Mercurial > hg > Members > tobaru > cbc > CbC_llvm
view lib/Analysis/BasicAliasAnalysis.cpp @ 107:a03ddd01be7e
resolve warnings
author | Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 31 Jan 2016 17:34:49 +0900 |
parents | 7d135dc70f03 |
children | 1172e4bd9c6f |
line wrap: on
line source
//===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the primary stateless implementation of the // Alias Analysis interface that implements identities (two different // globals cannot alias, etc), but does no stateful analysis. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/BasicAliasAnalysis.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/CFG.h" #include "llvm/Analysis/CaptureTracking.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/MemoryBuiltins.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/Analysis/AssumptionCache.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/GlobalAlias.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Operator.h" #include "llvm/Pass.h" #include "llvm/Support/ErrorHandling.h" #include <algorithm> using namespace llvm; /// Enable analysis of recursive PHI nodes. static cl::opt<bool> EnableRecPhiAnalysis("basicaa-recphi", cl::Hidden, cl::init(false)); /// SearchLimitReached / SearchTimes shows how often the limit of /// to decompose GEPs is reached. It will affect the precision /// of basic alias analysis. #define DEBUG_TYPE "basicaa" STATISTIC(SearchLimitReached, "Number of times the limit to " "decompose GEPs is reached"); STATISTIC(SearchTimes, "Number of times a GEP is decomposed"); /// Cutoff after which to stop analysing a set of phi nodes potentially involved /// in a cycle. Because we are analysing 'through' phi nodes, we need to be /// careful with value equivalence. We use reachability to make sure a value /// cannot be involved in a cycle. const unsigned MaxNumPhiBBsValueReachabilityCheck = 20; // The max limit of the search depth in DecomposeGEPExpression() and // GetUnderlyingObject(), both functions need to use the same search // depth otherwise the algorithm in aliasGEP will assert. static const unsigned MaxLookupSearchDepth = 6; //===----------------------------------------------------------------------===// // Useful predicates //===----------------------------------------------------------------------===// /// Returns true if the pointer is to a function-local object that never /// escapes from the function. static bool isNonEscapingLocalObject(const Value *V) { // If this is a local allocation, check to see if it escapes. if (isa<AllocaInst>(V) || isNoAliasCall(V)) // Set StoreCaptures to True so that we can assume in our callers that the // pointer is not the result of a load instruction. Currently // PointerMayBeCaptured doesn't have any special analysis for the // StoreCaptures=false case; if it did, our callers could be refined to be // more precise. return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); // If this is an argument that corresponds to a byval or noalias argument, // then it has not escaped before entering the function. Check if it escapes // inside the function. if (const Argument *A = dyn_cast<Argument>(V)) if (A->hasByValAttr() || A->hasNoAliasAttr()) // Note even if the argument is marked nocapture, we still need to check // for copies made inside the function. The nocapture attribute only // specifies that there are no copies made that outlive the function. return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); return false; } /// Returns true if the pointer is one which would have been considered an /// escape by isNonEscapingLocalObject. static bool isEscapeSource(const Value *V) { if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V)) return true; // The load case works because isNonEscapingLocalObject considers all // stores to be escapes (it passes true for the StoreCaptures argument // to PointerMayBeCaptured). if (isa<LoadInst>(V)) return true; return false; } /// Returns the size of the object specified by V or UnknownSize if unknown. static uint64_t getObjectSize(const Value *V, const DataLayout &DL, const TargetLibraryInfo &TLI, bool RoundToAlign = false) { uint64_t Size; if (getObjectSize(V, Size, DL, &TLI, RoundToAlign)) return Size; return MemoryLocation::UnknownSize; } /// Returns true if we can prove that the object specified by V is smaller than /// Size. static bool isObjectSmallerThan(const Value *V, uint64_t Size, const DataLayout &DL, const TargetLibraryInfo &TLI) { // Note that the meanings of the "object" are slightly different in the // following contexts: // c1: llvm::getObjectSize() // c2: llvm.objectsize() intrinsic // c3: isObjectSmallerThan() // c1 and c2 share the same meaning; however, the meaning of "object" in c3 // refers to the "entire object". // // Consider this example: // char *p = (char*)malloc(100) // char *q = p+80; // // In the context of c1 and c2, the "object" pointed by q refers to the // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20. // // However, in the context of c3, the "object" refers to the chunk of memory // being allocated. So, the "object" has 100 bytes, and q points to the middle // the "object". In case q is passed to isObjectSmallerThan() as the 1st // parameter, before the llvm::getObjectSize() is called to get the size of // entire object, we should: // - either rewind the pointer q to the base-address of the object in // question (in this case rewind to p), or // - just give up. It is up to caller to make sure the pointer is pointing // to the base address the object. // // We go for 2nd option for simplicity. if (!isIdentifiedObject(V)) return false; // This function needs to use the aligned object size because we allow // reads a bit past the end given sufficient alignment. uint64_t ObjectSize = getObjectSize(V, DL, TLI, /*RoundToAlign*/ true); return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size; } /// Returns true if we can prove that the object specified by V has size Size. static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL, const TargetLibraryInfo &TLI) { uint64_t ObjectSize = getObjectSize(V, DL, TLI); return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size; } //===----------------------------------------------------------------------===// // GetElementPtr Instruction Decomposition and Analysis //===----------------------------------------------------------------------===// /// Analyzes the specified value as a linear expression: "A*V + B", where A and /// B are constant integers. /// /// Returns the scale and offset values as APInts and return V as a Value*, and /// return whether we looked through any sign or zero extends. The incoming /// Value is known to have IntegerType, and it may already be sign or zero /// extended. /// /// Note that this looks through extends, so the high bits may not be /// represented in the result. /*static*/ const Value *BasicAAResult::GetLinearExpression( const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits, unsigned &SExtBits, const DataLayout &DL, unsigned Depth, AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) { assert(V->getType()->isIntegerTy() && "Not