrorHandlerTraits<HandlerT>::appliesTo(*Payload)) return ErrorHandlerTraits<HandlerT>::apply(std::forward<HandlerT>(Handler), std::move(Payload)); return handleErrorImpl(std::move(Payload), std::forward<HandlerTs>(Handlers)...); } /// Pass the ErrorInfo(s) contained in E to their respective handlers. Any /// unhandled errors (or Errors returned by handlers) are re-concatenated and /// returned. /// Because this function returns an error, its result must also be checked /// or returned. If you intend to handle all errors use handleAllErrors /// (which returns void, and will abort() on unhandled errors) instead. template <typename... HandlerTs> Error handleErrors(Error E, HandlerTs &&... Hs) { if (!E) return Error::success(); std::unique_ptr<ErrorInfoBase> Payload = E.takePayload(); if (Payload->isA<ErrorList>()) { ErrorList &List = static_cast<ErrorList &>(*Payload); Error R; for (auto &P : List.Payloads) R = ErrorList::join( std::move(R), handleErrorImpl(std::move(P), std::forward<HandlerTs>(Hs)...)); return R; } return handleErrorImpl(std::move(Payload), std::forward<HandlerTs>(Hs)...); } /// Behaves the same as handleErrors, except that it requires that all /// errors be handled by the given handlers. If any unhandled error remains /// after the handlers have run, report_fatal_error() will be called. template <typename... HandlerTs> void handleAllErrors(Error E, HandlerTs &&... Handlers) { cantFail(handleErrors(std::move(E), std::forward<HandlerTs>(Handlers)...)); } /// Check that E is a non-error, then drop it. /// If E is an error report_fatal_error will be called. inline void handleAllErrors(Error E) { cantFail(std::move(E)); } /// Handle any errors (if present) in an Expected<T>, then try a recovery path. /// /// If the incoming value is a success value it is returned unmodified. If it /// is a failure value then it the contained error is passed to handleErrors. /// If handleErrors is able to handle the error then the RecoveryPath functor /// is called to supply the final result. If handleErrors is not able to /// handle all errors then the unhandled errors are returned. /// /// This utility enables the follow pattern: /// /// @code{.cpp} /// enum FooStrategy { Aggressive, Conservative }; /// Expected<Foo> foo(FooStrategy S); /// /// auto ResultOrErr = /// handleExpected( /// foo(Aggressive), /// []() { return foo(Conservative); }, /// [](AggressiveStrategyError&) { /// // Implicitly conusme this - we'll recover by using a conservative /// // strategy. /// }); /// /// @endcode template <typename T, typename RecoveryFtor, typename... HandlerTs> Expected<T> handleExpected(Expected<T> ValOrErr, RecoveryFtor &&RecoveryPath, HandlerTs &&... Handlers) { if (ValOrErr) return ValOrErr; if (auto Err = handleErrors(ValOrErr.takeError(), std::forward<HandlerTs>(Handlers)...)) return std::move(Err); return RecoveryPath(); } /// Log all errors (if any) in E to OS. If there are any errors, ErrorBanner /// will be printed before the first one is logged. A newline will be printed /// after each error. /// /// This is useful in the base level of your program to allow clean termination /// (allowing clean deallocation of resources, etc.), while reporting error /// information to the user. void logAllUnhandledErrors(Error E, raw_ostream &OS, Twine ErrorBanner); /// Write all error messages (if any) in E to a string. The newline character /// is used to separate error messages. inline std::string toString(Error E) { SmallVector<std::string, 2> Errors; handleAllErrors(std::move(E), [&Errors](const ErrorInfoBase &EI) { Errors.push_back(EI.message()); }); return join(Errors.begin(), Errors.end(), "\n"); } /// Consume a Error without doing anything. This method should be used /// only where an error can be considered a reasonable and expected return /// value. /// /// Uses of this method are potentially indicative of design problems: If it's /// legitimate to do nothing while processing an "error", the error-producer /// might be more clearly refactored to return an Optional<T>. inline void consumeError(Error Err) { handleAllErrors(std::move(Err), [](const ErrorInfoBase &) {}); } /// Helper for Errors used as out-parameters. /// /// This helper is for use with the Error-as-out-parameter idiom, where an error /// is passed to a function or method by reference, rather than being returned. /// In such cases it is helpful to set the checked bit on entry to the function /// so that the error can be written to (unchecked Errors abort on assignment) /// and clear the checked bit on exit so that clients cannot accidentally forget /// to check the result. This helper performs these actions automatically using /// RAII: /// /// @code{.cpp} /// Result foo(Error &Err) { /// ErrorAsOutParameter ErrAsOutParam(&Err); // 'Checked' flag set /// // <body of foo> /// // <- 'Checked' flag auto-cleared when ErrAsOutParam is destructed. /// } /// @endcode /// /// ErrorAsOutParameter takes an Error* rather than Error& so that it can be /// used with optional Errors (Error pointers that are allowed to be null). If /// ErrorAsOutParameter took an Error reference, an instance would have to be /// created inside every condition that verified that Error was non-null. By /// taking an Error pointer we can just create one instance at the top of the /// function. class ErrorAsOutParameter { public: ErrorAsOutParameter(Error *Err) : Err(Err) { // Raise the checked bit if Err is success. if (Err) (void)!!