an integer value"); // Limit our recursion depth. if (Depth == 6) { Scale = 1; Offset = 0; return V; } if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) { // If it's a constant, just convert it to an offset and remove the variable. // If we've been called recursively, the Offset bit width will be greater // than the constant's (the Offset's always as wide as the outermost call), // so we'll zext here and process any extension in the isa<SExtInst> & // isa<ZExtInst> cases below. Offset += Const->getValue().zextOrSelf(Offset.getBitWidth()); assert(Scale == 0 && "Constant values don't have a scale"); return V; } if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) { if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) { // If we've been called recursively, then Offset and Scale will be wider // than the BOp operands. We'll always zext it here as we'll process sign // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases). APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth()); switch (BOp->getOpcode()) { default: // We don't understand this instruction, so we can't decompose it any // further. Scale = 1; Offset = 0; return V; case Instruction::Or: // X|C == X+C if all the bits in C are unset in X. Otherwise we can't // analyze it. if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC, BOp, DT)) { Scale = 1; Offset = 0; return V; } // FALL THROUGH. case Instruction::Add: V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); Offset += RHS; break; case Instruction::Sub: V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); Offset -= RHS; break; case Instruction::Mul: V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); Offset *= RHS; Scale *= RHS; break; case Instruction::Shl: V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); Offset <<= RHS.getLimitedValue(); Scale <<= RHS.getLimitedValue(); // the semantics of nsw and nuw for left shifts don't match those of // multiplications, so we won't propagate them. NSW = NUW = false; return V; } if (isa<OverflowingBinaryOperator>(BOp)) { NUW &= BOp->hasNoUnsignedWrap(); NSW &= BOp->hasNoSignedWrap(); } return V; } } // Since GEP indices are sign extended anyway, we don't care about the high // bits of a sign or zero extended value - just scales and offsets. The // extensions have to be consistent though. if (isa<SExtInst>(V) || isa<ZExtInst>(V)) { Value *CastOp = cast<CastInst>(V)->getOperand(0); unsigned NewWidth = V->getType()->getPrimitiveSizeInBits(); unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits(); unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits; const Value *Result = GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); // zext(zext(%x)) == zext(%x), and similiarly for sext; we'll handle this // by just incrementing the number of bits we've extended by. unsigned ExtendedBy = NewWidth - SmallWidth; if (isa<SExtInst>(V) && ZExtBits == 0) { // sext(sext(%x, a), b) == sext(%x, a + b) if (NSW) { // We haven't sign-wrapped, so it's valid to decompose sext(%x + c) // into sext(%x) + sext(c). We'll sext the Offset ourselves: unsigned OldWidth = Offset.getBitWidth(); Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth); } else { // We may have signed-wrapped, so don't decompose sext(%x + c) into // sext(%x) + sext(c) Scale = 1; Offset = 0; Result = CastOp; ZExtBits = OldZExtBits; SExtBits = OldSExtBits; } SExtBits += ExtendedBy; } else { // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b) if (!NUW) { // We may have unsigned-wrapped, so don't decompose zext(%x + c) into // zext(%x) + zext(c) Scale = 1; Offset = 0; Result = CastOp; ZExtBits = OldZExtBits; SExtBits = OldSExtBits; } ZExtBits += ExtendedBy; } return Result; } Scale = 1; Offset = 0; return V; } /// If V is a symbolic pointer expression, decompose it into a base pointer /// with a constant offset and a number of scaled symbolic offsets. /// /// The scaled symbolic offsets (represented by pairs of a Value* and a scale /// in the VarIndices vector) are Value*'s that are known to be scaled by the /// specified amount, but which may have other unrepresented high bits. As /// such, the gep cannot necessarily be reconstructed from its decomposed form. /// /// When DataLayout is around, this function is capable of analyzing everything /// that GetUnderlyingObject can look through. To be able to do that /// GetUnderlyingObject and DecomposeGEPExpression must use the same search /// depth (MaxLookupSearchDepth). When DataLayout not is around, it just looks /// through pointer casts. /*static*/ const Value *BasicAAResult::DecomposeGEPExpression( const Value *V, int64_t &BaseOffs, SmallVectorImpl<VariableGEPIndex> &VarIndices, bool &MaxLookupReached, const DataLayout &DL, AssumptionCache *AC, DominatorTree *DT) { // Limit recursion depth to limit compile time in crazy cases. unsigned MaxLookup = MaxLookupSearchDepth; MaxLookupReached = false; SearchTimes++; BaseOffs = 0; do { // See if this is a bitcast or GEP. const Operator *Op = dyn_cast<Operator>(V); if (!Op) { // The only non-operator case we can handle are GlobalAliases. if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { if (!GA->mayBeOverridden()) { V = GA->getAliasee(); continue; } } return V; } if (Op->getOpcode() == Instruction::BitCast || Op->getOpcode() == Instruction::AddrSpaceCast) { V = Op->getOperand(0); continue; } const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op); if (!GEPOp) { // If it's not a GEP, hand it off to SimplifyInstruction to see if it // can come up with something. This matches what GetUnderlyingObject does. if (const Instruction *I = dyn_cast<Instruction>(V)) // TODO: Get a DominatorTree and AssumptionCache and use them here // (these are both now available in this function, but this should be // updated when GetUnderlyingObject is updated). TLI should be // provided also. if (const Value *Simplified = SimplifyInstruction(const_cast<Instruction *>(I), DL)) { V = Simplified; continue; } return V; } // Don't attempt to analyze GEPs over unsized objects. if (!GEPOp->getSourceElementType()->isSized()) return V; unsigned AS = GEPOp->getPointerAddressSpace(); // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices. gep_type_iterator GTI = gep_type_begin(GEPOp); for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end(); I != E; ++I) { const Value *Index = *I; // Compute the (potentially symbolic) offset in bytes for this index. if (StructType *STy = dyn_cast<StructType>(*GTI++)) { // For a struct, add the member offset. unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); if (FieldNo == 0) continue; BaseOffs += DL.getStructLayout(STy)->getElementOffset(FieldNo); continue; } // For an array/pointer, add the element offset, explicitly scaled. if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { if (CIdx->isZero()) continue; BaseOffs += DL.getTypeAllocSize(*GTI) * CIdx->getSExtValue(); continue; } uint64_t Scale = DL.getTypeAllocSize(*GTI); unsigned ZExtBits = 0, SExtBits = 0; // If the integer type is smaller than the pointer size, it is implicitly // sign extended to pointer size. unsigned Width = Index->getType()->getIntegerBitWidth(); unsigned PointerSize = DL.getPointerSizeInBits(AS); if (PointerSize > Width) SExtBits += PointerSize - Width; // Use GetLinearExpression to decompose the index into a C1*V+C2 form. APInt IndexScale(Width, 0), IndexOffset(Width, 0); bool NSW = true, NUW = true; Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits, SExtBits, DL, 0, AC, DT, NSW, NUW); // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale. // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale. BaseOffs += IndexOffset.getSExtValue() * Scale; Scale *= IndexScale.getSExtValue(); // If we already had an occurrence of this index variable, merge this // scale into it. For example, we want to handle: // A[x][x] -> x*16 + x*4 -> x*20 // This also ensures that 'x' only appears in the index list once. for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) { if (VarIndices[i].V == Index && VarIndices[i].ZExtBits == ZExtBits && VarIndices[i].SExtBits == SExtBits) { Scale += VarIndices[i].Scale; VarIndices.erase(VarIndices.begin() + i); break; } } // Make sure that we have a scale that makes sense for this target's // pointer size. if (unsigned ShiftBits = 64 - PointerSize) { Scale <<= ShiftBits; Scale = (int64_t)Scale >> ShiftBits; } if (Scale) { VariableGEPIndex Entry = {Index, ZExtBits, SExtBits, static_cast<int64_t>(Scale)}; VarIndices.push_back(Entry); } } // Analyze the base pointer next. V = GEPOp->getOperand(0); } while (--MaxLookup); // If the chain of expressions is too deep, just return early. MaxLookupReached = true; SearchLimitReached++; return V; } /// Returns whether the given pointer value points to memory that is local to /// the function, with global constants being considered local to all /// functions. bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal) { assert(Visited.empty() && "Visited must be cleared after use!"); unsigned MaxLookup = 8; SmallVector<const Value *, 16> Worklist; Worklist.push_back(Loc.Ptr); do { const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL); if (!Visited.insert(V).second) { Visited.clear(); return AAResultBase::pointsToConstantMemory(Loc, OrLocal); } // An alloca instruction defines local memory. if (OrLocal && isa<AllocaInst>(V)) continue; // A global constant counts as local memory for our purposes. if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { // Note: this doesn't require GV to be "ODR" because it isn't legal for a // global to be marked constant in some modules and non-constant in // others. GV may even be a declaration, not a definition. if (!GV->isConstant()) { Visited.clear(); return AAResultBase::pointsToConstantMemory(Loc, OrLocal); } continue; } // If both select values point to local memory, then so does the select. if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { Worklist.push_back(SI->getTrueValue()); Worklist.push_back(SI->getFalseValue()); continue; } // If all values incoming to a phi node point to local memory, then so does // the phi. if (const PHINode *PN = dyn_cast<PHINode>(V)) { // Don't bother inspecting phi nodes with many operands. if (PN->getNumIncomingValues() > MaxLookup) { Visited.clear(); return AAResultBase::pointsToConstantMemory(Loc, OrLocal); } for (Value *IncValue : PN->incoming_values()) Worklist.push_back(IncValue); continue; } // Otherwise be conservative. Visited.clear(); return AAResultBase::pointsToConstantMemory(Loc, OrLocal); } while (!Worklist.empty() && --MaxLookup); Visited.clear(); return Worklist.empty(); } // FIXME: This code is duplicated with MemoryLocation and should be hoisted to // some common utility location. static bool isMemsetPattern16(const Function *MS, const TargetLibraryInfo &TLI) { if (TLI.has(LibFunc::memset_pattern16) && MS->getName() == "memset_pattern16") { FunctionType *MemsetType = MS->getFunctionType(); if (!MemsetType->isVarArg() && MemsetType->getNumParams() == 3 && isa<PointerType>(MemsetType->getParamType(0)) && isa<PointerType>(MemsetType->getParamType(1)) && isa<IntegerType>(MemsetType->getParamType(2))) return true; } return false; } /// Returns the behavior when calling the given call site. FunctionModRefBehavior BasicAAResult::getModRefBehavior(ImmutableCallSite CS) { if (CS.doesNotAccessMemory()) // Can't do better than this. return FMRB_DoesNotAccessMemory; FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; // If the callsite knows it only reads memory, don't return worse // than that. if (CS.onlyReadsMemory()) Min = FMRB_OnlyReadsMemory; if (CS.onlyAccessesArgMemory()) Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); // The AAResultBase base class has some smarts, lets use them. return FunctionModRefBehavior(AAResultBase::getModRefBehavior(CS) & Min); } /// Returns the behavior when calling the given function. For use when the call /// site is not known. FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) { // If the function declares it doesn't access memory, we can't do better. if (F->doesNotAccessMemory()) return FMRB_DoesNotAccessMemory; FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; // If the function declares it only reads memory, go with that. if (F->onlyReadsMemory()) Min = FMRB_OnlyReadsMemory; if (F->onlyAccessesArgMemory()) Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); // Otherwise be conservative. return FunctionModRefBehavior(AAResultBase::getModRefBehavior(F) & Min); } /// Returns true if this is a writeonly (i.e Mod only) parameter. Currently, /// we don't have a writeonly attribute, so this only knows about builtin /// intrinsics and target library functions. We could consider adding a /// writeonly attribute in the future and moving all of these facts to either /// Intrinsics.td or InferFunctionAttr.cpp static bool isWriteOnlyParam(ImmutableCallSite CS, unsigned ArgIdx, const TargetLibraryInfo &TLI) { if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) switch (II->getIntrinsicID()) { default: break; case Intrinsic::memset: case Intrinsic::memcpy: case Intrinsic::memmove: // We don't currently have a writeonly attribute. All other properties // of these intrinsics are nicely described via attributes in // Intrinsics.td and handled generically. if (ArgIdx == 0) return true; } // We can bound the aliasing properties of memset_pattern16 just as we can // for memcpy/memset. This is particularly important because the // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16 // whenever possible. Note that all but the missing writeonly attribute are // handled via InferFunctionAttr. if (CS.getCalledFunction() && isMemsetPattern16(CS.getCalledFunction(), TLI)) if (ArgIdx == 0) return true; // TODO: memset_pattern4, memset_pattern8 // TODO: _chk variants // TODO: strcmp, strcpy return false; } ModRefInfo BasicAAResult::getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx) { // Emulate the missing writeonly attribute by checking for known builtin // intrinsics and target library functions. if (isWriteOnlyParam(CS, ArgIdx, TLI)) return MRI_Mod; if (CS.paramHasAttr(ArgIdx + 1, Attribute::ReadOnly)) return MRI_Ref; if (CS.paramHasAttr(ArgIdx + 1, Attribute::ReadNone)) return MRI_NoModRef; return