*Err; } ~ErrorAsOutParameter() { // Clear the checked bit. if (Err && !*Err) *Err = Error::success(); } private: Error *Err; }; /// Helper for Expected<T>s used as out-parameters. /// /// See ErrorAsOutParameter. template <typename T> class ExpectedAsOutParameter { public: ExpectedAsOutParameter(Expected<T> *ValOrErr) : ValOrErr(ValOrErr) { if (ValOrErr) (void)!!*ValOrErr; } ~ExpectedAsOutParameter() { if (ValOrErr) ValOrErr->setUnchecked(); } private: Expected<T> *ValOrErr; }; /// This class wraps a std::error_code in a Error. /// /// This is useful if you're writing an interface that returns a Error /// (or Expected) and you want to call code that still returns /// std::error_codes. class ECError : public ErrorInfo<ECError> { friend Error errorCodeToError(std::error_code); public: void setErrorCode(std::error_code EC) { this->EC = EC; } std::error_code convertToErrorCode() const override { return EC; } void log(raw_ostream &OS) const override { OS << EC.message(); } // Used by ErrorInfo::classID. static char ID; protected: ECError() = default; ECError(std::error_code EC) : EC(EC) {} std::error_code EC; }; /// The value returned by this function can be returned from convertToErrorCode /// for Error values where no sensible translation to std::error_code exists. /// It should only be used in this situation, and should never be used where a /// sensible conversion to std::error_code is available, as attempts to convert /// to/from this error will result in a fatal error. (i.e. it is a programmatic ///error to try to convert such a value). std::error_code inconvertibleErrorCode(); /// Helper for converting an std::error_code to a Error. Error errorCodeToError(std::error_code EC); /// Helper for converting an ECError to a std::error_code. /// /// This method requires that Err be Error() or an ECError, otherwise it /// will trigger a call to abort(). std::error_code errorToErrorCode(Error Err); /// Convert an ErrorOr<T> to an Expected<T>. template <typename T> Expected<T> errorOrToExpected(ErrorOr<T> &&EO) { if (auto EC = EO.getError()) return errorCodeToError(EC); return std::move(*EO); } /// Convert an Expected<T> to an ErrorOr<T>. template <typename T> ErrorOr<T> expectedToErrorOr(Expected<T> &&E) { if (auto Err = E.takeError()) return errorToErrorCode(std::move(Err)); return std::move(*E); } /// This class wraps a string in an Error. /// /// StringError is useful in cases where the client is not expected to be able /// to consume the specific error message programmatically (for example, if the /// error message is to be presented to the user). class StringError : public ErrorInfo<StringError> { public: static char ID; StringError(const Twine &S, std::error_code EC); void log(raw_ostream &OS) const override; std::error_code convertToErrorCode() const override; const std::string &getMessage() const { return Msg; } private: std::string Msg; std::error_code EC; }; /// Helper for check-and-exit error handling. /// /// For tool use only. NOT FOR USE IN LIBRARY CODE. /// class ExitOnError { public: /// Create an error on exit helper. ExitOnError(std::string Banner = "", int DefaultErrorExitCode = 1) : Banner(std::move(Banner)), GetExitCode([=](const Error &) { return DefaultErrorExitCode; }) {} /// Set the banner string for any errors caught by operator(). void setBanner(std::string Banner) { this->Banner = std::move(Banner); } /// Set the exit-code mapper function. void setExitCodeMapper(std::function<int(const Error &)> GetExitCode) { this->GetExitCode = std::move(GetExitCode); } /// Check Err. If it's in a failure state log the error(s) and exit. void operator()(Error Err) const { checkError(std::move(Err)); } /// Check E. If it's in a success state then return the contained value. If /// it's in a failure state log the error(s) and exit. template <typename T> T operator()(Expected<T> &&E) const { checkError(E.takeError()); return std::move(*E); } /// Check E. If it's in a success state then return the contained reference. If /// it's in a failure state log the error(s) and exit. template <typename T> T& operator()(Expected<T&> &&E) const { checkError(E.takeError()); return *E; } private: void checkError(Error Err) const { if (Err) { int ExitCode = GetExitCode(Err); logAllUnhandledErrors(std::move(Err), errs(), Banner); exit(ExitCode); } } std::string Banner; std::function<int(const Error &)> GetExitCode; }; } // end namespace llvm #endif // LLVM_SUPPORT_ERROR_H