AAResultBase::getArgModRefInfo(CS, ArgIdx); } static bool isAssumeIntrinsic(ImmutableCallSite CS) { const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction()); return II && II->getIntrinsicID() == Intrinsic::assume; } #ifndef NDEBUG static const Function *getParent(const Value *V) { if (const Instruction *inst = dyn_cast<Instruction>(V)) return inst->getParent()->getParent(); if (const Argument *arg = dyn_cast<Argument>(V)) return arg->getParent(); return nullptr; } static bool notDifferentParent(const Value *O1, const Value *O2) { const Function *F1 = getParent(O1); const Function *F2 = getParent(O2); return !F1 || !F2 || F1 == F2; } #endif AliasResult BasicAAResult::alias(const MemoryLocation &LocA, const MemoryLocation &LocB) { assert(notDifferentParent(LocA.Ptr, LocB.Ptr) && "BasicAliasAnalysis doesn't support interprocedural queries."); // If we have a directly cached entry for these locations, we have recursed // through this once, so just return the cached results. Notably, when this // happens, we don't clear the cache. auto CacheIt = AliasCache.find(LocPair(LocA, LocB)); if (CacheIt != AliasCache.end()) return CacheIt->second; AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr, LocB.Size, LocB.AATags); // AliasCache rarely has more than 1 or 2 elements, always use // shrink_and_clear so it quickly returns to the inline capacity of the // SmallDenseMap if it ever grows larger. // FIXME: This should really be shrink_to_inline_capacity_and_clear(). AliasCache.shrink_and_clear(); VisitedPhiBBs.clear(); return Alias; } /// Checks to see if the specified callsite can clobber the specified memory /// object. /// /// Since we only look at local properties of this function, we really can't /// say much about this query. We do, however, use simple "address taken" /// analysis on local objects. ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS, const MemoryLocation &Loc) { assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) && "AliasAnalysis query involving multiple functions!"); const Value *Object = GetUnderlyingObject(Loc.Ptr, DL); // If this is a tail call and Loc.Ptr points to a stack location, we know that // the tail call cannot access or modify the local stack. // We cannot exclude byval arguments here; these belong to the caller of // the current function not to the current function, and a tail callee // may reference them. if (isa<AllocaInst>(Object)) if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) if (CI->isTailCall()) return MRI_NoModRef; // If the pointer is to a locally allocated object that does not escape, // then the call can not mod/ref the pointer unless the call takes the pointer // as an argument, and itself doesn't capture it. if (!isa<Constant>(Object) && CS.getInstruction() != Object && isNonEscapingLocalObject(Object)) { bool PassedAsArg = false; unsigned OperandNo = 0; for (auto CI = CS.data_operands_begin(), CE = CS.data_operands_end(); CI != CE; ++CI, ++OperandNo) { // Only look at the no-capture or byval pointer arguments. If this // pointer were passed to arguments that were neither of these, then it // couldn't be no-capture. if (!(*CI)->getType()->isPointerTy() || (!CS.doesNotCapture(OperandNo) && !CS.isByValArgument(OperandNo))) continue; // If this is a no-capture pointer argument, see if we can tell that it // is impossible to alias the pointer we're checking. If not, we have to // assume that the call could touch the pointer, even though it doesn't // escape. AliasResult AR = getBestAAResults().alias(MemoryLocation(*CI), MemoryLocation(Object)); if (AR) { PassedAsArg = true; break; } } if (!PassedAsArg) return MRI_NoModRef; } // While the assume intrinsic is marked as arbitrarily writing so that // proper control dependencies will be maintained, it never aliases any // particular memory location. if (isAssumeIntrinsic(CS)) return MRI_NoModRef; // The AAResultBase base class has some smarts, lets use them. return AAResultBase::getModRefInfo(CS, Loc); } ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2) { // While the assume intrinsic is marked as arbitrarily writing so that // proper control dependencies will be maintained, it never aliases any // particular memory location. if (isAssumeIntrinsic(CS1) || isAssumeIntrinsic(CS2)) return MRI_NoModRef; // The AAResultBase base class has some smarts, lets use them. return AAResultBase::getModRefInfo(CS1, CS2); } /// Provide ad-hoc rules to disambiguate accesses through two GEP operators, /// both having the exact same pointer operand. static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1, uint64_t V1Size, const GEPOperator *GEP2, uint64_t V2Size, const DataLayout &DL) { assert(GEP1->getPointerOperand() == GEP2->getPointerOperand() && "Expected GEPs with the same pointer operand"); // Try to determine whether GEP1 and GEP2 index through arrays, into structs, // such that the struct field accesses provably cannot alias. // We also need at least two indices (the pointer, and the struct field). if (GEP1->getNumIndices() != GEP2->getNumIndices() || GEP1->getNumIndices() < 2) return MayAlias; // If we don't know the size of the accesses through both GEPs, we can't // determine whether the struct fields accessed can't alias. if (V1Size == MemoryLocation::UnknownSize || V2Size == MemoryLocation::UnknownSize) return MayAlias; ConstantInt *C1 = dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1)); ConstantInt *C2 = dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1)); // If the last (struct) indices are constants and are equal, the other indices // might be also be dynamically equal, so the GEPs can alias. if (C1 && C2 && C1 == C2) return MayAlias; // Find the last-indexed type of the GEP, i.e., the type you'd get if // you stripped the last index. // On the way, look at each indexed type. If there's something other // than an array, different indices can lead to different final types. SmallVector<Value *, 8> IntermediateIndices; // Insert the first index; we don't need to check the type indexed // through it as it only drops the pointer indirection. assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine"); IntermediateIndices.push_back(GEP1->getOperand(1)); // Insert all the remaining indices but the last one. // Also, check that they all index through arrays. for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) { if (!isa<ArrayType>(GetElementPtrInst::getIndexedType( GEP1->getSourceElementType(), IntermediateIndices))) return MayAlias; IntermediateIndices.push_back(GEP1->getOperand(i + 1)); } auto *Ty = GetElementPtrInst::getIndexedType( GEP1->getSourceElementType(), IntermediateIndices); StructType *LastIndexedStruct = dyn_cast<StructType>(Ty); if (isa<SequentialType>(Ty)) { // We know that: // - both GEPs begin indexing from the exact same pointer; // - the last indices in both GEPs are constants, indexing into a sequential // type (array or pointer); // - both GEPs only index through arrays prior to that. // // Because array indices greater than the number of elements are valid in // GEPs, unless we know the intermediate indices are identical between // GEP1 and GEP2 we cannot guarantee that the last indexed arrays don't // partially overlap. We also need to check that the loaded size matches // the element size, otherwise we could still have overlap. const uint64_t ElementSize = DL.getTypeStoreSize(cast<SequentialType>(Ty)->getElementType()); if (V1Size != ElementSize || V2Size != ElementSize) return MayAlias; for (unsigned i = 0, e = GEP1->getNumIndices() - 1; i != e; ++i) if (GEP1->getOperand(i + 1) != GEP2->getOperand(i + 1)) return MayAlias; // Now we know that the array/pointer that GEP1 indexes into and that // that GEP2 indexes into must either precisely overlap or be disjoint. // Because they cannot partially overlap and because fields in an array // cannot overlap, if we can prove the final indices are different between // GEP1 and GEP2, we can conclude GEP1 and GEP2 don't alias. // If the last indices are constants, we've already checked they don't // equal each other so we can exit early. if (C1 && C2) return NoAlias; if (isKnownNonEqual(GEP1->getOperand(GEP1->getNumOperands() - 1), GEP2->getOperand(GEP2->getNumOperands() - 1), DL)) return NoAlias; return MayAlias; } else if (!LastIndexedStruct || !C1 || !C2) { return MayAlias; } // We know that: // - both GEPs begin indexing from the exact same pointer; // - the last indices in both GEPs are constants, indexing into a struct; // - said indices are different, hence, the pointed-to fields are different; // - both GEPs only index through arrays prior to that. // // This lets us determine that the struct that GEP1 indexes into and the // struct that GEP2 indexes into must either precisely overlap or be // completely disjoint. Because they cannot partially overlap, indexing into // different non-overlapping fields of the struct will never alias. // Therefore, the only remaining thing needed to show that both GEPs can't // alias is that the fields are not overlapping. const StructLayout *SL = DL.getStructLayout(LastIndexedStruct); const uint64_t StructSize = SL->getSizeInBytes(); const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue()); const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue()); auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size, uint64_t V2Off, uint64_t V2Size) { return V1Off < V2Off && V1Off + V1Size <= V2Off && ((V2Off + V2Size <= StructSize) || (V2Off + V2Size - StructSize <= V1Off)); }; if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) || EltsDontOverlap(V2Off, V2Size, V1Off, V1Size)) return NoAlias; return MayAlias; } /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against /// another pointer. /// /// We know that V1 is a GEP, but we don't know anything about V2. /// UnderlyingV1 is GetUnderlyingObject(GEP1, DL), UnderlyingV2 is the same for /// V2. AliasResult BasicAAResult::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size, const AAMDNodes &V1AAInfo, const Value *V2, uint64_t V2Size, const AAMDNodes &V2AAInfo, const Value *UnderlyingV1, const Value *UnderlyingV2) { int64_t GEP1BaseOffset; bool GEP1MaxLookupReached; SmallVector<VariableGEPIndex, 4> GEP1VariableIndices; // If we have two gep instructions with must-alias or not-alias'ing base // pointers, figure out if the indexes to the GEP tell us anything about the // derived pointer. if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) { // Do the base pointers alias? AliasResult BaseAlias = aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize, AAMDNodes(), UnderlyingV2, MemoryLocation::UnknownSize, AAMDNodes()); // Check for geps of non-aliasing underlying pointers where the offsets are // identical. if ((BaseAlias == MayAlias) && V1Size == V2Size) { // Do the base pointers alias assuming type and size. AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size, V1AAInfo, UnderlyingV2, V2Size, V2AAInfo); if (PreciseBaseAlias == NoAlias) { // See if the computed offset from the common pointer tells us about the // relation of the resulting pointer. int64_t GEP2BaseOffset; bool GEP2MaxLookupReached; SmallVector<VariableGEPIndex, 4> GEP2VariableIndices; const Value *GEP2BasePtr = DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, GEP2MaxLookupReached, DL, &AC, DT); const Value *GEP1BasePtr = DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, GEP1MaxLookupReached, DL, &AC, DT); // DecomposeGEPExpression and GetUnderlyingObject should return the // same result except when DecomposeGEPExpression has no DataLayout. // FIXME: They always have a DataLayout, so this should become an // assert. if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) { return MayAlias; } // If the max search depth is reached the result is undefined if (GEP2MaxLookupReached || GEP1MaxLookupReached) return MayAlias; // Same offsets. if (GEP1BaseOffset == GEP2BaseOffset && GEP1VariableIndices == GEP2VariableIndices) return NoAlias; GEP1VariableIndices.clear(); } } // If we get a No or May, then return it immediately, no amount of analysis // will improve this situation. if (BaseAlias != MustAlias) return BaseAlias; // Otherwise, we have a MustAlias. Since the base pointers alias each other // exactly, see if the computed offset from the common pointer tells us // about the relation of the resulting pointer. const Value *GEP1BasePtr = DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, GEP1MaxLookupReached, DL, &AC, DT); int64_t GEP2BaseOffset; bool GEP2MaxLookupReached; SmallVector<VariableGEPIndex, 4> GEP2VariableIndices; const Value *GEP2BasePtr = DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, GEP2MaxLookupReached, DL, &AC, DT); // DecomposeGEPExpression and GetUnderlyingObject should return the // same result except when DecomposeGEPExpression has no DataLayout. // FIXME: They always have a DataLayout, so this should become an assert. if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) { return MayAlias; } // If we know the two GEPs are based off of the exact same pointer (and not // just the same underlying object), see if that tells us anything about // the resulting pointers. if (GEP1->getPointerOperand() == GEP2->getPointerOperand()) { AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, DL); // If we couldn't find anything interesting, don't abandon just yet. if (R != MayAlias) return R; } // If the max search depth is reached, the result is undefined if (GEP2MaxLookupReached || GEP1MaxLookupReached) return MayAlias; // Subtract the GEP2 pointer from the GEP1 pointer to find out their // symbolic difference. GEP1BaseOffset -= GEP2BaseOffset; GetIndexDifference(GEP1VariableIndices, GEP2VariableIndices); } else { // Check to see if these two pointers are related by the getelementptr // instruction. If one pointer is a GEP with a non-zero index of the other // pointer, we know they cannot alias. // If both accesses are unknown size, we can't do anything useful here. if (V1Size == MemoryLocation::UnknownSize && V2Size == MemoryLocation::UnknownSize) return MayAlias; AliasResult R = aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize, AAMDNodes(), V2, V2Size, V2AAInfo); if (R != MustAlias) // If V2 may alias GEP base pointer, conservatively returns MayAlias. // If V2 is known not to alias GEP base pointer, then the two values // cannot alias per GEP semantics: "A pointer value formed from a // getelementptr instruction is associated with the addresses associated // with the first operand of the getelementptr". return R; const Value *GEP1BasePtr = DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, GEP1MaxLookupReached, DL, &AC, DT); // DecomposeGEPExpression and GetUnderlyingObject should return the // same result except when DecomposeGEPExpression has no DataLayout. // FIXME: They always have a DataLayout, so this should become an assert. if (GEP1BasePtr != UnderlyingV1) { return MayAlias; } // If the max search depth is reached the result is undefined if (GEP1MaxLookupReached) return MayAlias; } // In the two GEP Case, if there is no difference in the offsets of the // computed pointers, the resultant pointers are a must alias. This // happens when we have two lexically identical GEP's (for example). // // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 // must aliases the GEP, the end result is a must alias also. if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty()) return MustAlias; // If there is a constant difference between the pointers, but the difference // is less than the size of the associated memory object, then we know // that the objects are partially overlapping. If the difference is // greater, we know they do not overlap. if (GEP1BaseOffset != 0 && GEP1VariableIndices.empty()) { if (GEP1BaseOffset >= 0) { if (V2Size != MemoryLocation::UnknownSize) { if ((uint64_t)GEP1BaseOffset < V2Size) return PartialAlias; return NoAlias; } } else { // We have the situation where: // + + // | BaseOffset | // ---------------->| // |-->V1Size |-------> V2Size // GEP1 V2 // We need to know that V2Size is not unknown, otherwise we might have // stripped a gep with negative index ('gep <ptr>, -1, ...). if (V1Size != MemoryLocation::UnknownSize && V2Size != MemoryLocation::UnknownSize) { if (-(uint64_t)GEP1BaseOffset < V1Size) return PartialAlias; return NoAlias; } } } if (!GEP1VariableIndices.empty()) { uint64_t Modulo = 0; bool AllPositive = true; for (unsigned i = 0, e = GEP1VariableIndices.size(); i != e; ++i) { // Try to distinguish something like &A[i][1] against &A[42][0]. // Grab the least significant bit set in any of the scales. We // don't need std::abs here (even if the scale's negative) as we'll // be ^'ing Modulo with itself later. Modulo |= (uint64_t)GEP1VariableIndices[i].Scale; if (AllPositive) { // If the Value could change between cycles, then any reasoning about // the Value this cycle may not hold in the next cycle. We'll just // give up if we can't determine conditions that hold for every cycle: const Value *V = GEP1VariableIndices[i].V; bool SignKnownZero, SignKnownOne; ComputeSignBit(const_cast<Value *>(V), SignKnownZero, SignKnownOne, DL, 0, &AC, nullptr, DT); // Zero-extension widens the variable, and so forces the sign // bit to zero. bool IsZExt = GEP1VariableIndices[i].ZExtBits > 0 || isa<ZExtInst>(V); SignKnownZero |= IsZExt; SignKnownOne &= !IsZExt; // If the variable begins with a zero then we know it's // positive, regardless of whether the value is signed or // unsigned. int64_t Scale = GEP1VariableIndices[i].Scale; AllPositive = (SignKnownZero && Scale >= 0) || (SignKnownOne && Scale < 0); } } Modulo = Modulo ^ (Modulo & (Modulo - 1)); // We can compute the difference between the two addresses // mod Modulo. Check whether that difference guarantees that the // two locations do not alias. uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1); if (V1Size != MemoryLocation::UnknownSize && V2Size != MemoryLocation::UnknownSize && ModOffset >= V2Size && V1Size <= Modulo - ModOffset) return NoAlias; // If we know all the variables are positive, then GEP1 >= GEP1BasePtr. // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr. if (AllPositive && GEP1BaseOffset > 0 && V2Size <= (uint64_t)GEP1BaseOffset) return NoAlias; if (constantOffsetHeuristic(GEP1VariableIndices, V1Size, V2Size, GEP1BaseOffset, &AC, DT)) return NoAlias; } // Statically, we can see that the base objects are the same, but the // pointers have dynamic offsets which we can't resolve. And none of our // little tricks above worked. // // TODO: Returning PartialAlias instead of MayAlias is a mild hack; the // practical effect of this is protecting TBAA in the case of dynamic // indices into arrays of unions or malloc'd memory. return PartialAlias; } static AliasResult MergeAliasResults(AliasResult A, AliasResult B) { // If the results agree, take it. if (A == B) return A; // A mix of PartialAlias and MustAlias is PartialAlias. if ((A == PartialAlias && B == MustAlias) || (B == PartialAlias && A == MustAlias)) return PartialAlias; // Otherwise, we don't know anything. return MayAlias; } /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction /// against another. AliasResult BasicAAResult::aliasSelect(const SelectInst *SI, uint64_t SISize, const AAMDNodes &SIAAInfo, const Value *V2, uint64_t V2Size, const AAMDNodes &V2AAInfo) { // If the values are Selects with the same condition, we can do a more precise // check: just check for aliases between the values on corresponding arms. if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2)) if (SI->getCondition() == SI2->getCondition()) { AliasResult Alias = aliasCheck(SI->getTrueValue(), SISize, SIAAInfo, SI2->getTrueValue(), V2Size, V2AAInfo); if (Alias == MayAlias) return MayAlias; AliasResult ThisAlias = aliasCheck(SI->getFalseValue(), SISize, SIAAInfo, SI2->getFalseValue(), V2Size, V2AAInfo); return MergeAliasResults(ThisAlias, Alias); } // If both arms of the Select node NoAlias or MustAlias V2, then returns // NoAlias / MustAlias. Otherwise, returns MayAlias. AliasResult Alias = aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(), SISize, SIAAInfo); if (Alias == MayAlias) return MayAlias; AliasResult ThisAlias = aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(), SISize, SIAAInfo); return MergeAliasResults(ThisAlias, Alias); } /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against /// another. AliasResult BasicAAResult::aliasPHI(const PHINode *PN, uint64_t PNSize, const AAMDNodes &PNAAInfo, const Value *V2, uint64_t V2Size, const AAMDNodes &V2AAInfo) { // Track phi nodes we have visited. We use this information when we determine // value equivalence. VisitedPhiBBs.insert(PN->getParent()); // If the values are PHIs in the same block, we can do a more precise // as well as efficient check: just check for aliases between the values // on corresponding edges. if (const PHINode *PN2 = dyn_cast<PHINode>(V2)) if (PN2->getParent() == PN->getParent()) { LocPair Locs(MemoryLocation(PN, PNSize, PNAAInfo), MemoryLocation(V2, V2Size, V2AAInfo)); if (PN > V2) std::swap(Locs.first, Locs.second); // Analyse the PHIs' inputs under the assumption that the PHIs are // NoAlias. // If the PHIs are May/MustAlias there must be (recursively) an input // operand from outside the PHIs' cycle that is MayAlias/MustAlias or // there must be an operation on the PHIs within the PHIs' value cycle // that causes a MayAlias. // Pretend the phis do not alias. AliasResult Alias = NoAlias; assert(AliasCache.count(Locs) && "There must exist an entry for the phi node"); AliasResult OrigAliasResult = AliasCache[Locs]; AliasCache[Locs] = NoAlias; for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { AliasResult ThisAlias = aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo, PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), V2Size, V2AAInfo); Alias = MergeAliasResults(ThisAlias, Alias); if (Alias == MayAlias) break; } // Reset if speculation failed. if (Alias != NoAlias) AliasCache[Locs] = OrigAliasResult; return Alias; } SmallPtrSet<Value *, 4> UniqueSrc; SmallVector<Value *, 4> V1Srcs; bool isRecursive = false; for (Value *PV1 : PN->incoming_values()) { if (isa<PHINode>(PV1)) // If any of the source itself is a PHI, return MayAlias conservatively // to avoid compile time explosion. The worst possible case is if both // sides are PHI nodes. In which case, this is O(m x n) time where 'm' // and 'n' are the number of PHI sources. return MayAlias; if (EnableRecPhiAnalysis) if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) { // Check whether the incoming value is a GEP that advances the pointer // result of this PHI node (e.g. in a loop). If this is the case, we // would recurse and always get a MayAlias. Handle this case specially // below. if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 && isa<ConstantInt>(PV1GEP->idx_begin())) { isRecursive = true; continue; } } if (UniqueSrc.insert(PV1).second) V1Srcs.push_back(PV1); } // If this PHI node is recursive, set the size of the accessed memory to // unknown to represent all the possible values the GEP could advance the // pointer to. if (isRecursive) PNSize = MemoryLocation::UnknownSize; AliasResult Alias = aliasCheck(V2, V2Size, V2AAInfo, V1Srcs[0], PNSize, PNAAInfo); // Early exit if the check of the first PHI source against V2 is MayAlias. // Other results are not possible. if (Alias == MayAlias) return MayAlias; // If all sources of the PHI node NoAlias or MustAlias V2, then returns // NoAlias / MustAlias. Otherwise, returns MayAlias. for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) { Value *V = V1Srcs[i]; AliasResult ThisAlias = aliasCheck(V2, V2Size, V2AAInfo, V, PNSize, PNAAInfo); Alias = MergeAliasResults(ThisAlias, Alias); if (Alias == MayAlias) break; } return Alias; } /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as /// array references. AliasResult BasicAAResult::aliasCheck(const Value *V1, uint64_t V1Size, AAMDNodes V1AAInfo, const Value *V2, uint64_t V2Size, AAMDNodes V2AAInfo) { // If either of the memory references is empty, it doesn't matter what the // pointer values are. if (V1Size == 0 || V2Size == 0) return NoAlias; // Strip off any casts if they exist. V1 = V1->stripPointerCasts(); V2 = V2->stripPointerCasts(); // If V1 or V2 is undef, the result is NoAlias because we can always pick a // value for undef that aliases nothing in the program. if (isa<UndefValue>(V1) || isa<UndefValue>(V2)) return NoAlias; // Are we checking for alias of the same value? // Because we look 'through' phi nodes, we could look at "Value" pointers from // different iterations. We must therefore make sure that this is not the // case. The function isValueEqualInPotentialCycles ensures that this cannot // happen by looking at the visited phi nodes and making sure they cannot // reach the value. if (isValueEqualInPotentialCycles(V1, V2)) return MustAlias; if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy()) return NoAlias; // Scalars cannot alias each other // Figure out what objects these things are pointing to if we can. const Value *O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth); const Value *O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth); // Null values in the default address space don't point to any object, so they // don't alias any other pointer. if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1)) if (CPN->getType()->getAddressSpace() == 0) return NoAlias; if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2)) if (CPN->getType()->getAddressSpace() == 0) return NoAlias; if (O1 != O2) { // If V1/V2 point to two different objects, we know that we have no alias. if (isIdentifiedObject(O1) && isIdentifiedObject(O2)) return NoAlias; // Constant pointers can't alias with non-const isIdentifiedObject objects. if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) || (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1))) return NoAlias; // Function arguments can't alias with things that are known to be // unambigously identified at the function level. if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) || (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1))) return NoAlias; // Most objects can't alias null. if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) || (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2))) return NoAlias; // If one pointer is the result of a call/invoke or load and the other is a // non-escaping local object within the same function, then we know the // object couldn't escape to a point where the call could return it. // // Note that if the pointers are in different functions, there are a // variety of complications. A call with a nocapture argument may still // temporary store the nocapture argument's value in a temporary memory // location if that memory location doesn't escape. Or it may pass a // nocapture value to other functions as long as they don't capture it. if (isEscapeSource(O1) && isNonEscapingLocalObject(O2)) return NoAlias; if (isEscapeSource(O2) && isNonEscapingLocalObject(O1)) return NoAlias; } // If the size of one access is larger than the entire object on the other // side, then we know such behavior is undefined and can assume no alias. if ((V1Size != MemoryLocation::UnknownSize && isObjectSmallerThan(O2, V1Size, DL, TLI)) || (V2Size != MemoryLocation::UnknownSize && isObjectSmallerThan(O1, V2Size, DL, TLI))) return NoAlias; // Check the cache before climbing up use-def chains. This also terminates // otherwise infinitely recursive queries. LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo), MemoryLocation(V2, V2Size, V2AAInfo)); if (V1 > V2) std::swap(Locs.first, Locs.second); std::pair<AliasCacheTy::iterator, bool> Pair = AliasCache.insert(std::make_pair(Locs, MayAlias)); if (!Pair.second) return Pair.first->second; // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the // GEP can't simplify, we don't even look at the PHI cases. if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) { std::swap(V1, V2); std::swap(V1Size, V2Size); std::swap(O1, O2); std::swap(V1AAInfo, V2AAInfo); } if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) { AliasResult Result = aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2); if (Result != MayAlias) return AliasCache[Locs] = Result; } if (isa<PHINode>(V2) && !isa<PHINode>(V1)) { std::swap(V1, V2); std::swap(V1Size, V2Size); std::swap(V1AAInfo, V2AAInfo); } if (const PHINode *PN = dyn_cast<PHINode>(V1)) { AliasResult Result = aliasPHI(PN, V1Size, V1AAInfo, V2, V2Size, V2AAInfo); if (Result != MayAlias) return AliasCache[Locs] = Result; } if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) { std::swap(V1, V2); std::swap(V1Size, V2Size); std::swap(V1AAInfo, V2AAInfo); } if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) { AliasResult Result = aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo); if (Result != MayAlias) return AliasCache[Locs] = Result; } // If both pointers are pointing into the same object and one of them // accesses the entire object, then the accesses must overlap in some way. if (O1 == O2) if ((V1Size != MemoryLocation::UnknownSize && isObjectSize(O1, V1Size, DL, TLI)) || (V2Size != MemoryLocation::UnknownSize && isObjectSize(O2, V2Size, DL, TLI))) return AliasCache[Locs] = PartialAlias; // Recurse back into the best AA results we have, potentially with refined // memory locations. We have already ensured that BasicAA has a MayAlias // cache result for these, so any recursion back into BasicAA won't loop. AliasResult Result = getBestAAResults().alias(Locs.first, Locs.second); return AliasCache[Locs] = Result; } /// Check whether two Values can be considered equivalent. /// /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether /// they can not be part of a cycle in the value graph by looking at all /// visited phi nodes an making sure that the phis cannot reach the value. We /// have to do this because we are looking through phi nodes (That is we say /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB). bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V, const Value *V2) { if (V != V2) return false; const Instruction *Inst = dyn_cast<Instruction>(V); if (!Inst) return true; if (VisitedPhiBBs.empty()) return true; if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck) return false; // Make sure that the visited phis cannot reach the Value. This ensures that // the Values cannot come from different iterations of a potential cycle the // phi nodes could be involved in. for (auto *P : VisitedPhiBBs) if (isPotentiallyReachable(&P->front(), Inst, DT, LI)) return false; return true; } /// Computes the symbolic difference between two de-composed GEPs. /// /// Dest and Src are the variable indices from two decomposed GetElementPtr /// instructions GEP1 and GEP2 which have common base pointers. void BasicAAResult::GetIndexDifference( SmallVectorImpl<VariableGEPIndex> &Dest, const SmallVectorImpl<VariableGEPIndex> &Src) { if (Src.empty()) return; for (unsigned i = 0, e = Src.size(); i != e; ++i) { const Value *V = Src[i].V; unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits; int64_t Scale = Src[i].Scale; // Find V in Dest. This is N^2, but pointer indices almost never have more // than a few variable indexes. for (unsigned j = 0, e = Dest.size(); j != e; ++j) { if (!isValueEqualInPotentialCycles(Dest[j].V, V) || Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits) continue; // If we found it, subtract off Scale V's from the entry in Dest. If it // goes to zero, remove the entry. if (Dest[j].Scale != Scale) Dest[j].Scale -= Scale; else Dest.erase(Dest.begin() + j); Scale = 0; break; } // If we didn't consume this entry, add it to the end of the Dest list. if (Scale) { VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale}; Dest.push_back(Entry); } } } bool BasicAAResult::constantOffsetHeuristic( const SmallVectorImpl<VariableGEPIndex> &VarIndices, uint64_t V1Size, uint64_t V2Size, int64_t BaseOffset, AssumptionCache *AC, DominatorTree *DT) { if (VarIndices.size() != 2 || V1Size == MemoryLocation::UnknownSize || V2Size == MemoryLocation::UnknownSize) return false; const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1]; if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits || Var0.Scale != -Var1.Scale) return false; unsigned Width = Var1.V->getType()->getIntegerBitWidth(); // We'll strip off the Extensions of Var0 and Var1 and do another round // of GetLinearExpression decomposition. In the example above, if Var0 // is zext(%x + 1) we should get V1 == %x and V1Offset == 1. APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0), V1Offset(Width, 0); bool NSW = true, NUW = true; unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0; const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits, V0SExtBits, DL, 0, AC, DT, NSW, NUW); NSW = true, NUW = true; const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits, V1SExtBits, DL, 0, AC, DT, NSW, NUW); if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits || V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1)) return false; // We have a hit - Var0 and Var1 only differ by a constant offset! // If we've been sext'ed then zext'd the maximum difference between Var0 and // Var1 is possible to calculate, but we're just interested in the absolute // minimum difference between the two. The minimum distance may occur due to // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so // the minimum distance between %i and %i + 5 is 3. APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff; MinDiff = APIntOps::umin(MinDiff, Wrapped); uint64_t MinDiffBytes = MinDiff.getZExtValue() * std::abs(Var0.Scale); // We can't definitely say whether GEP1 is before or after V2 due to wrapping // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and // V2Size can fit in the MinDiffBytes gap. return V1Size + std::abs(BaseOffset) <= MinDiffBytes && V2Size + std::abs(BaseOffset) <= MinDiffBytes; } //===----------------------------------------------------------------------===// // BasicAliasAnalysis Pass //===----------------------------------------------------------------------===// char BasicAA::PassID; BasicAAResult BasicAA::run(Function &F, AnalysisManager<Function> *AM) { return BasicAAResult(F.getParent()->getDataLayout(), AM->getResult<TargetLibraryAnalysis>(F), AM->getResult<AssumptionAnalysis>(F), AM->getCachedResult<DominatorTreeAnalysis>(F), AM->getCachedResult<LoopAnalysis>(F)); } BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) { initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry()); } char BasicAAWrapperPass::ID = 0; void BasicAAWrapperPass::anchor() {} INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basicaa", "Basic Alias Analysis (stateless AA impl)", true, true) INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) INITIALIZE_PASS_END(BasicAAWrapperPass, "basicaa", "Basic Alias Analysis (stateless AA impl)", true, true) FunctionPass *llvm::createBasicAAWrapperPass() { return new BasicAAWrapperPass(); } bool BasicAAWrapperPass::runOnFunction(Function &F) { auto &ACT = getAnalysis<AssumptionCacheTracker>(); auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>(); auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), TLIWP.getTLI(), ACT.getAssumptionCache(F), DTWP ? &DTWP->getDomTree() : nullptr, LIWP ? &LIWP->getLoopInfo() : nullptr)); return false; } void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); AU.addRequired<AssumptionCacheTracker>(); AU.addRequired<TargetLibraryInfoWrapperPass>(); } BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) { return BasicAAResult( F.getParent()->getDataLayout(), P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F)); }